(精选)《运筹学》复习参考资料
(新)运筹学复习要点

运筹学复习要点1.线性规划部分(1)会求一般线性规划问题的标准形式。
要求见38页表格。
(2)了解线性规划的可行解、基解、基可行解、最优解、基变量、非基变量等概念。
(3)知道单纯形法的几个基本定理。
(4)掌握大M法与两阶段法求解线性规划问题的方法步骤。
(5)知道线性规划问题唯一最优解,有无界解,无穷多最优解,无可行解的判别方法。
(6)了解单纯形法的矩阵表示方法,会找出B-1 。
2.对偶理论(1)会求原规划问题的对偶问题。
(2)了解对偶原理。
(3)知道对偶单纯形法的迭代步骤。
(4)灵敏度分析部分:会对增加变量与增加约束条件情况进行分析。
3.运输问题(1)知道运输问题的数学模型。
(2)掌握运输问题的表上作业法(初始方案的确定,最优性检验,调运方案的调整)。
(3)会处理产大于销的运输问题。
4.指派问题(1)知道匈牙利法解决分配问题的理论依据,掌握匈牙利法求解指派问题的方法。
(2)知道人多任务少时的处理方法及人比任务少时的处理方法。
5.整数规划(1)会用割平面法求解整数规划问题6.目标规划(1)会建立目标规划数学模型,会解释目标约束的意义。
(2)会用图解法求解目标规划。
7.图论部分(1)了解图的基本概念:简单图、完全图、偶图、子图、部分图等,次(度)、链、路、圈、回路等。
(2)知道树的概念和基本性质。
知道求图的最小部分树的理论依据和方法。
(3)会求最短路。
(4)会求网络的最大流与最小割。
(5)会求最小费用流。
8.动态规划(1)了解动态规划的基本概念及最优化原理.(2)知道动态规划的基本方程与求解方法.9.决策分析(1)掌握不确定型决策分析条件收益矩阵与机会损失矩阵建立方法及相关决策准则。
(2)会运用决策树方法解决简单的序贯决策问题。
(3)掌握AHP法的分析问题步骤,会用和法求判断矩阵的特征向量。
运筹学复习题一、填空题1.在线性规划标准形式中,要求约束条件右侧常数),,2,1(m i b i =为_____ 数。
运筹学 本(复习资料)

《运筹学》课程复习资料一、判断题:1.图解法与单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。
[ ]2.线性规划问题的每一个基本解对应可行解域的一个顶点。
[ ]3.任何线性规划问题存在并具有惟一的对偶问题。
[ ]4.已知y i*为线性规划的对偶问题的最优解,若y i*>0,说明在最优生产计划中第i种资源已完全耗尽。
[ ] 5.运输问题是一种特殊的线性规划问题,因而其求解结果也可能出现下列四种情况之一:有惟一最优解,有无穷多最优解,无界解,无可行解。
[ ]6.动态规划的最优性原理保证了从某一状态开始的未来决策独立于先前已做出的决策。
[ ]7.如果线性规划问题存在最优解,则最优解一定可以在可行解域的顶点上获得。
[ ]8.用单纯形法求解Max型的线性规划问题时,检验数Rj>0对应的变量都可以被选作入基变量。
[ ]9.对于原问题是求Min,若第i个约束是“=”,则第i个对偶变量yi≤0。
[ ]10.用大M法或两阶段法单纯形迭代中若人工变量不能出基(人工变量的值不为0),则问题无可行解。
[ ]11.如图中某点vi 有若干个相邻点,与其距离最远的相邻点为vj,则边[vi,vj]必不包含在最小支撑树内。
[ ]12.在允许缺货发生短缺的存贮模型中,订货批量的确定应使由于存贮量的减少带来的节约能抵消缺货时造成的损失。
[ ] 13.根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解。
[ ] 14.在线性规划的最优解中,若某一变量xj为非基变量,则在原来问题中,改变其价值系数cj,反映到最终单纯形表中,除xj的检验数有变化外,对其它各数字无影响。
[ ]15.单纯形迭代中添加人工变量的目的是为了得到问题的一个基本可行解。
[ ]16.订购费为每订一次货所发生的费用,它同每次订货的数量无关。
[ ]17.一个动态规划问题若能用网络表达时,节点代表各阶段的状态值,各条弧代表了可行方案的选择。
《运筹学》复习资料整理总结

《运筹学》复习资料整理总结1. 建立线性规划模型的步骤。
确定决策变量 确定目标函数 确定约束条件方程2. 线性规划问题的特征。
都有一个追求的目标,这个目标可表示为一组变量的线性函数,按照问题的不同,追求的目标可以为最大,也可以为最小。
问题中有若干个约束条件,用来表示问题中的限制或要求,这些约束条件可以用线性等式或线性不等式表示。
问题中用一组决策变量来表示一种方案。
3. 线性规划问题标准型的特征。
4. 化标准型的方法。
123123123123min z 2+223-8340,0,x x x x x x x x x x x x =+-+=⎧⎪-+-≤⎨⎪≤≥⎩为自由变量123123123123min z 2+223-634,0,x x x x x x x x x x x x =+-+=⎧⎪-+-≥⎨⎪≥⎩为自由变量5. 基本解:令其余的变量取值为0,则得到Ax=b 的一个解y,称此解为线性规划问题的基本解。
6. 基本可行解:若基本解y 满足y ≥0,则称这个解为基本可行解。
7. 可行解:满足约束条件的解x=(x1、x2、……xn )T 称为线性规划问题的可行解。
8. 最优解:函数达到最优的可行解叫做最优解。
9.图解法适合于变量个数为2个的线性规划问题。
10.单纯形法解线性规划问题如何确定初始基本可行解。
(1)约束条件为≤,先加入松弛变量x1、x2……xm后变为等式,取松弛变量为基本变量(2)约束条件为=,先加入人工变量xm+1、xm+2……xm+n,人工变量价值系数为m(3)约束条件为≥,先加入多于变量xn+1、xn+2……xm+n后变为等式,在添加人工变量xn+m+111.单纯形法最优解的检验准则。
(1)若基本可行解x’对应的典式的目标函数中非基变量的系数全部满足cN-cBB-1Pj≤0,则基本可行解x’为原问题的最优解。
(2)若基本可行解x’对应的典式的目标函数中所有非基变量的系数满足cN-cBB-1Pj≤0,且有一非基变量的系数满足Ck-Zk=0,则原问题有无穷多组最优解12.对目标函数为极小(min)型的线性规划问题,用单纯形法解的三种处理方法。
《运筹学》复习参考资料

第一部分线性规划问题的求解——重要算法:图解法、单纯形迭代、大M法单纯形迭代、对偶问题、表上作业法(找初始可行解:西北角法,最小元素法;最优性检验:闭回路法,位势法;)、目标规划:图解法、整数规划:分支定界法(次重点),匈牙利法(重点)、第二部分动态规划问题的求解——重要算法:图上标号法第三部分网络分析问题的求解——重要算法:破圈法、TP标号法、寻求网络最大流的标号法第一部分线性规划问题的求解一、两个变量的线性规划问题的图解法:㈠概念准备:定义:满足所有约束条件的解为可行解;可行解的全体称为可行(解)域。
定义:达到目标的可行解为最优解。
㈡图解法:图解法采用直角坐标求解:x1——横轴;x2——竖轴。
1、将约束条件(取等号)用直线绘出;2、确定可行解域;3、绘出目标函数的图形(等值线),确定它向最优解的移动方向;注:求极大值沿价值系数向量的正向移动;求极小值沿价值系数向量的反向移动。
4、确定最优解及目标函数值。
㈢参考例题:(只要求下面这些有唯一最优解的类型)例1:某厂生产甲、乙两种产品,这两种产品均需在A、B、C三种不同的设备上加工,每种产品在不同设备上加工所需的工时不同,这些产品销售后所能获得利润以及这三种加工设备因各种条件限制所能使用的有效加工总时数如下表所示:有效总工时 540 450 720 ——问:该厂应如何组织生产,即生产多少甲、乙产品使得该厂的总利润为最大 (此题也可用“单纯形法”或化“对偶问题”用大M 法求解) 解:设x 1、x 2为生产甲、乙产品的数量。
max z = 70x 1+30x 2.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+072039450555409321212121x x x x x x x x ,可行解域为oabcd0,最优解为b 点。
由方程组⎩⎨⎧=+=+72039450552121x x x x 解出x 1=75,x 2=15 ∴X *=⎪⎪⎭⎫⎝⎛21x x =(75,15)T∴max z =Z *= 70×75+30×15=5700 例2:用图解法求解max z = 6x 1+4x 2⑴ ⑵ ⑶ ⑷ ⑸、⑹⑴.⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x ,可行解域为oabcd0,最优解为b 点。
运筹学复习资料资料讲解

运筹学复习一、 填空题1、线性规划中,满足非负条件的基本解称为基本可行解,对应的基称为可行基线.2、性规划的目标函数的系数是其对偶问题的右端常数;而若线性规划为最大化问题,则3、对偶问题为最小化问题。
4、在运输问题模型中,1m n +-个变量构成基变量的充要条件是不含闭回路。
5、动态规划方法的步骤可以总结为:逆序求解最优目标函数,顺序求__最优策略、最优路线和最优目标函数值。
6、工程路线问题也称为最短路问题,根据问题的不同分为定步数问题和不定步数问题;7、对不定步数问题,用迭代法求解,有函数迭代法和策略迭代法两种方法。
8、在图论方法中,通常用点表示人们研究的对象,用边表示对象之间的某种联系。
9、一个无圈且连通的图称为树。
10、图解法提供了求解只含有两个决策变量的线性规划问题的方法.11、图解法求解生产成本最小线性规划问题时,等成本线越往左下角移动,成本越低.12、如果线性规划问题有有限最优解,则该最优解一定在可行域的边界上上达到。
13、线性规划中,任何基对应的决策变量称为基变量.14、原问题与对偶问题是相互对应的. 线性规划中,对偶问题的对偶问题是原问题.15、在线性规划问题中,若某种资源的影子价格为10,则适当增加该资源量,企业的收益将_会 (“会”或“不会”)提高.16、表上作业法实质上就是求解运输问题的单纯形法.17、产销平衡运输问题的基变量共有m+n-1个.18、动态规划不仅可以用来解决和时间有关的多阶段决策问题,也可以处理与时间无关的多阶段决策问题.19、构成动态规划模型,需要进行以下几方面的工作:正确选择阶段(k )变量,正确选择状态(Sk )变量,正确选择_ 决策(UK )变量,列出状态转移方程, 列出_阶段指标函数_,建立函数基本方程.20、动态规划方法可以用来解决和某些与时间有关的问题,但也可以用来解决和某些与时间无关的问题.在图论方法中,图是指由点与边和点与弧组成的示意图.21、网络最短路径是指从网络起点至终点的一条权之和最小的路线.简述单纯形法的计算步骤:第一步:找出初始可行解,建立初始单纯形表。
运筹学复习提纲

运筹学复习提纲第一章线性规划1、线性规划的三个要素目标函数、决策变量、约束条件一般形式,标准形式(转化)2、求解线性规划的图解法3、线性规划解的可能性唯一最优解、无穷多最优解、无界解、无可行解(原因)4、单纯形法(必考点)基,基变量,基本解,基本可行解,可行解,最优解,最优基单纯形法解题思路、步骤,最优解的判定定理,单纯形法的管理启示大M法的可能结果图解法。
大M法。
线性规划数学模型的建立?(建模)第二章线性规划讨论1、线性规划灵敏度分析价值系数、资源向量第三章 对偶规划 1、对偶模型 2、对偶性质对称性定理,弱对偶定理,强对偶定理,互补松驰定理 3、影子价值对偶问题的最优解,影子价值的经济含义 (课后习题69页,5)1、 求该问题产值最大的最优解和最优值2、 求出该问题的对偶问题和最优值3、 给出两种资源的影子价格,说明其经济含义:第一只能够资源限量由2 变为4 ,最优解是否改变?4、 代加工产品丁,每单位产品需要消耗第一种资源两单位,消耗第二种资源3单位,应该如何定价? 解:1、先转化成标准型:利用单纯形法求解:123123123123max 42832..68,,0Z x x x x x x s t x x x x x x =++++≤⎧⎪++≤⎨⎪≥⎩1234512341235max 4200832..680;1,2,,5jZ x x x x x x x x x s t x x x x x j =++++⎧+++=⎪+++=⎨⎪≥=⎩该问题有唯一最优解: 2、利用对偶问题的性质求解对偶问题的最优解和最优值:第一种资源影子价格为2,表明第一种资源增加1个单位,产值(或利润)增加2个单位,即第一种资源为紧缺资源(x 4 = 0); 第二种资源影子价格为0,表明第二种资源增加1个单位,产值(或利润)增加0个单位,第二种资源有剩余(x 5 = 6) 。
3、对偶问题数学模型:其对偶模型为:*(0,0,2,0,6)TX =*4Z =*(2,0,12,5,0)Y =*4Z =123123123123max 42832..68,,0Z x x x x x x s t x x x x x x =++++≤⎧⎪++≤⎨⎪≥⎩121212min 2886431W y y y y y y =++≥⎧⎪+≥⎪,根据题意:(4)设产品丁的产量为x6第四章整数规划1、整数规划的含义2、整数规划的类型及求解方法3、整数规划问题建模 0-1规划建模4、分枝定界法第五章目标规划1、目标规划问题建模2、目标规划图解法(满意解)问:在材料不能超用的条件下,企业如何安排生产计划?要求尽可能满足下列目标:(1)力求使利润指标不低于80元;(2)考虑到市场需求, 两种产品的产量需保持1:1的比例;(3)设备A既要求充分利用,又尽可能不加班;(4)设备B必要时可以加班,但加班时间尽可能少。
运筹学复习整理(保准管用)

1. 简答题(1) 运筹学的工作步骤提出和形成问题:即要弄清问题的目标,可能的约束,问题的可控变量以及相关的参数,搜集相关资料;建立模型:即把问题中可控变量,参数,目标与约束之间的关系用模型表示出来;求解:用各种手段将模型求解,解可以是最优解,次优解,满意解。
复杂模型的求解需用计算机,解得精度要求可有决策者提出;解的检验:首先检查求解步骤和程序有无错误,然后检查解是否反映现实问题;解的控制:通过控制解的变化过程决定对解是否做一定的改变; 解的实施:是指将解用到实际中必须考虑的实际问题,如向实际部门讲清解的用法,在实施中可能产生的问题和修改。
(2)退化产生原因及解决办法单纯形法计算中用θ规则确定换出变量时,有时存在两个以上相同的最小比值,这样在下一次迭代中就有一个或几个基变量等于零,这就出现退化解。
勃兰特规则:1.选取cj-zj >0中下标最小的非基变量xk 为换入变量,即k=min(j |cj-zj >0)2. 当按θ规则计算存在两个和两个以上最小比值时,选取下标最小的基变量为换出变量。
(3)对偶问题的经济解释• 这说明yi 是右端项bi 每增加一个单位对目标函数Z 的贡献。
• 对偶变量 yi 在经济上表示原问题第i 种资源的边际价值。
• 对偶变量的值 yi*所表示的第i 种资源的边际价值,称为影子价值。
∑∑=====n j mi i i j j y b x c Z 11ωiiy b Z=∂∂若原问题的价值系数Cj 表示单位产值,则yi 称为影子价格; 若原问题的价值系数Cj 表示单位利润,则yi 称为影子利润。
影子价格不是资源的实际价格,而是资源配置结构的反映,是在其它数据相对稳定的条件下某种资源增加一个单位导致的目标函数值的增量变化。
(4)分枝定界法步骤a) 先求出整数规划相应的LP(即不考虑整数限制)的最优解, b) 若求得的最优解符合整数要求,则是原IP 的最优解; c) 若不满足整数条件,则任选一个不满足整数条件的变量来构造新的约束,在原可行域中剔除部分非整数解。
管理运筹学期末复习权威资料

运筹学(Operational Research)复习资料第一章绪论一、名词解释1.运筹学:运筹学是应用分析、试验、量化的方法,对经济管理系统中的人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。
二、选择题1.运筹学的主要分支包括(ABDE )A图论B线性规划C非线性规划D整数规划E目标规划2. 最早运用运筹学理论的是( A )A . 二次世界大战期间,英国军事部门将运筹学运用到军事战略部署B . 美国最早将运筹学运用到农业和人口规划问题上C . 二次世界大战期间,英国政府将运筹学运用到政府制定计划D . 50年代,运筹学运用到研究人口,能源,粮食,第三世界经济发展等问题上第二章线性规划的图解法一、选择题/填空题1.线性规划标准式的特点:(1)目标函数最大化(2)约束条件为等式(3 决策变量为非负(4 ) 右端常数项为非负2. 在一定范围内,约束条件右边常数项增加一个单位:(1)如果对偶价格大于0,则其最优目标函数值得到改进,即求最大值时,最优目标函数值变得更大,求最小值时最优目标函数值变得更小。
(2)如果对偶价格小于0,则其最优目标函数值变坏,即求最大值时,最优目标函数值变小了;求最小值时,最优目标函数值变大了。
(3)如果对偶价格等于0,则其最优目标函数值不变。
3.LP(1)决策变量(2)约束条件(3)目标函数4. 数学模型中,“s·t”表示约束条件。
5. 将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左端加上松弛变量。
6. 将线性规划模型化成标准形式时,“≥”的约束条件要在不等式左端减去剩余变量。
7.下列图形中阴影部分构成的集合是凸集的是A【解析】:如何判断是凸集?凸集:两点之间连线在图内凹集:两点之间连线在图外8. 线性规划问题有可行解且凸多边形无界,这时CA没有无界解 B 没有可行解 C 有无界解 D 有有限最优解9. 对于线性规划问题,下列说法正确的是( D )A. 线性规划问题可能没有可行解B. 在图解法上,线性规划问题的可行解区域都是“凸”区域C. 线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D. 上述说法都正确第三章线性规划问题的计算机求解一、名词解释1.相差值:相应的决策变量的目标系数需要改进的数量,使得决策变量为正值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《运筹学》复习参考资料资料加工、整理人——杨峰(函授总站高级讲师)要求掌握的各部分知识点第一部分线性规划问题的求解(相当于教材的第一章)——重要算法:单纯形迭代、大M法单纯形迭代、表上作业法、匈牙利法第二部分动态规划问题的求解(相当于教材的第三章)——重要算法:图上标号法第三部分网络分析问题的求解(相当于教材的第四章)——重要算法:破圈法、TP标号法、寻求网络最大流的标号法第四部分存储论简介(相当于教材的第七章)※杨老师关于学习方法的提示:《运筹学》属于应用数学的范畴,本门课程在管理类本科生层次开设时,又称“管理运筹学”,是现代数学理论和计算机技术应用于管理科学的新兴学科。
非应用数学系(专业)学生学习本门课程之前务必先具备“高数Ⅱ”(线性代数、概率论与数理统计)的知识基础。
学员同志们通过学习,必须领会数学建模的思想、系统工程的思想。
非全日制学生学习时,只要求知道若干典型数学模型及其算法的操作,即只须明白“怎样做”,而不必去过问“为什么”要这样做。
第一部分线性规划问题的求解一、两个变量的线性规划问题的图解法:㈠概念准备:定义:满足所有约束条件的解为可行解;可行解的全体称为可行(解)域。
定义:达到目标的可行解为最优解。
㈡图解法:图解法采用直角坐标求解:x1——横轴;x2——竖轴。
1、将约束条件(取等号)用直线绘出;2、确定可行解域;3、绘出目标函数的图形(等值线),确定它向最优解的移动方向;注:求极大值沿价值系数向量的正向移动;求极小值沿价值系数向量的反向移动。
4、确定最优解及目标函数值。
㈢参考例题:(只要求下面这些有唯一最优解的类型)例1:某厂生产甲、乙两种产品,这两种产品均需在A、B、C三种不同的设备上加工,每种产品在不同设备上加工所需的工时不同,这些产品销售后所能获得利润以及这三种加工设备因各种条件限制所能使用的有效加工总时数如下表所示:问:该厂应如何组织生产,即生产多少甲、乙产品使得该厂的总利润为最大?(此题也可用“单纯形法”或化“对偶问题”用大M法求解)解:设x 1、x 2为生产甲、乙产品的数量。
max z = 70x 1+30x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+072039450555409321212121x x x x x x x x ,可行解域为oabcd0,最优解为b 点。
由方程组⎩⎨⎧=+=+72039450552121x x x x 解出x 1=75,x 2=15 ∴X *=⎪⎪⎭⎫ ⎝⎛21x x =(75,15)T∴max z =Z *= 70×75+30×15=5700⑴⑵ ⑶ ⑷ ⑸、⑹max z = 6x 1+4x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x , 解:可行解域为oabcd0,最优解为b 点。
由方程组⎩⎨⎧=+=+81022121x x x x 解出x 1=2,x 2=6 ∴X *=⎪⎪⎭⎫ ⎝⎛21x x =(2,6)T∴max z = 6×2+4×6=36⑴⑵ ⑶ ⑷ ⑸、⑹min z =-3x 1+x 2 s.t.⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≥+≤≤08212523421212121x x x x x x x x , 解:可行解域为bcdefb ,最优解为b 点。
由方程组⎩⎨⎧=+=12524211x x x 解出x 1=4,x 2=54∴X *=⎪⎪⎭⎫ ⎝⎛21x x =(4,54)T∴min z =-3×4+54=-1151⑴⑵ ⑶ ⑷ ⑸ ⑹、⑺二、标准型线性规划问题的单纯形解法: ㈠一般思路:1、用简单易行的方法获得初始基本可行解;2、对上述解进行检验,检验其是否为最优解,若是,停止迭代,否则转入3;3、根据θL 规则确定改进解的方向;4、根据可能改进的方向进行迭代得到新的解;5、根据检验规则对新解进行检验,若是最优解,则停止迭代,否则转入3,直至最优解。
㈡具体做法(可化归标准型的情况):设已知max z = c 1x 1+ c 2x 2+…+ c n x ns.t.⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≤+++≤+++≤+++n j x bx a x a x a b x a x a x a b x a x a x a j mn mn m m n n n n ,,,,...210 (2)2112222212111212111 对第i 个方程加入松弛变量x n+i ,i =1,2,…,m ,得到⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥=++++=++++=+++++++n j x b x x a x a x a b x x a x a x a b x x a x a x a j m m n n mn m m n n n n n n ,,,,...210 (22112)22222121111212111 列表计算,格式、算法如下:注①: z j =c n+1 a 1j + c n+2 a 2j +…+ c n+m a mj =∑=+mi ij in a c1,(j=1,2,…,n+m )σj =c j -z j ,当σj ≤0时,当前解最优。
注②:由max{σj }确定所对应的行的变量为“入基变量”;由θL =⎭⎬⎫⎩⎨⎧>0min ik ik i ia ab 确定所对应的行的变量为“出基变量”,行、列交叉处为主元素,迭代时要求将主元素变为1,此列其余元素变为0。
例1:用单纯形法求解(本题即是本资料P2“图解法”例1的单纯形解法;也可化“对偶问题”求解)max z =70x 1+30x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+072039450555409321212121x x x x x x x x , 解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+30x 2+0 x 3+0 x 4+0 x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,0720394505554093521421321j x x x x x x x x x x j 列表计算如下:∴X *=(75,15,180,0,0)T∴max z =70×75+30×15=5700例2:用单纯形法求解max z =7x 1+12x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200543604921212121x x x x x x x x , 解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =7x 1+12x 2+0 x 3+0 x 4+0 x 5 s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032005436049521421321j x x x x x x x x x x j 列表计算如下:∴X*=(20,24,84,0,0)T∴max z =7×20+12×24=428三、非标准型线性规划问题的解法:1、一般地,对于约束条件组:若为“≤”,则加松弛变量,使方程成为“=”;若为“≥”,则减松弛变量,使方程成为“=”。
我们在前面标准型中是规定目标函数求极大值。
如果在实际问题中遇到的是求极小值,则为非标准型。
可作如下处理:由目标函数min z=∑=nj jj xc 1变成等价的目标函数max (-z )=∑=-nj jjx c 1)(令-z=z /,∴min z=-max z /2、等式约束——大M 法:通过加人工变量的方法,构造人造基,从而产生初始可行基。
人工变量的价值系数为-M ,M 是很大的正数,从原理上理解又称为“惩罚系数”。
(课本P29)类型一:目标函数仍为max z ,约束条件组≤与=。
例1:max z =3x 1+5x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥=+≤≤018231224212121x x x x x x , 解:加入松弛变量x 3,x 4,得到等效的标准模型:max z =3x 1+5x 2 s.t.⎪⎪⎩⎪⎪⎨⎧=≥=+=+=+4,3,2,1,018231224214231j x x x x x x x j 其中第三个约束条件虽然是等式,但因无初始解,所以增加一个人工变量x 5,得到: max z =3x 1+5x 2-M x 5s.t. ⎪⎪⎩⎪⎪⎨⎧=≥=++=+=+5,...,2,1,0182312245214231j x x x x x x x x j 单纯形表求解过程如下:∴X *=(2,6,2,0)T∴max z =3×2+5×6=36类型二:目标函数min z ,约束条件组≥与=。
例2:用单纯形法求解min z =4x 1+3x 2 s.t.⎪⎩⎪⎨⎧≥≥+≥+012231642212121x x x x x x , 解:减去松弛变量x 3,x 4,并化为等效的标准模型:max z / =-4x 1-3x 2 s.t.⎪⎩⎪⎨⎧=≥=-+=-+4,3,2,1,012231642421321j x x x x x x x j增加人工变量x 5、x 6,得到:max z / =-4x 1-3x 2-Mx 5-Mx 6 s.t⎪⎩⎪⎨⎧=≥=+-+=+-+6,...,2,1,01223164264215321j x x x x x x x x x j单纯形表求解过程如下:∴X*=(2,3,0,0)T∴min z =-max z/ =-(-17)=17四、对偶问题的解法: 什么是对偶问题?1、在资源一定的条件下,作出最大的贡献;2、完成给定的工作,所消耗的资源最少。
引例(与本资料P2例1 “图解法”、P7例1 “单纯形法”同):某工厂生产甲、乙两种产品,这些产品均需在A 、B 、C 三种不同的设备上加工,每种产品在不同设备上加工时需要不同的工时,这些产品售后所能获得的利润值以及这三种加工设备因各种条件下所能使用的有效总工时数如下表:问:该厂应如何组织生产,即生产多少甲、乙产品使得该厂的总利润为最大? 解:原问题——设x 1、x 2为生产甲、乙产品的数量。
max z = 70x 1+30x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+072039450555409321212121x x x x x x x x ,将这个原问题化为它的对偶问题——设y 1、y 2、y 2分别为设备A 、B 、C 单位工时数的加工费。
min w = 540y 1+450y 2+720y 3 s.t.⎪⎩⎪⎨⎧=≥≥++≥++32103035970953321321,,,i y y y y y y y i用大M 法,先化为等效的标准模型:max w / =-540y 1-450y 2-720y 3 s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,0303597095353214321j y y y y y y y y y j增加人工变量y 6、y 7,得到:max z / =-540y 1-450y 2-720y 3-My 6-My 7 s.t⎪⎩⎪⎨⎧=≥=++-++=+-++5,...,2,1,030359709537532164321j y y y y y y y y y y y j大M 法单纯形表求解过程如下:∴该对偶问题的最优解是y *=(0,2,320,0,0)T最优目标函数值min w =-(-5700)=5700五、运输规划问题:运输规划问题的特殊解法——“表上作业法”解题步骤:1、找出初始调运方案。