江苏专版2019版高考物理一轮复习精选提分综合练单元检测三牛顿运动定律_36
2019版高考物理(江苏版)一轮配套课件:专题三 牛顿运动定律

Fx Fy
max may
列方程求解,必要时还要对结果
进行讨论。
例6 如图所示,质量m=2 kg的物体静止于水平地面的A处,A、B间距L= 20 m。用大小为30 N、沿水平方向的外力拉此物体,经t0=2 s拉至B处(g 取10 m/s2)。则: (1)求物体运动的加速度大小; (2)求物体与地面间的动摩擦因数; (3)若改用大小为20 N的力、沿水平方向拉此物体,使之从A处由静止开 始运动并能到达B处,求该力作用的最短时间。
3.瞬时性的应用 例5 (2015海南单科,8,5分)如图,物块a、b和c的质量相同,a和b、b和c 之间用完全相同的轻弹簧S1和S2相连,通过系在a上的细线悬挂于固定点 O。整个系统处于静止状态。现将细线剪断。将物块a的加速度的大小 记为a1,S1和S2相对于原长的伸长分别记为Δl1和Δl2,重力加速度大小 为g。在剪断的瞬间, ( AC )
A.a1=3g B.a1=0 C.Δl1=2Δl2 D.Δl1=Δl2
【解析】 剪断细线前,把a、b、c看成整体,细线中的拉力为T=3mg。 在剪断瞬间,弹簧未发生突变,因此a、b、c之间的作用力与剪断细线之 前相同,则将细线剪断瞬间,对a隔离进行受力分析,由牛顿第二定律得:3 mg=ma1得a1=3g,A正确,B错误。由胡克定律知:2mg=kΔl1,mg=kΔl2,所以Δ l1=2Δl2,C正确,D错误。
2.同向性的应用 例4 如图所示,物体A和斜面体一起以相同的加速度向右做匀加速运 动,斜面体对物体A的支持力和摩擦力的合力方向可能是 ( A )
A.斜向右上方 C.斜向右下方
B.水平向右 D.上述三种方向都不可能
【解析】 由牛顿第二定律的同向性可知,物体所受合外力的方向一定 与加速度方向相同,物体A所受重力竖直向下,则支持力和摩擦力的合力 方向应该指向右上方,这样物体A所受合外力的方向才能和加速度a的 方向相同,故A正确。
江苏专版2019高考物理一轮复习第三章牛顿运动定律学案.doc

1 第三章牛顿运动定律第1节牛顿第一定律__牛顿第三定律(1)牛顿第一定律是实验定律。
(×)(2)在水平面上运动的物体最终停下来是因为水平方向没有外力维持其运动的结果。
(×)(3)运动的物体惯性大静止的物体惯性小。
(×)(4)物体的惯性越大运动状态越难改变。
(√)(5)作用力与反作用力可以作用在同一物体上。
(×)(6)作用力与反作用力的作用效果不能抵消。
(√)(1)伽利略利用“理想实验”得出“力是改变物体运动状态的原因”的观点推翻了亚里士多德的“力是维持物体运动的原因”的错误观点。
(2)英国科学家牛顿在《自然哲学的数学原理》著作中提出了“牛顿第一、第二、第三定律”。
2 突破点(一) 牛顿第一定律的理解1对牛顿第一定律的理解(1)提出惯性的概念牛顿第一定律指出一切物体都具有惯性惯性是物体的一种固有属性。
(2)揭示力的本质力是改变物体运动状态的原因而不是维持物体运动状态的原因。
2惯性的两种表现形式(1)物体在不受外力或所受的合外力为零时惯性表现为使物体保持原来的运动状态不变(静止或匀速直线运动)。
(2)物体受到外力时惯性表现为抗拒运动状态改变的能力。
惯性大物体的运动状态较难改变惯性小物体的运动状态容易改变。
3与牛顿第二定律的对比牛顿第一定律是经过科学抽象、归纳推理总结出来的而牛顿第二定律是一条实验定律。
[题点全练]1(2018·三明检测)科学思维和科学方法是我们认识世界的基本手段。
在研究和解决问题的过程中不仅需要相应的知识还需要运用科学的方法。
理想实验有时更能深刻地反映自然规律伽利略设想了一个理想实验如图所示。
①两个对接的斜面静止的小球沿一个斜面滚下小球将滚上另一个斜面②如果没有摩擦小球将上升到原来释放的高度③减小第二个斜面的倾角小球在这个斜面上仍然会达到原来的高度④继续减小第二个斜面的倾角最后使它成为水平面小球会沿水平面做持续的匀速运动。
通过对这个实验的分析我们可以得到的最直接结论是( )A自然界的一切物体都具有惯性B光滑水平面上运动的小球运动状态的维持并不需要外力C如果小球受到力的作用它的运动状态将发生改变D小球受到的力一定时质量越大它的加速度越小解析选B 理想斜面实验只能说明钢球具有惯性推广到一切物体的是牛顿A错误伽利略通过“理想斜面实验”和科学推理得出的结论是力不是维持物体运动的原因光滑水平面上运动的小球运动状态的维持并不需要外力B正确如果小球受到力的作用 3 它的运动状态将发生改变这是牛顿得出的C错误小球受到的力一定时质量越大它的加速度越小这是牛顿第二定律内容D错误。
2019版高考物理创新一轮复习江苏专用版文档:第三章

活页作业(时间:40分钟)一、单项选择题1.(2017·江苏扬州中学期初考)如图1所示,钢铁构件A、B叠放在平板卡车的水平底板上,卡车底板和B间动摩擦因数为μ1,A、B间动摩擦因数为μ2,μ1>μ2,卡车刹车的最大加速度为a,a>μ1g,可以认为最大静摩擦力与滑动摩擦力大小相等。
卡车沿平直公路行驶途中遇到紧急情况时,要求其刹车后在s0距离内能安全停下,则汽车运行的速度不能超过()图1A.2as0B.2μ2gs0C.2μ1gs0D.(μ1+μ2)gs0解析因卡车底板和B间动摩擦因数为μ1大于A、B间动摩擦因数为μ2,则要使汽车安全停下来最大加速度为a=μ2g,根据v2=2ax可得v=2as0=2μ2gs0。
答案 B2.如图2所示,A、B两个物体叠放在一起,静止在粗糙水平地面上,物体B与水平地面间的动摩擦因数μ1=0.1,物体A与B之间的动摩擦因数μ2=0.2。
已知物体A的质量m=2 kg,物体B的质量M=3 kg,重力加速度g取10 m/s2。
现对物体B施加一个水平向右的恒力F,为使物体A与物体B相对静止,则恒力的最大值是(物体间的最大静摩擦力等于滑动摩擦力)()图2A.20 NB.15 NC.10 ND.5 N解析对物体A、B整体,由牛顿第二定律得F max-μ1(m+M)g=(m+M)a;对物体A,由牛顿第二定律得μ2mg=ma;联立解得F max=(m+M)(μ1+μ2)g,代入相关数据得F max=15 N,选项B正确。
答案 B3.如图3所示,足够长的传送带与水平面夹角为θ,以速度v0逆时针匀速转动。
在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ<tan θ,则图中能客观地反映小木块的速度随时间变化关系的是()图3解析开始阶段,木块受到竖直向下的重力、垂直斜面向上的支持力和沿传送带向下的摩擦力作用,做加速度为a1的匀加速直线运动,由牛顿第二定律得mg sin θ+μmg cos θ=ma1所以a1=g sin θ+μg cos θ木块加速至与传送带速度相等时,由于μ<tan θ,则木块不会与传送带保持相对静止而匀速运动,之后木块继续加速,所受滑动摩擦力变为沿传送带向上,做加速度为a2的匀加速直线运动,这一阶段由牛顿第二定律得mg sin θ-μmg cos θ=ma2所以a2=g sin θ-μg cos θ根据以上分析,有a2<a1,所以选项D正确。
2019版高考物理创新一轮复习江苏专用版文档:第三章

基础课3 超重和失重 牛顿运动定律的综合应用知识排查超重和失重1.超重、失重和完全失重比较2.对超重、失重的理解(1)不论超重、失重或完全失重,物体的重力都不变,只是“视重”改变。
(2)物体是否处于超重或失重状态,不在于物体向上运动还是向下运动,而在于物体的加速度方向,只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态。
(3)当物体处于完全失重状态时,重力只有使物体产生a =g 的加速度效果,不再有其他效果。
此时,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、液体不再产生压强和浮力等。
小题速练1.思考判断(1)超重说明物体的重力增大了。
( )(2)物体超重时,加速度向上,速度也一定向上。
( )(3)物体失重时,也可能向上运动。
( )(4)物体完全失重时,说明物体的重力为零。
( )答案 (1)× (2)× (3)√ (4)×2.[人教版必修1P89插图改编]如图1所示,某同学站在体重计上,下蹲的全过程中她所处的状态()图1A.一直是超重B.一直是失重C.先超重,后失重D.先失重,后超重答案 D3.[人教版必修1P88插图改编]如图2所示,小李同学站在升降电梯内的体重计上,电梯静止时,体重计示数为50 kg,电梯运动过程中,某一段时间内小李同学发现体重计示数为55 kg。
g取10 m/s2,在这段时间内下列说法正确的是()图2A.体重计对小李的支持力大于小李对体重计的压力B.体重计对小李的支持力等于小李的重力C.电梯的加速度大小为1 m/s2,方向竖直向上D.电梯一定竖直向上运动解析体重计对小李的支持力和小李对体重计的压力是一对作用力与反作用力,大小相等,方向相反,故选项A错误;小李的体重只有50 kg,体重计的示数为55 kg,说明体重计对小李的支持力大于小李的重力,故选项B错误;小李处于超重状态,说明电梯有向上的加速度,运动情况可能为:向上加速或向下减速;小李受支持力和重力,由牛顿第二定律可知其加速度为a=F N-mgm=55×10-50×1050m/s 2=1 m/s 2,选项C 正确,D 错误。
【配套K12】江苏专版2019版高考物理一轮复习精选提分综合练单元检测三牛顿运动定律

单元检测三牛顿运动定律考生注意:1.本试卷共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间90分钟,满分100分.4.请在密封线内作答,保持试卷清洁完整.一、单项选择题(本题共6小题,每小题3分,共计18分.每小题只有一个选项符合题意) 1.(2017·苏州大学附中调研)竖直升降的电梯内的地板上竖直放置一根轻质弹簧,弹簧上方有一个质量为m的物体.当电梯静止时弹簧被压缩了x;当电梯运动时弹簧又被压缩了x.试判断电梯运动的可能情况是( )A.以大小为2g的加速度加速上升B.以大小为2g的加速度减速上升C.以大小为g的加速度加速下降D.以大小为g的加速度减速下降2.(2018·高邮中学阶段检测)如图1所示,两个质量分别为m1=2 kg、m2=3 kg的物体置于光滑的水平面上,中间用水平的轻质弹簧测力计连接.两个大小分别为F1=30 N、F2=20 N 的水平拉力分别作用在m1、m2上,则( )图1A.弹簧测力计的示数是25 NB.弹簧测力计的示数是50 NC .在突然撤去F 2的瞬间,m 1的加速度大小为5 m/s 2D .在突然撤去F 1的瞬间,m 1的加速度大小为13 m/s 23.(2018·仪征中学学情检测)如图2所示,在建筑工地,民工兄弟用两手对称水平使力将两长方体水泥制品夹紧并以加速度a 竖直向上匀加速搬起,其中A 的质量为m ,B 的质量为3m ,水平作用力为F ,A 、B 之间的动摩擦因数为μ,在此过程中,A 、B 间的摩擦力为( )图2A .μFB .2μF C.32m (g +a ) D .m (g +a )4.如图3所示,木块A 、B 静止叠放在光滑水平面上,A 的质量为m ,B 的质量为2m .现施加水平力F 拉B ,A 、B 刚好不发生相对滑动,一起沿水平面运动.若改为水平力F ′拉A ,使A 、B 也保持相对静止,一起沿水平面运动,则F ′不得超过( )图3A .2F B.F 2 C .3F D.F35.(2017·南阳中学月考)如图4甲所示,倾角为θ的粗糙斜面体固定在水平面上,初速度为v 0=10 m/s 、质量为m =1 kg 的小木块沿斜面上滑,若从此时开始计时,整个过程中小木块速度的平方随路程变化的关系图象如图乙所示,取g =10 m/s 2,则下列说法不正确的是( )图4A .0~5 s 内小木块做匀减速运动B .在t =1 s 时刻,摩擦力反向C .斜面倾角θ=37°D .小木块与斜面间的动摩擦因数为0.56.(2018·虹桥中学第一次调研)如图5所示,倾斜的长杆(与水平面成α角)上套有一个质量为M 的环,环通过细线吊一个质量为m 的小球,当环在某拉力的作用下在长杆上滑动时,稳定运动的情景如图所示,其中虚线表示竖直方向,那么以下说法正确的是( )图5A.环一定沿长杆向下加速运动B.环的加速度一定沿杆向上C.环的加速度一定大于g sin αD.环一定沿杆向上运动二、多项选择题(本题共4小题,每小题4分,共计16分.每小题有多个选项符合题意.全部选对的得4分,选对但不全的得2分,错选或不答的得0分)7.(2018·淮安市、宿迁市学业质量检测)如图6甲所示,静止在水平地面上的物块A,受到水平向右的拉力F作用,F与时间t的关系如图乙所示,设物块与地面的最大静摩擦力F fm与滑动摩擦力大小相等,则( )图6A.0~t1时间内物块A的加速度逐渐增大B.t2时刻物块A的加速度最大C.t3时刻物块A的速度最大D.t2~t4时间内物块A一直做减速运动8.如图7所示,水平传送带A、B两端相距s=3.5 m,工件与传送带间的动摩擦因数μ=0.1,工件滑上传送带A端的瞬时速度v A=4 m/s,到达B端的瞬时速度设为v B.下列说法中正确的是( )图7A.若传送带不动,v B=3 m/sB.若传送带以速度v=4 m/s逆时针匀速转动,v B=3 m/sC.若传送带以速度v=2 m/s顺时针匀速转动,v B=3 m/sD.若传送带以速度v=4 m/s顺时针匀速转动,v B=3 m/s9.(2017·泰州中学第二次调研)如图8所示,在竖直平面内,A 和B 是两个相同的轻弹簧,C 是橡皮筋,它们三者间的夹角均为120°,已知A 、B 对小球的作用力均为F ,此时小球平衡,C 处于拉直状态,已知当地重力加速度为g .则剪断橡皮筋的瞬间,小球的加速度可能为( )图8A .g -F m,方向竖直向下 B.F m -g ,方向竖直向上 C .0D.F m+g ,方向竖直向下10.(2017·涟水中学第一次检测)如图9甲所示,为测定物体冲上粗糙斜面能达到的最大位移x 与斜面倾角θ的关系,将某一物体每次以不变的初速率v 0沿足够长的斜面向上推出,调节斜面与水平方向的夹角θ,实验测得x 与斜面倾角θ的关系如图乙所示,g 取10 m/s 2,根据图象可求出( )图9A .物体的初速率v 0=3 m/sB .物体与斜面间的动摩擦因数μ=0.75C .取不同的倾角θ,物体在斜面上能达到的位移x 的最小值x min =1.44 mD .当θ=45°时,物体达到最大位移后将停在斜面上 三、非选择题(本题共6小题,共计66分)11.(10分)(2017·淮海中学第二次测试)某学习小组欲探究物体的加速度与力、质量的关系,他们在实验室组装一套如图10所示的装置,图中小车的质量用M 表示,钩码的质量用m 表示.要顺利完成实验,则:图10(1)还需要的测量工具有________________、________________.(2)为使小车所受合外力等于细线的拉力,应采取的措施是______________;要使细线的拉力约等于钩码的总重力,应满足的条件是______________________.(3)在保持小车所受合外力一定的情况下,对实验得到的一系列纸带进行处理,测得小车加速度a与其质量M的数据如下表:钩码质量m=30 g为了寻求a与M间的定量关系,请利用表中数据在图11所示的直角坐标系中选取合适的横坐标及标度作出图象.图1112.(10分)(2017·苏州市期中)为了探究物体的加速度与物体所受外力、物体质量间的关系,某小组安装了如图12甲所示的实验装置并开始实验.已知小车(含车中砝码)质量用M表示,盘以及盘中砝码质量用m表示,当地重力加速度为g.图12(1)假如已经平衡摩擦力,则在小车做匀加速直线运动的过程中,绳子拉力F T=______________;只有当M与m的大小关系满足________________时,F T=mg才能成立.(2)该小组同学先保持盘及盘中的砝码质量m不变,探究加速度a与质量M的关系,其具体操作步骤如下,则下列做法正确的是________(填合适选项前面的序号)A.平衡摩擦力时,应将盘及盘中的砝码用细绳通过定滑轮系在小车上B .每次改变小车的质量时,需要重新平衡摩擦力C .实验时,先接通打点计时器的电源,再放开小车D .用天平测出m 以及M ,小车运动的加速度直接用公式a =mgM求出(3)该小组同学后来又保持小车及车中砝码质量M 一定,探究加速度a 与所受外力F 的关系,由于他们操作不当,这组同学得到的a -F 关系图象如图乙所示,则:图线不过原点的原因是________________________________________________________________________; 图线上端发生弯曲的原因是_____________________________________________.13.(9分)(2018·泰州中学期中)如图13甲所示,有一足够长的粗糙斜面,倾角θ=37°,一滑块以初速度v 0=16 m/s 从底端A 点滑上斜面,滑至B 点后又返回到A 点.滑块运动的速度—时间图象如图乙所示,求:(已知:sin 37°=0.6, cos 37°=0.8,重力加速度g =10 m/s 2)图13(1)A 、B 之间的距离;(2)滑块再次回到A 点时的速度大小; (3)滑块在整个运动过程中所用的时间.14.(10分)(2018·盐城市期中考试)如图14甲所示,在倾角为θ=30°的长斜面上有一带风帆的滑块从静止开始沿斜面下滑,滑块的质量为m =2 kg ,它与斜面的动摩擦因数为μ,帆受到的空气阻力与滑块下滑的速度成正比,即F f=kv.若滑块从静止开始下滑的速度-时间图象如图乙中的曲线所示,图乙中的直线是t=0时速度图线的切线,g=10 m/s2.图14(1)求滑块下滑的最大加速度和最大速度;(2)求μ和k的值.15.(12分)(2017·南通一中期中)如图15所示,传送带与平板紧靠在一起,且上表面在同一水平面内,两者长度分别为L1=2.5 m、L2=2 m.传送带始终保持以速度v向右匀速运动.现将一滑块(可视为质点)轻放到传送带的左端,然后平稳地滑上平板.已知:滑块与传送带间的动摩擦因数μ=0.5,滑块与平板、平板与支持面的动摩擦因数分别为μ1=0.3、μ2=0.1,滑块、平板的质量均为m=2 kg,g取10 m/s2.求:图15(1)若滑块恰好不从平板上掉下,求v的大小.(2)若v=6 m/s,求滑块离开平板时的速度大小.16.(15分)(2018·锦屏中学模拟)如图16所示,一长L=2 m、质量M=4 kg的薄木板(厚度不计)静止在粗糙的水平台面上,其右端距平台边缘l=5 m,木板的正中央放有一质量为m =1 kg的物块(可视为质点),已知木板与平台、物块与木板间的动摩擦因数均为μ1=0.4.现对木板施加一水平向右的恒力F,其大小为48 N,g取10 m/s2,试求:图16(1)F作用了1.2 s时,木板的右端离平台边缘的距离;(2)要使物块最终不能从平台上滑出去,则物块与平台间的动摩擦因数μ2应满足的条件.答案精析1.D [因为电梯静止时,弹簧被压缩了x ,由此可知mg =kx .当电梯运动时,弹簧又被压缩了x ,弹簧的弹力变大,物体所受合力方向向上,大小是mg ,处于超重状态.由牛顿第二定律可得mg =ma ,即加速度大小a =g ,方向也是向上的,此时物体可能是做向上的匀加速运动,也可能是做向下的匀减速运动,D 正确.] 2.D3.D [由于A 、B 相对静止,故A 、B 之间的摩擦力为静摩擦力,A 、B 错误.设民工兄弟一只手对A 、B 在竖直方向上的摩擦力为F f ,以A 、B 整体为研究对象可知在竖直方向上有2F f -(m +3m )g =(m +3m )a ,设B 对A 的摩擦力方向向下,大小为F f ′,对A 由牛顿第二定律有F f -F f ′-mg =ma ,解得F f ′=m (g +a ),C 错误,D 正确.]4.B [水平力F 拉B 时,A 、B 刚好不发生相对滑动,这实际上是将要滑动,但尚未滑动的一种临界状态,从而可知此时A 、B 间的摩擦力即为最大静摩擦力. 先用整体法考虑,对A 、B 整体:F =(m +2m )a .再将A 隔离可得A 、B 间最大静摩擦力为:F fm =ma ,解以上两方程得:F fm =F3.若将F ′作用在A 上,隔离B 可得B 能与A 一起运动,而A 、B 不发生相对滑动的最大加速度a ′=F fm2m,再用整体法考虑,对A 、B 整体:F ′=(m +2m )a ′,由以上方程解得:F ′=F2.]5.A [由匀变速直线运动的速度位移公式得v 2-v 02=2ax ,由题图乙可得a =0-v 022x 1=-10m/s 2,故减速运动时间:t =0-v 0a=1 s ,故A 错误;由题图乙可知,在0~1 s 内小木块向上做匀减速运动,1 s 后小木块反向做匀加速运动,t =1 s 时摩擦力反向,故B 正确;由题图乙可知,小木块反向加速运动时的加速度:a ′=v 22x 2=322×(13-5)m/s 2=2 m/s 2,由牛顿第二定律得:mg sin θ+μmg cos θ=m |a |,mg sin θ-μmg cos θ=ma ′,代入数据解得:μ=0.5,θ=37°,故C 、D 正确.]6.B [稳定运动时,球与环保持相对静止,它们的运动状态相同,且运动方向均与杆平行.对小球受力分析如图,可知小球所受合力平行于杆向上,说明加速度方向沿杆向上,则环的加速度方向也沿杆向上,但它们的运动方向不确定,两者可能沿杆向上加速运动,也可能沿杆向下减速运动,则B 正确,A 、D 错误;由于不知道细线与竖直方向的夹角,则不能判断出小球的加速度与g sin α的大小关系,则C 项错误.]7.BC [0~t 1时间内物块A 受到的静摩擦力逐渐增大,物块处于静止状态,选项A 错误.t 2时刻物块A 受到的拉力F 最大,物块A 的加速度最大,选项B 正确.t 3时刻物块A 受到的拉力减小到等于滑动摩擦力,加速度减小到零,物块A 的速度最大,选项C 正确.t 2~t 3时间内物块A 做加速度逐渐减小的加速运动,t 3~t 4时间内物块A 一直做减速运动,选项D 错误.] 8.ABC [若传送带不动,由匀变速直线运动规律可知v B 2-v A 2)=-2as ,a =μg ,代入数据解得v B =3 m/s ,当满足选项B 、C 中的条件时,工件的运动情况跟传送带不动时的一样,同理可得,工件到达B 端的瞬时速度仍为3 m/s ,故选项A 、B 、C 正确;若传送带以速度v =4 m/s 顺时针匀速转动,则工件滑上A 端后做匀速运动,到B 端的速度仍为4 m/s ,故选项D 错误.] 9.BC [由于橡皮筋C 只能提供向下的拉力,所以轻弹簧A 和B 对小球的作用力一定是拉力.可能有两种情况:(1)橡皮筋可能被拉伸,设拉力为F T ,由平衡条件可知,2F cos 60°=mg +F T ,解得橡皮筋拉力F T =F -mg .剪断橡皮筋的瞬间,小球所受合外力大小等于橡皮筋拉力大小,即F 合=F -mg ,方向竖直向上,由牛顿第二定律,F 合=ma ,解得小球的加速度a =Fm-g ,选项B 正确;(2)橡皮筋可能没有发生形变,拉力为零,则剪断橡皮筋的瞬间,小球的加速度为零,选项C 正确.]10.BC [当斜面倾角θ=90°时,物体对斜面无压力,也无摩擦力,物体做竖直上抛运动,根据匀变速直线运动规律有02-v 02=-2gx ,根据题图乙可得此时x =1.80 m ,解得初速率v 0=6 m/s ,选项A 错.当斜面倾角θ=0°时即为水平,物体在运动方向上只受到摩擦力作用,则有μmgx =12mv 02,根据题图乙知此时x =2.40 m ,解得μ=0.75,选项B 对.物体沿斜面上滑,由牛顿第二定律可知加速度a =g sin θ+μg cos θ=g (sin θ+μcos θ).v 02=2ax =2g (sin θ+μcos θ)x ,得当sin θ+μcos θ最大时,即tan θ=1μ,θ=53°时,x 取最小值x min ,解得x min =1.44 m ,C 项正确.当θ=45°时,因mg sin 45°>μmg cos 45°,则物体达到最大位移后将返回,D 项错误.] 11.(1)天平、刻度尺 (2)平衡摩擦力 M ≫m (3)如图所示12.(1)MmgM +mM ≫m (2)C (3)见解析 解析 (1)根据牛顿第二定律得:对m ∶mg -F T =ma ,对M ∶F T =Ma ,解得:F T =MmgM +m;当M ≫m ,即当盘中砝码和盘的总重力要远小于小车(含车中砝码)的重力时,绳子的拉力近似等于盘中砝码和盘的总重力.(2)平衡摩擦力时,应将绳从小车上拿去,轻轻推动小车,使小车沿木板运动,通过打点计时器打出来的纸带判断小车是否匀速运动,故A 错误;每次改变小车的质量时,小车的重力沿斜面的分力和摩擦力仍能抵消,不需要重新平衡摩擦力,故B 错误;实验时,应先接通打点计时器电源,再放开小车,故C 正确;小车运动的加速度是利用打点计时器测量,如果用天平测出m 以及M ,直接用公式求出,这是在直接运用牛顿第二定律计算,而我们的实验是在探究加速度与物体所受合外力、物体质量间的关系,故D 错误.(3)当F ≠0时,a =0,也就是说当绳子上有拉力时小车的加速度还为0,说明该组同学实验操作中遗漏了平衡摩擦力这个步骤或平衡摩擦力不足;随着F 的增大,即盘及盘中砝码质量的增大,不再满足盘及盘中砝码质量远小于小车(含车中砝码)的质量,因此曲线上部出现弯曲现象.13.(1)16 m (2)8 2 m/s (3)(2+22) s 解析 (1)由v -t 图象知A 、B 之间的距离为;s AB =16×22m =16 m. (2)设滑块从A 滑到B 过程的加速度大小为a 1,从B 返回到A 过程的加速度大小为a 2,滑块与斜面之间的动摩擦因数为μ,则有a 1=v 0-0t =16-02m/s 2=8 m/s 2由于mg sin θ+μmg cos θ=ma 1, 得μ=0.25.滑块由B 返回到A 的过程中,则有mg sin θ-μmg cos θ=ma 2即a 2=4 m/s 2,设滑块返回到A 点时的速度为v ,有v 2-0=2a 2s AB即v =8 2 m/s.(3)设滑块从A 到B 用时为t 1,从B 返回到A 用时为t 2, 则有t 1=2 st 2=va 2=2 2 s则滑块在整个运动过程中所用的时间为t =t 1+t 2=(2+22) s.14.(1)3 m/s 22 m/s (2)23153 kg/s解析 (1)由题图乙可得:t =0时,滑块下滑的加速度最大为a max =Δv Δt =3 m/s 1 s=3 m/s 2; t =3 s 时,滑块下滑的速度最大为 v max =2 m/s.(2)t =0时滑块下滑的加速度最大为a max ,由牛顿第二定律得F 合=mg sin θ-μmg cos θ=ma max ,t =3 s 时滑块下滑的速度达到最大,有 mg sin θ=μmg cos θ+kv max ,解得:μ=2315,k =3 kg/s(说明:k 的答案没有单位不算对).15.(1)4 m/s (2)3.5 m/s解析 (1)滑块在平板上做匀减速运动,加速度大小a 1=μ1mg m=3 m/s 2由于μ1mg >2μ2mg故平板做匀加速运动,加速度大小a 2=μ1mg -μ2·2mg m=1 m/s 2设滑块从平板左端滑至右端用时为t ,共同速度为v ′,平板位移为x ,对滑块进行分析:v ′=v -a 1tL 2+x =vt -12a 1t 2对平板进行分析:v ′=a 2tx =12a 2t 2联立以上各式代入数据解得t =1 s ,v =4 m/s. 当v =4 m/s 时,滑块在传送带上加速运动的位移为x 1=v 22μg=1.6 m<L 1,故符合题意.(2)滑块在传送带上的加速度a 3=μmg m=5 m/s 2若滑块在传送带上一直加速,则获得的速度为v 1=2a 3L 1=5 m/s<6 m/s即滑块滑上平板的速度为5 m/s.设滑块在平板上运动的时间为t ′,离开平板时的速度为v ″,平板位移为x ′ 则v ″=v 1-a 1t ′L 2+x ′=v 1t ′-12a 1t ′2 x ′=12a 2t ′2联立以上各式代入数据解得t ′=12 s ,t 2′=2 s(t 2′>t ,不合题意,舍去)将t ′=12 s 代入v ″=v 1-a 1t ′得v ″=3.5 m/s.16.(1)0.64 m (2)μ2≥0.2解析 (1)假设开始时物块与木板会相对滑动,由牛顿第二定律: 对木板:F -μ1(M +m )g -μ1mg =Ma 1,解得a 1=6 m/s 2对物块:μ1mg =ma 2,解得a 2=4 m/s 2,因为a 2<a 1,故假设成立 设F 作用t 时间后,物块恰好从木板左端滑离,则L 2=12a 1t 2-12a 2t 2,解得t =1 s 在此过程:木板位移x 1=12a 1t 2=3 m ,末速度v 1=a 1t =6 m/s物块位移x 2=12a 2t 2=2 m ,末速度v 2=a 2t =4 m/s在物块从木板上滑落后的t 0=0.2 s 内,由牛顿第二定律: 对木板:F -μ1Mg =Ma 1′, 解得a 1′=8 m/s 2木板发生的位移x 1′=v 1t 0+12a 1′t 02=1.36 m此时木板右端距平台边缘 Δx =l -x 1-x 1′=0.64 m(2)物块滑至平台后,做匀减速直线运动,由牛顿第二定律: 对物块:μ2mg =ma 2′,解得a 2′=μ2g若物块在平台上速度减为0,则通过的位移x 2′=v 222a 2′要使物块最终不会从平台上掉下去需满足l +L2≥x 2+x 2′联立解得μ2≥0.2.。
2019年高考物理大一轮复习江苏专版文档:第三章 牛顿

1.(多选)一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则()A.质点速度的方向总是与该恒力的方向相同B.质点速度的方向不可能总是与该恒力的方向垂直C.质点加速度的方向总是与该恒力的方向相同D.质点单位时间内速率的变化量总是不变答案BC解析质点一开始做匀速直线运动,处于平衡状态,施加恒力后,则该质点所受的合外力为该恒力.①若该恒力方向与质点原运动方向不共线,则质点做曲线运动,质点速度方向与恒力方向不同,故A错;②若F的方向某一时刻与质点运动方向垂直,之后质点做曲线运动,力与速度方向不再垂直,例如平抛运动,故B正确;③由牛顿第二定律可知,质点加速度方向总是与其所受合外力方向相同,C正确;④根据加速度的定义,相等时间内速度变化量相同,而速率变化量不一定相同,故D错.2.一个原来静止在光滑平面上的物体,质量是7 kg,在14 N的水平恒力作用下运动,则5 s末的速度及5 s内通过的路程为()A.8 m/s25 m B.2 m/s25 mC.10 m/s25 m D.10 m/s12.5 m答案 C解析物体由静止开始在恒力的作用下做初速度为零的匀加速直线运动,由牛顿第二定律和运动学公式得a=Fm=147m/s2=2 m/s2,v=at=2×5 m/s=10 m/s,x=12at2=12×2×25 m=25 m,选项C正确.3.(多选)某物体在光滑的水平面上受到两个恒定的水平共点力的作用,以10 m/s2的加速度做匀加速直线运动,其中F1与加速度方向的夹角为37°,某时刻撤去F1,此后该物体() A.加速度可能为5 m/s2B.速度的变化率可能为6 m/s2C.1 秒内速度变化大小可能为20 m/sD.加速度大小一定不为10 m/s2解析根据牛顿第二定律F合=ma=10m,F1与加速度方向的夹角为37°,根据几何知识可知,F2有最小值,最小值为F2min=F合sin 37°=6m.所以当F1撤去后,合力的最小值为F min=6m,此时合力的取值范围为6m≤F合,所以最小的加速度为a min=F minm=6 m/s2,故B、C正确.4.如图1所示,位于竖直平面内的固定光滑圆环轨道与水平面相切于M点,与竖直墙相切于A点.竖直墙上另一点B与M的连线和水平面的夹角为60°,C是圆环轨道的圆心.已知在同一时刻a、b两球分别由A、B两点从静止开始沿光滑倾斜直轨道AM、BM运动到M 点,c球由C点自由下落到M点.则()图1A.a球最先到达M点B.b球最先到达M点C.c球最先到达M点D.b球和c球都可能最先到达M点答案 C解析设圆轨道半径为R,据“等时圆”理论,t a=4Rg=2Rg,t b>t a,c球做自由落体运动,t c=2Rg,C选项正确.5.(2018·前黄中学检测)在儿童蹦极游戏中,拴在腰间左右两侧的是弹性极好的橡皮绳,质量为m的小明如图2所示静止悬挂时,两橡皮绳的拉力大小均恰为mg.若此时小明左侧橡皮绳在腰间断裂,则小明()图2A.加速度为零,速度为零B.加速度a=g,沿原断裂橡皮绳的方向斜向下C.加速度a=g,沿未断裂橡皮绳的方向斜向上D.加速度a=g,方向竖直向下解析根据题意,腰间左右两侧的橡皮绳的弹力等于重力.小明左侧橡皮绳断裂,则小明此时所受合力方向沿原断裂橡皮绳的方向斜向下,大小等于mg,所以小明的加速度a=g,沿原断裂橡皮绳的方向斜向下,选项B正确.6.(2017·运河中学调研)如图3所示,质量为m的小球被水平绳AO和与竖直方向成θ角的轻弹簧系着处于静止状态,重力加速度为g,现用火将绳AO烧断,在绳AO烧断的瞬间,下列说法正确的是()图3A.弹簧的拉力F=mgcos θB.弹簧的拉力F=mg sin θC.小球的加速度为零D.小球的加速度a=g sin θ答案 A解析根据共点力的平衡,求得弹簧的弹力F=mgcos θ,烧断绳子的瞬间,弹簧的形变来不及改变,弹力不变,故A正确,B错误.烧断前,绳子的拉力F T=mg tan θ.烧断后的瞬间,弹簧弹力不变,弹力与重力的合力与烧断前的绳子拉力等值反向,所以烧断后的瞬间,小球受的合力为mg tan θ,根据牛顿第二定律,加速度a=g tan θ,故C、D错误.7.(2017·响水中学模拟)为了节省能量,某商场安装了智能化的电动扶梯.无人乘行时,扶梯运转得很慢;有人站上扶梯时,它会先慢慢加速,再匀速运转.一顾客乘扶梯上楼,恰好经历了这两个过程,如图4所示.那么下列说法中正确的是()图4A.顾客始终受到三个力的作用B.顾客始终处于超重状态C.顾客对扶梯作用力的方向先指向左下方,再竖直向下D.顾客对扶梯作用力的方向先指向右下方,再竖直向下答案 C8.如图5所示,弹簧左端固定,右端自由伸长到O 点并系住物体m ,现将弹簧压缩到A 点,然后释放,物体一直可以运动到B 点.如果物体受到的阻力恒定,则( )图5A .物体从A 到O 先加速后减速B .物体从A 到O 加速运动,从O 到B 减速运动C .物体运动到O 点时所受合力为0D .物体从A 到O 的过程中加速度逐渐减小 答案 A解析 物体从A 到O 的过程中,弹力一直减小直至为0,物体受到的滑动摩擦力不变,由牛顿第二定律得a =F -F fm ,可知物体的加速度先向右减小再向左增大,物体先加速到速度最大再减速,故A 正确,B 、D 错误.物体运动到O 点时,受到地面摩擦阻力的作用,所受合力不为0,C 错误.9.如图6所示,一小车上有一个固定的水平横杆,左边有一轻杆与竖直方向成θ角与横杆固定,下端连接一质量为m 的小球P .横杆右边用一根细线吊一相同的小球Q .当小车沿水平面做加速运动时,细线保持与竖直方向的夹角为α.已知θ<α,重力加速度为g ,则下列说法正确的是( )图6A .小车一定向右做匀加速运动B .轻杆对小球P 的弹力沿轻杆方向C .小球P 受到的合力大小为mg tan θD .小球Q 受到的合力大小为mg tan α 答案 D解析 选择小球Q 作为研究对象,根据牛顿第二定律,得mg tan α=ma ,得到a =g tan α,故加速度向右,小车可能向右加速,也可能向左减速,故A 错误.对小球P ,由牛顿第二定律,得mg tan β=ma ′,因为a =a ′,得到β=α>θ.则轻杆对小球的弹力方向与细线平行,故B 错误.对小球P 、Q 由牛顿第二定律可知F =ma =mg tan α,故C 错误,D 正确.10.(2018·如东县质量检测)如图7所示,工人用绳索拉铸件,铸件的质量是20 kg ,铸件与地面间的动摩擦因数是0.25.工人用80 N 的力拉动铸件,从静止开始在水平面上前进,绳与水平方向的夹角为α=37°并保持不变,经4 s 后松手.(g =10 m/s 2,cos 37°=0.8,sin 37°=0.6)求:图7(1)松手前铸件的加速度大小; (2)松手后铸件还能前进的距离. 答案 (1)1.3 m/s 2 (2)5.408 m解析 (1)松手前,对铸件受力分析,如图所示.则F N =mg -F sin α, F f =μF N .由牛顿第二定律得 a =F cos α-F f m=F cos 37°-μ(mg -F sin 37°)m=1.3 m/s 2.(2)松手时铸件的速度v =at =5.2 m/s松手后铸件的加速度大小a ′=μmgm =μg =2.5 m/s 2则松手后铸件还能前进的距离x =v 22a ′=5.408 m.11.(2017·响水中学模拟)民航客机一般都有紧急出口,发生意外情况的飞机紧急着陆后,打开紧急出口,狭长的气囊会自动充气,生成一条连接出口与地面的斜面,人员可沿斜面滑行到地面上,并以不变速率进入水平面,在水平面上再滑行一段距离而停止,如图8所示,若机舱口下沿距地面3.2 m ,气囊构成的斜面长度为6.4 m ,一个质量60 kg 的人沿着气囊滑下时所受到的摩擦阻力是240 N .若人与水平面动摩擦因数与斜面相同.g =10 m/s 2,求人:图8(1)与斜面的动摩擦因数; (2)在斜面上下滑的时间;(3)在水平面上滑行的距离(结果可用根式表示).答案 (1)4153 (2)855 s (3)453 m 解析 (1)设气囊倾角为α,由几何关系可知: sin α=h L =3.26.4=12,即α=30°.人在气囊上下滑过程中,摩擦阻力F f =μmg cos α 解得:μ=4153.(2)人在气囊上下滑过程中,由牛顿第二定律得: mg sin α-F f =ma 1 代入数据可得:a 1=1 m/s 2 则t 1=2L a 1=2×6.41 s =12.8 s =855s (3)人在水平面上运动时,由牛顿第二定律得: μmg =ma 2,故a 2=μg =833m/s 2.设人到达地面时的速度为v ,则v =a 1t 1=855 m/s在水平面上由运动学公式得:x =v 22a 2=45 3 m.。
2019版高考物理创新一轮复习江苏专用版文档:第三章 牛顿运动定律 基础课3 活页作业 含答案 精品

活页作业(时间:40分钟)一、单项选择题1.下列关于超重和失重的说法正确的是()A.游泳高手可以静躺在水面上,那时的人处于完全失重状态B.跳水运动员在入水前处于失重状态,入水后短时间内处于超重状态C.飞船利用火箭发射后,上升过程中处于超重状态,返回地面过程中处于失重状态D.给物块一个初速度沿斜面上滑,上滑的过程中物块处于超重状态,到最高点后下滑,下滑的过程中物块处于失重状态解析物体有向上的加速度处于超重状态,有向下的加速度处于失重状态,选项A错误;飞船返回地面时有向上的加速度,处于超重状态,选项C错误;物块上滑的过程有向下的加速度,物块处于失重状态,选项D错误。
答案 B2.如图1甲所示,小物块从足够长的光滑斜面顶端由静止自由滑下。
下滑位移x 时的速度为v,其x-v2图象如图乙所示,取g=10 m/s2,则斜面倾角θ为()图1A.30°B.45°C.60°D.75°解析小物块沿斜面由静止滑下,做匀加速直线运动,有v2=2ax,则x=12av2,由x-v2图象可知小物块的加速度a=5 m/s2,根据牛顿第二定律得,mg sin θ=ma,故小物块的加速度a=g sin θ,所以θ=30°,选项A正确,B、C、D错误。
答案 A3.(2017·江苏徐州市考前模拟)如图2所示,倾角为θ的光滑斜面C固定在水平地面上,两个光滑的物块A、B叠放在C上。
将A、B同时由静止释放,下列说法正确的是( )图2A.A 沿斜面向下的加速度为g sin θB.B 沿斜面向下的加速度为g sin θC.A 在运动过程中处于失重状态D.A 对B 的压力大于B 对A 的支持力解析 对A 受力分析,A 受到重力和B 对A 的支持力,两个力的合力竖直向下,故选项A 错误,C 正确;对B 受力分析,B 受到重力、A 对B 的压力、C 对B 的支持力,受力分析如图,运用正交分解法,根据牛顿第二定律,有(m B g+N AB )sin θ=m B a B ,解得a B =g sin θ+N AB sin θm B >g sin θ,故选项B 错误;A 对B 的压力和B 对A 的支持力是一对作用力和反作用力,大小相等,故选项D 错误。
2019年高考物理大一轮复习江苏专版文档:第三章 牛顿

第2讲牛顿第二定律两类动力学问题一、牛顿第二定律1.内容:物体加速度的大小跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同.2.表达式:F=ma.3.适用范围(1)牛顿第二定律只适用于惯性参考系,即相对于地面静止或匀速直线运动的参考系.(2)牛顿第二定律只适用于宏观物体(相对于分子、原子等)、低速运动(远小于光速)的情况.二、力学单位制1.单位制:由基本单位和导出单位一起组成了单位制.2.基本单位:基本物理量的单位.基本物理量共七个(长度、质量、时间、热力学温度、电流、发光强度、物质的量),其中力学有三个,分别是长度、质量、时间,单位分别是米、千克、秒.3.导出单位:由基本物理量根据物理关系推导出来的其他物理量的单位.自测1静止在光滑水平面上的物体,在受到一个水平力作用的瞬间()A.物体立刻获得加速度,但速度仍等于零B.物体立刻获得速度,但加速度为零C.物体立刻获得加速度,同时也获得速度D.物体的加速度和速度都要经过少许时间才能获得答案 A解析物体静止在光滑水平面上,受到水平作用力的瞬间,根据牛顿第二定律:加速度大小与合力大小成正比.加速度与合力是瞬时关系,可知物体立刻产生加速度,而物体由于惯性,此瞬间还保持原来的状态,速度为零,故A正确.自测2下面哪一组单位属于国际单位制中的基本单位()A.米、牛顿、千克B.千克、厘米、秒C.米、千克、安培D.米/秒2、千克、牛顿答案 C三、动力学的两类基本问题1.由物体的受力情况求解运动情况的基本思路:先求出几个力的合力,由牛顿第二定律(F合=ma)求出加速度,再由运动学的有关公式求出速度或位移.2.由物体的运动情况求解受力情况的基本思路:已知加速度或根据运动规律求出加速度,再由牛顿第二定律求出合力,从而确定未知力. 3.应用牛顿第二定律解决动力学问题,受力分析和运动分析是关键,加速度是解决此类问题的纽带,分析流程如下: 受力情况(F 合)F 合=ma加速度a运动学公式运动情况(v 、x 、t )自测3 (多选)(2017·徐州市质检)如图1所示,质量为m =1 kg 的物体与水平地面之间的动摩擦因数为0.3,当物体运动的速度为10 m/s 时,给物体施加一个与速度方向相反的大小为F =2 N 的恒力,在此恒力作用下(取g =10 m/s 2)( )图1A .物体经10 s 速度减为零B .物体经2 s 速度减为零C .物体速度减为零后将保持静止D .物体速度减为零后将向右运动 答案 BC解析 物体受到向右的滑动摩擦力F f =μF N =μG =3 N ,根据牛顿第二定律得a =F +F f m =2+31 m/s 2=5 m/s 2,方向向右,物体减速到零所需的时间t =v 0a =105 s =2 s ,B 正确,A 错误;减速到零后,恒力F <F f ,物体将保持静止,不再运动,C 正确,D 错误.命题点一 牛顿第二定律的理解和应用例1 下列说法正确的是( )A .一定质量的物体所受合外力越大,加速度越大B .一定质量的物体所受合外力越大,速度越大C .某物体在外力作用下做匀加速直线运动,当合外力逐渐减小但方向不变时,该物体的速度逐渐减小D .物体的加速度大小不变一定受恒力作用 答案 A解析 根据牛顿第二定律,物体受到的合外力决定了该物体的加速度,而加速度大小和速度大小无关,A 正确,B 错误;物体做匀加速直线运动说明加速度方向与速度方向相同,当合外力减小但方向不变时,加速度减小但方向不变,所以物体仍然做加速运动,速度增大,C 错误;加速度是矢量,其方向与合外力方向一致,加速度大小不变,若方向发生变化,则受到的不是恒力,D 错误.例2 (2017·苏州大学附中调研)2015年9月30日,乒乓球亚锦赛中中国男团以比分3∶0击败日本男团,实现了亚锦赛男团项目的九连冠.如图2,假设运动员在训练中手持乒乓球拍托球沿水平面做匀加速跑动,球拍与球保持相对静止且球拍平面和水平面之间夹角为θ.设球拍和球质量分别为M 、m ,不计球拍和球之间摩擦,重力加速度为g ,不计空气阻力,则( )图2A .运动员的加速度大小为g sin θB .球拍对球的作用力大小为mg cos θC .运动员对球拍的作用力大小为(M +m )g cos θD .运动员对地面的作用力方向竖直向下 答案 C解析 球和运动员具有相同的加速度,对球分析所受的合力为mg tan θ,根据牛顿第二定律得,a =g tan θ,故A 错误.根据平行四边形定则知,球拍对球的作用力F N =mg cos θ,故B 错误.对球拍和球整体分析,整体的合力为(M +m )a ,根据平行四边形定则知,运动员对球拍的作用力为(M +m )g cos θ,故C 正确.运动员在水平方向加速运动,运动员受到地面对其水平方向的摩擦力与竖直方向的支持力,合力不在竖直方向,根据牛顿第三定律可知,运动员对地面的作用力也不在竖直方向上,故D 错误.拓展点瞬时性问题1.两种模型加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,具体可简化为以下两种模型:2.求解瞬时加速度的一般思路分析瞬时变化前后物体的受力情况⇒列牛顿第二定律方程⇒求瞬时加速度例3物块A1、A2、B1和B2的质量均为m,A1、A2用刚性轻杆连接,B1、B2用轻质弹簧连接.两个装置都放在水平的支托物上,处于平衡状态,如图3所示,现突然迅速撤去支托物,让物块下落,在撤去支托物的瞬间,A1、A2受到的合力分别为F1和F2,B1、B2受到的合力分别为F3和F4,不计空气阻力,重力加速度为g,则()图3A.F1=0,F2=2mg,F3=0,F4=2mgB.F1=mg,F2=mg,F3=0,F4=2mgC.F1=0,F2=2mg,F3=mg,F4=mgD.F1=mg,F2=mg,F3=mg,F4=mg答案 B解析由于A1和A2用刚性轻杆相连,撤去支托物时,杆的弹力立即消失,A1和A2只受重力的作用,所以F1=mg,F2=mg.对B1和B2,没有撤去支托物时处于平衡状态,弹簧的弹力大小F等于B1的重力,即F=mg.撤去支托物瞬间,弹簧的形变尚未发生变化,弹力大小仍为F,所以B1受到的合力F3=0,B2受到向下的弹力F′和重力mg,因F′与F大小相等,则F4=F′+mg=2mg.因此选项B正确.变式1(多选)(2017·苏锡常镇四市调研)某同学做了一个力学实验,如图4所示,将一金属球通过一轻质弹簧悬挂于O点,并用一水平方向的细绳拉住,然后将水平细绳剪断,经观察发现,水平细绳剪断后金属球在第一次向左摆动以及回摆过程的一段运动轨迹如图中虚线所示.根据运动轨迹以及相关的物理知识,该同学得出以下几个结论,其中正确的是(不计空气阻力)()图4A.水平细绳剪断瞬间金属球的加速度方向一定水平向左B.金属球运动到悬点O正下方时所受合力方向竖直向上C.金属球速度最大的位置应该在悬点O正下方的左侧D.金属球运动到最左端时速度为零,而加速度不为零答案AC解析细绳未剪断前,小球受向下的重力、弹簧的拉力和细绳的水平拉力作用,则剪断细绳后的瞬间,弹簧弹力不变,则弹力和重力的合力应该水平向左,故此时金属球的加速度方向一定水平向左,选项A正确;金属球运动到悬点O正下方时,合力方向竖直向下,与速度方向的夹角为锐角,故此后一段时间内要加速,故选项C正确,选项B错误;金属球运动到最左端时,由轨迹的切线可知,速度方向向上,不为零,因小球做曲线运动,故其加速度不为零,选项D错误.命题点二动力学两类问题1.解题关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)两个桥梁——加速度是联系运动和力的桥梁;速度是各物理过程间相互联系的桥梁.2.常用方法(1)合成法在物体受力个数较少(2个或3个)时一般采用“合成法”.(2)正交分解法若物体的受力个数较多(3个或3个以上),则采用“正交分解法”.例4(2017·仪征中学高三初考)如图5所示,质量为1 kg的小球穿在固定的直杆上,杆与水平方向成37°角,球与杆间的动摩擦因数μ=0.5,小球在竖直向上的大小为20 N的拉力F作用下,从离杆的下端0.24 m处由静止开始向上运动,经过1 s撤去拉力,取g=10 m/s2,sin 37°=0.6,cos 37°=0.8,求:图5(1)撤去拉力前,小球沿杆上滑的加速度大小; (2)小球沿杆上滑的最大距离;(3)小球从静止起滑到杆的下端所需的时间. 答案 (1)2 m/s 2 (2)1.2 m (3)2.4 s 解析 (1)根据牛顿第二定律: (F -mg )sin 37°-μ(F -mg )cos 37°=ma 1撤去拉力前,小球上滑的加速度大小:a 1=2 m/s 2. (2)撤去拉力前,根据运动学规律: v 1=a 1t 1=2×1 m/s =2 m/s , x 1=12a 1t 12=12×2×12 m =1 m ,撤去拉力后,小球继续向上运动,根据牛顿第二定律: mg sin 37°+μmg cos 37°=ma 2解得a 2=10 m/s 2,x 2=v 122a 2=222×10m =0.2 m联立以上各式解得小球沿杆上滑的最大距离: x =x 1+x 2=1 m +0.2 m =1.2 m(3)撤去外力后,小球运动到最高点,所需时间 t 2=v 1a 2=0.2 s小球从最高点下滑时,根据牛顿第二定律: mg sin 37°-μmg cos 37°=ma 3 根据运动学规律:x 0+x 1+x 2=12a 3t 32联立解得:a 3=2 m/s 2,t 3=1.2 s小球从静止起滑到杆的下端所需的时间: t =t 1+t 2+t 3=2.4 s.变式2 (2017·泰州二中模拟)如图6甲所示,一物块在t =0时刻,以初速度v 0=4 m/s 从足够长的粗糙斜面底端向上滑行,物块速度随时间变化的图象如图乙所示,t =0.5 s 时刻物块到达最高点,t =1.5 s 时刻物块又返回底端.求:(g 取10 m/s 2)图6(1)物块上滑和下滑的加速度大小a 1、a 2;(2)斜面的倾角θ及物块与斜面间的动摩擦因数μ. 答案 (1)8 m/s 2 2 m/s 2 (2)30° 35解析 (1)由题图乙可得: a 1=v 0t 1=40.5m/s 2=8 m/s 2.设物块返回底端时的速度大小为v , 则有:12v 0t 1=12v (t 2-t 1)代入数据可得:v =2 m/s所以物块下滑时的加速度大小为: a 2=v t 2-t 1=2 m/s 2(2)物块上滑时对物块进行受力分析,根据牛顿第二定律有:mg sin θ+μmg cos θ=ma 1① 物块下滑时对物块进行受力分析,根据牛顿第二定律有:mg sin θ-μmg cos θ=ma 2② 代入a 1和a 2,联立①②可解得: θ=30°,μ=35. 拓展点 “等时圆”模型 1.两种模型(如图7)图72.等时性的证明设某一条弦与水平方向的夹角为α,圆的直径为d (如图8).根据物体沿光滑弦做初速度为零的匀加速直线运动,加速度为a =g sin α,位移为s =d sin α,所以运动时间为t 0=2s a= 2d sin αg sin α= 2dg,即沿各条弦运动具有等时性,运动时间与弦的倾角、长短无关.图8例5 如图9所示,AB 和CD 为两条光滑斜槽,它们各自的两个端点均分别位于半径R 和r 的两个相切的圆上,且斜槽都通过切点P .设有一重物先后沿两个斜槽,从静止出发,由A 滑到B 和由C 滑到D ,所用的时间分别为t 1和t 2,则t 1与t 2之比为( ) A .2∶1 B .1∶1 C.3∶1D .1∶ 3图9答案 B1.(2017·扬州中学4月模拟)一个质量为m 的运动物体共受到三个共点力F 1、F 2、F 3的作用,这三个力的大小和方向构成如图10所示的三角形,则这个物体的加速度是( )图10A .0 B.F 3m C.2F 2m D.2F 3m答案 C解析 根据三角形定则,F 1与F 3的合力等于从F 1的起点到F 3的终点的有向线段,即与F 2相同,故物体所受的合力为:F 合=2F 2.根据牛顿第二定律得:a =F 合m =2F 2m ,故C 正确,A 、B 、D 错误.2.(2017·苏州市期末)如图11所示,顶端固定着小球的直杆固定在小车上,当小车向右做匀加速运动时,球所受合外力的方向沿图中的( )图11A .OA 方向B .OB 方向C .OC 方向D .OD 方向 答案 D解析 小球和小车的加速度相同,所以小球在重力和杆的作用力的作用下也向右加速运动,加速度水平向右,根据牛顿第二定律F =ma 可知,加速度的方向与合力的方向相同,合力水平向右,即合力沿图中的OD 方向,故A 、B 、C 错误,D 正确.3.如图12所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为m 0,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a 1、a 2、a 3、a 4.重力加速度大小为g ,则有( )图12A .a 1=a 2=a 3=a 4=0B .a 1=a 2=a 3=a 4=gC .a 1=a 2=g ,a 3=0,a 4=m +m 0m 0g D .a 1=g ,a 2=m +m 0m 0g ,a 3=0,a 4=m +m 0m 0g答案 C解析 在抽出木板的瞬间,物块1、2与轻杆接触处的形变立即消失,受到的合力均等于各自重力,所以由牛顿第二定律知a 1=a 2=g ;物块3、4间的轻弹簧的形变还来不及改变,此时弹簧对物块3向上的弹力大小和对物块4向下的弹力大小仍为mg ,因此物块3满足F -mg =0,即a 3=0;由牛顿第二定律得物块4满足a 4=F +m 0g m 0=m 0+mm 0g ,所以C 对.4.(2017·运河中学调研)如图13甲所示,质量为m =1 kg 的物体置于倾角为θ=37°的固定且足够长的斜面上,沿斜面加平行于斜面向上的力F 作用,物体运动的部分v -t 图象如图乙所示.(g 取10 m/s 2,sin 37°=0.6,sin 53°=0.8)试求:图13(1)0~1 s 和1~2 s 物体的加速度; (2)物体运动前两秒的位移大小;(3)设两秒后,F 的大小变为10 N ,求物体与斜面间的动摩擦因数.答案 (1)2 m/s 2 方向:沿斜面向上 1 m/s 2 方向:沿斜面向下 (2)2.5 m (3)0.5 解析 (1)由题图乙可知, a 1=Δv 1Δt 1=21 m/s 2=2 m/s 2,a 2=Δv 2Δt 2=1-22-1 m/s 2=-1 m/s 2,负号表示加速度方向与速度方向相反; (2)由题图乙可知,前两秒内物体的位移: x =12×1×2 m +12×(1+2)×1 m =2.5 m ; (3)由题图乙可知,2 s 后物体做匀速直线运动, 由平衡条件得:mg sin 37°+μmg cos 37°=F , 解得:μ=0.5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元检测三牛顿运动定律考生注意:1.本试卷共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间90分钟,满分100分.4.请在密封线内作答,保持试卷清洁完整.一、单项选择题(本题共6小题,每小题3分,共计18分.每小题只有一个选项符合题意) 1.(2017·苏州大学附中调研)竖直升降的电梯内的地板上竖直放置一根轻质弹簧,弹簧上方有一个质量为m的物体.当电梯静止时弹簧被压缩了x;当电梯运动时弹簧又被压缩了x.试判断电梯运动的可能情况是( )A.以大小为2g的加速度加速上升B.以大小为2g的加速度减速上升C.以大小为g的加速度加速下降D.以大小为g的加速度减速下降2.(2018·高邮中学阶段检测)如图1所示,两个质量分别为m1=2 kg、m2=3 kg的物体置于光滑的水平面上,中间用水平的轻质弹簧测力计连接.两个大小分别为F1=30 N、F2=20 N 的水平拉力分别作用在m1、m2上,则( )图1A.弹簧测力计的示数是25 NB.弹簧测力计的示数是50 NC.在突然撤去F2的瞬间,m1的加速度大小为5 m/s2D.在突然撤去F1的瞬间,m1的加速度大小为13 m/s23.(2018·仪征中学学情检测)如图2所示,在建筑工地,民工兄弟用两手对称水平使力将两长方体水泥制品夹紧并以加速度a竖直向上匀加速搬起,其中A的质量为m,B的质量为3m,水平作用力为F,A、B之间的动摩擦因数为μ,在此过程中,A、B间的摩擦力为( )图2A.μF B.2μFC.32m (g +a ) D .m (g +a )4.如图3所示,木块A 、B 静止叠放在光滑水平面上,A 的质量为m ,B 的质量为2m .现施加水平力F 拉B ,A 、B 刚好不发生相对滑动,一起沿水平面运动.若改为水平力F ′拉A ,使A 、B 也保持相对静止,一起沿水平面运动,则F ′不得超过( )图3A .2F B.F 2 C .3F D.F35.(2017·南阳中学月考)如图4甲所示,倾角为θ的粗糙斜面体固定在水平面上,初速度为v 0=10 m/s 、质量为m =1 kg 的小木块沿斜面上滑,若从此时开始计时,整个过程中小木块速度的平方随路程变化的关系图象如图乙所示,取g =10 m/s 2,则下列说法不正确的是( )图4A .0~5 s 内小木块做匀减速运动B .在t =1 s 时刻,摩擦力反向C .斜面倾角θ=37°D .小木块与斜面间的动摩擦因数为0.56.(2018·虹桥中学第一次调研)如图5所示,倾斜的长杆(与水平面成α角)上套有一个质量为M 的环,环通过细线吊一个质量为m 的小球,当环在某拉力的作用下在长杆上滑动时,稳定运动的情景如图所示,其中虚线表示竖直方向,那么以下说法正确的是( )图5A .环一定沿长杆向下加速运动B .环的加速度一定沿杆向上C .环的加速度一定大于g sin αD.环一定沿杆向上运动二、多项选择题(本题共4小题,每小题4分,共计16分.每小题有多个选项符合题意.全部选对的得4分,选对但不全的得2分,错选或不答的得0分)7.(2018·淮安市、宿迁市学业质量检测)如图6甲所示,静止在水平地面上的物块A,受到水平向右的拉力F作用,F与时间t的关系如图乙所示,设物块与地面的最大静摩擦力F fm与滑动摩擦力大小相等,则( )图6A.0~t1时间内物块A的加速度逐渐增大B.t2时刻物块A的加速度最大C.t3时刻物块A的速度最大D.t2~t4时间内物块A一直做减速运动8.如图7所示,水平传送带A、B两端相距s=3.5 m,工件与传送带间的动摩擦因数μ=0.1,工件滑上传送带A端的瞬时速度v A=4 m/s,到达B端的瞬时速度设为v B.下列说法中正确的是( )图7A.若传送带不动,v B=3 m/sB.若传送带以速度v=4 m/s逆时针匀速转动,v B=3 m/sC.若传送带以速度v=2 m/s顺时针匀速转动,v B=3 m/sD.若传送带以速度v=4 m/s顺时针匀速转动,v B=3 m/s9.(2017·泰州中学第二次调研)如图8所示,在竖直平面内,A和B是两个相同的轻弹簧,C是橡皮筋,它们三者间的夹角均为120°,已知A、B对小球的作用力均为F,此时小球平衡,C处于拉直状态,已知当地重力加速度为g.则剪断橡皮筋的瞬间,小球的加速度可能为( )图8A .g -F m,方向竖直向下 B.F m -g ,方向竖直向上 C .0D.F m+g ,方向竖直向下10.(2017·涟水中学第一次检测)如图9甲所示,为测定物体冲上粗糙斜面能达到的最大位移x 与斜面倾角θ的关系,将某一物体每次以不变的初速率v 0沿足够长的斜面向上推出,调节斜面与水平方向的夹角θ,实验测得x 与斜面倾角θ的关系如图乙所示,g 取10 m/s 2,根据图象可求出( )图9A .物体的初速率v 0=3 m/sB .物体与斜面间的动摩擦因数μ=0.75C .取不同的倾角θ,物体在斜面上能达到的位移x 的最小值x min =1.44 mD .当θ=45°时,物体达到最大位移后将停在斜面上 三、非选择题(本题共6小题,共计66分)11.(10分)(2017·淮海中学第二次测试)某学习小组欲探究物体的加速度与力、质量的关系,他们在实验室组装一套如图10所示的装置,图中小车的质量用M 表示,钩码的质量用m 表示.要顺利完成实验,则:图10(1)还需要的测量工具有________________、________________.(2)为使小车所受合外力等于细线的拉力,应采取的措施是______________;要使细线的拉力约等于钩码的总重力,应满足的条件是______________________.(3)在保持小车所受合外力一定的情况下,对实验得到的一系列纸带进行处理,测得小车加速度a 与其质量M 的数据如下表: 钩码质量m =30 g为了寻求a 与M 间的定量关系,请利用表中数据在图11所示的直角坐标系中选取合适的横坐标及标度作出图象.图1112.(10分)(2017·苏州市期中)为了探究物体的加速度与物体所受外力、物体质量间的关系,某小组安装了如图12甲所示的实验装置并开始实验.已知小车(含车中砝码)质量用M 表示,盘以及盘中砝码质量用m 表示,当地重力加速度为g .图12(1)假如已经平衡摩擦力,则在小车做匀加速直线运动的过程中,绳子拉力F T =______________;只有当M 与m 的大小关系满足________________时,F T =mg 才能成立. (2)该小组同学先保持盘及盘中的砝码质量m 不变,探究加速度a 与质量M 的关系,其具体操作步骤如下,则下列做法正确的是________(填合适选项前面的序号) A .平衡摩擦力时,应将盘及盘中的砝码用细绳通过定滑轮系在小车上 B .每次改变小车的质量时,需要重新平衡摩擦力 C .实验时,先接通打点计时器的电源,再放开小车D .用天平测出m 以及M ,小车运动的加速度直接用公式a =mgM求出(3)该小组同学后来又保持小车及车中砝码质量M 一定,探究加速度a 与所受外力F 的关系,由于他们操作不当,这组同学得到的a -F 关系图象如图乙所示,则:图线不过原点的原因是________________________________________________________________________; 图线上端发生弯曲的原因是_____________________________________________.13.(9分)(2018·泰州中学期中)如图13甲所示,有一足够长的粗糙斜面,倾角θ=37°,一滑块以初速度v0=16 m/s从底端A点滑上斜面,滑至B点后又返回到A点.滑块运动的速度—时间图象如图乙所示,求:(已知:sin 37°=0.6, cos 37°=0.8,重力加速度g=10 m/s2)图13(1)A、B之间的距离;(2)滑块再次回到A点时的速度大小;(3)滑块在整个运动过程中所用的时间.14.(10分)(2018·盐城市期中考试)如图14甲所示,在倾角为θ=30°的长斜面上有一带风帆的滑块从静止开始沿斜面下滑,滑块的质量为m=2 kg,它与斜面的动摩擦因数为μ,帆受到的空气阻力与滑块下滑的速度成正比,即F f=kv.若滑块从静止开始下滑的速度-时间图象如图乙中的曲线所示,图乙中的直线是t=0时速度图线的切线,g=10 m/s2.图14(1)求滑块下滑的最大加速度和最大速度;(2)求μ和k的值.15.(12分)(2017·南通一中期中)如图15所示,传送带与平板紧靠在一起,且上表面在同一水平面内,两者长度分别为L1=2.5 m、L2=2 m.传送带始终保持以速度v向右匀速运动.现将一滑块(可视为质点)轻放到传送带的左端,然后平稳地滑上平板.已知:滑块与传送带间的动摩擦因数μ=0.5,滑块与平板、平板与支持面的动摩擦因数分别为μ1=0.3、μ2=0.1,滑块、平板的质量均为m=2 kg,g取10 m/s2.求:图15(1)若滑块恰好不从平板上掉下,求v的大小.(2)若v=6 m/s,求滑块离开平板时的速度大小.16.(15分)(2018·锦屏中学模拟)如图16所示,一长L=2 m、质量M=4 kg的薄木板(厚度不计)静止在粗糙的水平台面上,其右端距平台边缘l=5 m,木板的正中央放有一质量为m =1 kg的物块(可视为质点),已知木板与平台、物块与木板间的动摩擦因数均为μ1=0.4.现对木板施加一水平向右的恒力F,其大小为48 N,g取10 m/s2,试求:图16(1)F作用了1.2 s时,木板的右端离平台边缘的距离;(2)要使物块最终不能从平台上滑出去,则物块与平台间的动摩擦因数μ2应满足的条件.答案精析1.D [因为电梯静止时,弹簧被压缩了x ,由此可知mg =kx .当电梯运动时,弹簧又被压缩了x ,弹簧的弹力变大,物体所受合力方向向上,大小是mg ,处于超重状态.由牛顿第二定律可得mg =ma ,即加速度大小a =g ,方向也是向上的,此时物体可能是做向上的匀加速运动,也可能是做向下的匀减速运动,D 正确.] 2.D3.D [由于A 、B 相对静止,故A 、B 之间的摩擦力为静摩擦力,A 、B 错误.设民工兄弟一只手对A 、B 在竖直方向上的摩擦力为F f ,以A 、B 整体为研究对象可知在竖直方向上有2F f -(m +3m )g =(m +3m )a ,设B 对A 的摩擦力方向向下,大小为F f ′,对A 由牛顿第二定律有F f -F f ′-mg =ma ,解得F f ′=m (g +a ),C 错误,D 正确.]4.B [水平力F 拉B 时,A 、B 刚好不发生相对滑动,这实际上是将要滑动,但尚未滑动的一种临界状态,从而可知此时A 、B 间的摩擦力即为最大静摩擦力. 先用整体法考虑,对A 、B 整体:F =(m +2m )a .再将A 隔离可得A 、B 间最大静摩擦力为:F fm =ma ,解以上两方程得:F fm =F3.若将F ′作用在A 上,隔离B 可得B 能与A 一起运动,而A 、B 不发生相对滑动的最大加速度a ′=F fm2m,再用整体法考虑,对A 、B 整体:F ′=(m +2m )a ′,由以上方程解得:F ′=F2.]5.A [由匀变速直线运动的速度位移公式得v 2-v 02=2ax ,由题图乙可得a =0-v 022x 1=-10m/s 2,故减速运动时间:t =0-v 0a=1 s ,故A 错误;由题图乙可知,在0~1 s 内小木块向上做匀减速运动,1 s 后小木块反向做匀加速运动,t =1 s 时摩擦力反向,故B 正确;由题图乙可知,小木块反向加速运动时的加速度:a ′=v 22x 2=322×(13-5)m/s 2=2 m/s 2,由牛顿第二定律得:mg sin θ+μmg cos θ=m |a |,mg sin θ-μmg cos θ=ma ′,代入数据解得:μ=0.5,θ=37°,故C 、D 正确.]6.B [稳定运动时,球与环保持相对静止,它们的运动状态相同,且运动方向均与杆平行.对小球受力分析如图,可知小球所受合力平行于杆向上,说明加速度方向沿杆向上,则环的加速度方向也沿杆向上,但它们的运动方向不确定,两者可能沿杆向上加速运动,也可能沿杆向下减速运动,则B 正确,A 、D 错误;由于不知道细线与竖直方向的夹角,则不能判断出小球的加速度与g sin α的大小关系,则C 项错误.]7.BC [0~t 1时间内物块A 受到的静摩擦力逐渐增大,物块处于静止状态,选项A 错误.t 2时刻物块A 受到的拉力F 最大,物块A 的加速度最大,选项B 正确.t 3时刻物块A 受到的拉力减小到等于滑动摩擦力,加速度减小到零,物块A 的速度最大,选项C 正确.t 2~t 3时间内物块A 做加速度逐渐减小的加速运动,t 3~t 4时间内物块A 一直做减速运动,选项D 错误.] 8.ABC [若传送带不动,由匀变速直线运动规律可知v B 2-v A 2)=-2as ,a =μg ,代入数据解得v B =3 m/s ,当满足选项B 、C 中的条件时,工件的运动情况跟传送带不动时的一样,同理可得,工件到达B 端的瞬时速度仍为3 m/s ,故选项A 、B 、C 正确;若传送带以速度v =4 m/s 顺时针匀速转动,则工件滑上A 端后做匀速运动,到B 端的速度仍为4 m/s ,故选项D 错误.] 9.BC [由于橡皮筋C 只能提供向下的拉力,所以轻弹簧A 和B 对小球的作用力一定是拉力.可能有两种情况:(1)橡皮筋可能被拉伸,设拉力为F T ,由平衡条件可知,2F cos 60°=mg +F T ,解得橡皮筋拉力F T =F -mg .剪断橡皮筋的瞬间,小球所受合外力大小等于橡皮筋拉力大小,即F 合=F -mg ,方向竖直向上,由牛顿第二定律,F 合=ma ,解得小球的加速度a =Fm-g ,选项B 正确;(2)橡皮筋可能没有发生形变,拉力为零,则剪断橡皮筋的瞬间,小球的加速度为零,选项C 正确.]10.BC [当斜面倾角θ=90°时,物体对斜面无压力,也无摩擦力,物体做竖直上抛运动,根据匀变速直线运动规律有02-v 02=-2gx ,根据题图乙可得此时x =1.80 m ,解得初速率v 0=6 m/s ,选项A 错.当斜面倾角θ=0°时即为水平,物体在运动方向上只受到摩擦力作用,则有μmgx =12mv 02,根据题图乙知此时x =2.40 m ,解得μ=0.75,选项B 对.物体沿斜面上滑,由牛顿第二定律可知加速度a =g sin θ+μg cos θ=g (sin θ+μcos θ).v 02=2ax =2g (sin θ+μcos θ)x ,得当sin θ+μcos θ最大时,即tan θ=1μ,θ=53°时,x 取最小值x min ,解得x min =1.44 m ,C 项正确.当θ=45°时,因mg sin 45°>μmg cos 45°,则物体达到最大位移后将返回,D 项错误.] 11.(1)天平、刻度尺 (2)平衡摩擦力 M ≫m (3)如图所示12.(1)MmgM +mM ≫m (2)C (3)见解析 解析 (1)根据牛顿第二定律得:对m ∶mg -F T =ma ,对M ∶F T =Ma ,解得:F T =MmgM +m;当M ≫m ,即当盘中砝码和盘的总重力要远小于小车(含车中砝码)的重力时,绳子的拉力近似等于盘中砝码和盘的总重力.(2)平衡摩擦力时,应将绳从小车上拿去,轻轻推动小车,使小车沿木板运动,通过打点计时器打出来的纸带判断小车是否匀速运动,故A 错误;每次改变小车的质量时,小车的重力沿斜面的分力和摩擦力仍能抵消,不需要重新平衡摩擦力,故B 错误;实验时,应先接通打点计时器电源,再放开小车,故C 正确;小车运动的加速度是利用打点计时器测量,如果用天平测出m 以及M ,直接用公式求出,这是在直接运用牛顿第二定律计算,而我们的实验是在探究加速度与物体所受合外力、物体质量间的关系,故D 错误.(3)当F ≠0时,a =0,也就是说当绳子上有拉力时小车的加速度还为0,说明该组同学实验操作中遗漏了平衡摩擦力这个步骤或平衡摩擦力不足;随着F 的增大,即盘及盘中砝码质量的增大,不再满足盘及盘中砝码质量远小于小车(含车中砝码)的质量,因此曲线上部出现弯曲现象.13.(1)16 m (2)8 2 m/s (3)(2+22) s 解析 (1)由v -t 图象知A 、B 之间的距离为;s AB =16×22m =16 m. (2)设滑块从A 滑到B 过程的加速度大小为a 1,从B 返回到A 过程的加速度大小为a 2,滑块与斜面之间的动摩擦因数为μ,则有a 1=v 0-0t =16-02m/s 2=8 m/s 2由于mg sin θ+μmg cos θ=ma 1, 得μ=0.25.滑块由B 返回到A 的过程中,则有mg sin θ-μmg cos θ=ma 2即a 2=4 m/s 2,设滑块返回到A 点时的速度为v ,有v 2-0=2a 2s AB即v =8 2 m/s.(3)设滑块从A 到B 用时为t 1,从B 返回到A 用时为t 2, 则有t 1=2 st 2=va 2=2 2 s则滑块在整个运动过程中所用的时间为t =t 1+t 2=(2+22) s.14.(1)3 m/s 22 m/s (2)23153 kg/s解析 (1)由题图乙可得:t =0时,滑块下滑的加速度最大为a max =Δv Δt =3 m/s 1 s=3 m/s 2; t =3 s 时,滑块下滑的速度最大为 v max =2 m/s.(2)t =0时滑块下滑的加速度最大为a max ,由牛顿第二定律得F 合=mg sin θ-μmg cos θ=ma max ,t =3 s 时滑块下滑的速度达到最大,有 mg sin θ=μmg cos θ+kv max ,解得:μ=2315,k =3 kg/s(说明:k 的答案没有单位不算对).15.(1)4 m/s (2)3.5 m/s解析 (1)滑块在平板上做匀减速运动,加速度大小a 1=μ1mg m=3 m/s 2由于μ1mg >2μ2mg故平板做匀加速运动,加速度大小a 2=μ1mg -μ2·2mg m=1 m/s 2设滑块从平板左端滑至右端用时为t ,共同速度为v ′,平板位移为x ,对滑块进行分析:v ′=v -a 1tL 2+x =vt -12a 1t 2对平板进行分析:v ′=a 2tx =12a 2t 2联立以上各式代入数据解得t =1 s ,v =4 m/s. 当v =4 m/s 时,滑块在传送带上加速运动的位移为x 1=v 22μg=1.6 m<L 1,故符合题意.(2)滑块在传送带上的加速度a 3=μmg m=5 m/s 2若滑块在传送带上一直加速,则获得的速度为v 1=2a 3L 1=5 m/s<6 m/s即滑块滑上平板的速度为5 m/s.设滑块在平板上运动的时间为t ′,离开平板时的速度为v ″,平板位移为x ′ 则v ″=v 1-a 1t ′L 2+x ′=v 1t ′-12a 1t ′2 x ′=12a 2t ′2联立以上各式代入数据解得t ′=12 s ,t 2′=2 s(t 2′>t ,不合题意,舍去)将t ′=12 s 代入v ″=v 1-a 1t ′得v ″=3.5 m/s.16.(1)0.64 m (2)μ2≥0.2解析 (1)假设开始时物块与木板会相对滑动,由牛顿第二定律: 对木板:F -μ1(M +m )g -μ1mg =Ma 1,解得a 1=6 m/s 2对物块:μ1mg =ma 2,解得a 2=4 m/s 2,因为a 2<a 1,故假设成立 设F 作用t 时间后,物块恰好从木板左端滑离,则L 2=12a 1t 2-12a 2t 2,解得t =1 s 在此过程:木板位移x 1=12a 1t 2=3 m ,末速度v 1=a 1t =6 m/s物块位移x 2=12a 2t 2=2 m ,末速度v 2=a 2t =4 m/s在物块从木板上滑落后的t 0=0.2 s 内,由牛顿第二定律: 对木板:F -μ1Mg =Ma 1′, 解得a 1′=8 m/s 2木板发生的位移x 1′=v 1t 0+12a 1′t 02=1.36 m此时木板右端距平台边缘 Δx =l -x 1-x 1′=0.64 m(2)物块滑至平台后,做匀减速直线运动,由牛顿第二定律: 对物块:μ2mg =ma 2′,解得a 2′=μ2g若物块在平台上速度减为0,则通过的位移x 2′=v 222a 2′要使物块最终不会从平台上掉下去需满足l +L2≥x 2+x 2′联立解得μ2≥0.2.。