频数分布表和频数分布直方图
7.4频数分布表和频数分布直方图

(2)视力在4.9及4.9以
上的同学占调查学生的比
频 60
数
()
例为_3_/8__ ;
名 50
(3)如果视力在第1,2,3 40
组范围内均属视力不良,那 30
么该校约共有_1_25_0_名学 20
生视力不良,应给予治疗、 矫正。
10
第3组
第2组 第1组
第4组 第5组 视力
3.95 4.25 4.55 4.85 5.15 5.45
()
才艺展示
1.一次统计七年级若干名学生每分跳绳次数的频数分布直方图如图. 请根据这个直方图回答下面的问题:
(1)参加测试的总人数是多少? 15人
(2)自左至右最后一组的频数、频率分别是多少?
频数是3
频率是0.2
(3)数据分组时,组距是多少?
组距是25次
频
数
七年级若干名学生每分跳绳次数的频数分布 直方图
合计
20 ___2_5__
30 10 5 100
3.每年的6月6日是全国的爱眼日,让我们行动起来, 爱护我们的眼睛!某校为了做好全校2000名学生的眼 睛保健工作,对学生的视力情况进行一次抽样调查, 如图,是利用所得数据绘制的频数分布直方图。请你 根据此图提供的信息,回答下列问题:
(1)本次调查共抽测了__16_0 _名学生;
82.5; 82.5~87.5; 87.5~92.5)
解: 20名学生每分脉搏跳动次数的频数分布表
组别(次) 67.5~72.5 72.5~77.5 77.5~82.5 82.5~87.5 87.5~92.5
频数 2 4 9 3 2
20名学生每分脉搏跳动次数的频数分布直方图
频
数 10
频数分布表与直方图

THANKS
感谢观看
均匀分布
数据在各个区间内的频数或频 率大致相等,表示数据分布较 为均匀。
双峰分布
数据呈现两个明显的峰值,表 示数据可能存在两个不同的集
中区域。
03
频数分布表与直方图关系
数据呈现方式比较
频数分布表
通过表格形式展示数据分布情况,横 轴为数据分组,纵轴为频数或频率。
直方图
通过图形形式展示数据分布情况,横 轴为数据分组,纵轴为频数或频率, 各矩形面积总和表示所有数据点的数 量。
可以是水平的。
数据表示Βιβλιοθήκη 02直方图用矩形的面积表示频数或频率,而条形图的条形长度直
接表示数据值。
数据间隔
03
直方图的矩形通常是连续的,没有间隔,而条形图的条形之间
通常有间隔。
常见直方图形状解读
钟型分布
数据呈现中间高、两边低的形 状,类似于钟的轮廓,表示数
据分布较为集中。
偏态分布
数据分布偏向一侧,可能是左 偏或右偏,表示数据在某个方 向上存在较多的极端值。
调整柱子形状
可以选择不同的柱子形状,如矩形、圆形等,以更好地展示数据 分布。
调整柱子颜色
可以通过调整柱子颜色来区分不同的数据组,使得直方图更加直 观易懂。
添加图例
为不同的数据组添加图例,以便读者更好地理解直方图。
添加标题、坐标轴标签等元素
添加标题
为直方图添加标题,简要说明数据的来源和含义。
添加坐标轴标签
05
直方图制作步骤及注意事 项
根据频数分布表绘制直方图
确定组数
根据数据的分布规律,选择合适的组数,通常组数选择在5-15之 间。
确定组距
根据数据的范围和组数,计算合适的组距,使得数据能够均匀地分 布在各个组中。
频数分布表和频数分布直方图(课件)

课堂练习
1.为了绘制一组数据的频数直方图,首先要算出这组 数据的变化范围,数据的变化范围是指数据的( C ) A.最大值 B.最小值 C.最大值与最小值的差 D.个数
课堂练习
2.一组数据的最小数是12,最大数是38,如果分组的组
距相等,且组距为3,那么分组后的第一组为( B )
A.11.5~13.5
为了参加全校各年级之间的广播操比赛,七年级准备从63名同学中挑出身
高相差不多的40名同学参加比赛为此收集到这63名同学的身高(单位:cm)
如下:
158 158 160 168 159 159 151 158 159 168 158 154 158 154 169 158 158 158 159 167 170 153 160 160 159 159 160 149 163 163 162 172 161 153 156 162 162 163 157 162 162 161 157 157 164 155 156 165 166 156 154 166 164 165 156 157 153 165 159 157 155 164 156
典型例题
例题1 已知一组数据,最大值为93,最小值为22,
现要把它分成6组,则下列组距合适的是( B )
A.9
B.12
C.15
D.18
典型例题Βιβλιοθήκη 例题2 在绘制频数直方图时,计算出最大值与最小值
的差为25 cm,若取组距为4 cm,则组数为( D )
A.4组
B.5组
C.6组
D.7组
典型例题
例题3 某中学部分同学参加全国初中数学竞赛,并取得了优异的成 绩,指导老师统计了所有参赛同学的成绩(成绩都是整数,试 题满分120分),并且绘制了如图的频数直方图(每组中含最低分 数,但不含最高分数),请回答: (1)该中学参加本次数学竞赛的共有多少人? (2)如果成绩在90分以上(含90分)的同学获奖, 那么该中学参赛同学的获奖率是多少? (3)图中还提供了其他信息,例如该中学没有 获得满分的同学等,请再写出两条信息.
(课件)频数分布表和频数分布直方图

直方图,根据图形提供的信息,回答下列问题:
(1)该单位职工有多少? 解:该单位职工有50人 (2)不小于38岁但小于44的职工人 数占职工总人数的百分比是多少? 不小于38岁但小于44的职工 人数占职工总人数的60% (3)如果42岁职工有4人,那么 年龄42岁以上的职工有多少?
年龄(岁) 34 36 38 40 42 44 46 48
第4 组 第5 组
视力
5.15
5.45
下表是从场口镇中学随机抽取的部 分同学的视力情况频数分布表
视力 3.95~4.25
4.25~4.55
频数 2
频率 0.04
6
23
18
0.12
0.46 0.36
4.55~4.85 4.85~5.15
5.15~5.45
合计
1
50
0.02
1.00
(1)、请你把上表补充完整; (2)、请你根据频数分布表,画出频数分布直方图
40
20
49.5 59.5 69.5 79.5 89.5 99.5
分 数
下面请同学们总结一下直方图的特点:
下表是从新星中学随机抽出的部分同学的视力情况频数分布表。
(1)请你把下表补充完整(每一组含最小值,但不含最大值);
学 以 致 用
视力
3.92~4.25 4.25 ~ 4.55 4.55~4.85 4.85~5.15
分组 22.5~ 24.5 2 24.5~ 26.5 3 26.5~ 28.5 8 28.5~ 30.5 4 30.5~ 合计 32.5
解: (4)列频数分布表:
频数记录
频数
3
20
例题:已知一个样本:27,23,25,27,29,
《频数分布表与直方图》PPT课件

直方图是为了把表中的结果直观地表示出来,它
们是频数分布的“数”与“形”的两种不同形式,
互相补充.
(来自《点拨》)
知2-练
1 某学校八年级共有你n名男生. 现测量他们的身高 (单位:cm. 结果精确到1 cm),依据数据绘制的 频数分布直方图如图所示(为了避免有些数据落 在分组的界限上,对作为分点的数保留一位小数).
的学生为正常,试求身高正常的学生的百分比.
知2-讲
导引知:先识确点定最大值与最小值的差为180-140=40(cm),故可
将数据按组距为5进行分组,可分40÷5=8(组). 解:(1)计算这组数据的最大值与最小值的差为180-140=
40(cm). 确定组数与组距,将数据按组距为5进行分组,可分 为40÷5=8(组),即每个小组的范围分别是140≤x< 145,145≤x<150,150≤x<155,155≤x<160,160≤ x<165,165≤x<170,170≤x<175,175≤x≤180. 其中x为学生身高.
C.8组
D.10组
导引:因为这组数据的最大值是187,最小值是140,最 大值与最小值的差是47,且 47 7 5 ,所以应 66 分为8组. 答案:C
总结
知1-讲
确定组数的方法:若最大值与最小值的差除 以组距所得的商是整数,则这个商即为组数;若 最大值与最小值的差除以组距所得的商是小数, 则这个商的整数部分+1即为组数.
知2-讲
知2-讲
例2 某中学部分同学参加全国初中数学竞赛,取得了优异的成
绩,指导老师统计了所有参赛同学的成绩(成绩都是整数, 试题满分120分),并且绘制了如图所示的频数分布直方图 (每组中含最低分数,但不含最高分数),请回答: (1)该中学参加本次数学竞
频数分布图与频数分布直方图的区别

一、基本概念1.频数:落在不同小组中的数据个数为该组的频数.各组的频数之和等于这组数据的总数.注:在统计频数多少的时候,我们一般通过数“正”字的方法累计.2.频率:频数与数据总数的比,即频率=各组频率之和为1.频率大小反映了各组频数在数据总数中所占的份量3.组数:把全体样本分成的组的个数称为组数.4.组距:把所有数据分成若干个组,每个小组的两个端点的距离。
5.极差:用样本数据中的最大值减去最小值。
组距=极差除以组数二、列频数分布表的注意事项运用频数分布直方图进行数据分析的时候,一般先列出它的分布表,其中有几个常用的公式:各组频数之和等于抽样数据总数;各组频率之和等于1;数据总数×各组的频率=相应组的频数.画频数分布直方图的目的,是为了将频数分布表中的结果直观、形象地表示出来,其中组距、组数起关键作用,分组过少,数据就非常集中;分组过多,数据就非常分散,这就掩盖了分布的特征,当数据在100以内时,一般分5~12组.编辑本段三、直方图的特点通过长方形的高代表对应组的频数与组距的比(因为比是一个常数,为了画图和看图方便,通常直接用高表示频数),这样的统计图称为频数分布直方图.它能:①清楚显示各组频数分布情况;②易于显示各组之间频数的差别.编辑本段四、制作频数分布直方图的步骤1.找出所有数据中的最大值和最小值,并算出它们的差.2.决定组距和组数.3.确定分点4.列出频数分布表.5.画频数分布直方图.编辑本段五、频数分布折线图的制作我们可以在直方图的基础上来画,先取直方图各矩形上边的中点,然后在横轴上取两个频数为0的点,这两点分别与直方图左右两端的两个长方形的组中值(矩形宽的中点)相距一个组距,将这些点用线段依次联结起来,就得到了频数分布折线图.编辑本段六、条形图和直方图的区别1.条形图是用条形的高度表示频数的大小,而直方图实际上是用长方形的面积表示频数,当长方形的宽相等的时候,可以用矩形的的高表示频数;2.条形图中,横轴上的数据是孤立的,是一个具体的数据,而直方图中,横轴上的数据是连续的,是一个范围;3.条形图中,各长方形之间有空隙,而直方图中,各长方形是靠在一起的,中间无空隙;编辑本段七、与统计图有关的数学思想方法1.数形结合:从统计图中,能看出各组数据的特点,可进一步应用这些数据特点解决实际问题.通过整理数据,根据要求绘制统计图,可进一步分析数据、做出决策.2.类比:绘制频数分布直方图和绘制条形图类似,如果长方形的宽一样,那么长方形的高度之比就是各组内数据个数之比.编辑本段八、如何画频数分布直方图①集中和记录数据,求出其最大值和最小值。
频数分布表和频数分布直方图

4.25~4.55 6
0.12
4.55~4.85 23
0.46
4.85~5.15 18
0.36
5.15~5.45 1
0.02
合计
50
1.00
(1)、请你把上表补充完整;
(2)、请你根据频数分布表,画出频数分布直方图
如果视力在4.85以下就属于不正常范围,
人数
那么请你分析一下我们学校的视力情况,
28
(3)确定分点; 确定分点的方法有多 种。通常为了使得每 个数据都落在相应的 组内,可取比数据多 一位小数来分组;
(4)列频数分布表: 把数据划记到相应的 组中,统计每组中相 应数据出现的频数.
(5)画频数分布直方图.注意:各个“条形”之间就 应该是连续的,不应该有间隔,当各组的组距相等 时,所画的各个条形的宽度也应该是相同的;
这就是频数分布表
53 65 74 77
成绩段 49.5~ 59.5~ 69.5~ 79.5~ 89.5~
59.5 69.5 79.5 89.5 99.5
频数记录
正 正正 正正 正
频数
2
9
10 14
5
人数
16
15 14 13 12 11 10
9 8
7 6 5 4 3 2 1
这就是频数 分布直方图
49.5 59.5 69.5 79.5 89.5 99.5 分数
在怎这样组描数述据、中分1析6这3c5m0的名频学数生是身多高少的?分布情况呢?
频率呢?
7.4 频数分布表和频数分布直方图
某中学为了了解八年级学生身高的范围和整体分布 情况,抽样调查了八年级50名同学的身高,结果如下 (单位:㎝) 150 148 159 156 157 163 156 164 156 159 169 163 170 162 163 164 155 162 153 155 160 165 160 161 166 159 161 157 155 167 162 165 159 147 163 172 156 165 157 164 152 156 153 164 165 162 167 151 161 162
频数分布表和频率分布直方图课件

Excel制作频数分布表和频率分布直方图方法总结
频数分布表和频率分布直 方图
频数分布表和频率分布直方图是数据分析中常用的工具。通过本课件,我们 将介绍它们的定义、制作方法以及应用范围和重要性。
为什么需要频数分布表和频率 分布直方图?
频数分布表和频率分布直方图帮助我们更好地理解和解释数据。通过可视化 数据,我们可以发现模式、趋势和异常值,从而做出有意义的数据分析。
Excel提供了便捷的功能和工具来制作频数分布表和频率分布直方图。学习如 何使用Excel进行制作,并注意一些细节,可以更高效地进行数据分析。
结论
频数分布表和频率分布直方图在数据分析中应用广泛且具有重要性。它们帮助我们理解数据、发现规律,并为 数据分析提供有力支持。
参考资料
频数分布表知识点总结
频率分布直方图知识点总结
频数பைடு நூலகம்布表
频数是指某个数值或区间在数据集中出现的次数。制作频数分布表可以帮助 我们了解数据的分布情况和集中程度,从而更好地进行统计分析。
频率分布直方图
频率是指某个数值或区间在数据集中出现的频率或概率。通过制作频率分布 直方图,我们可以直观地展示数据的分布情况和集中程度。
使用Excel绘制频数分布表和频 率分布直方图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频数分布表和频数分布直方图(1)教学目标知识目标1.掌握频数、频率的概念.2.会求一组数据的频数与频率.能力目标1.通过统计数据,制成各种图表,增强学生对生活中所见到的统计图表进行数据处理和评判的主动意识.2.培养学生利用图表获取信息的能力,使学生能初步把数字信息、图形和语言之间相互转化,并作出合理推断.情感与价值观目标培养学生实事求是的科学态度,并通过对数据的整理,提高学生的责任心与耐心细致的工作态度.教学重点频率与频数的概念,选择数据表示方式.教学难点各种统计图表的绘制,识别各种图表所含的信息,各自优缺点.教学方法合作探讨法教具准备投影片教学过程一、导入新课上节课我们主要学习了数据的收集,并探讨了抽样调查时要注意的问题.(1)样本的大小.(2)样本的代表性.(3)样本的广泛性.使所抽取的样本尽可能准确地反映总体的真实情况.本节课我们继续学习统计初步中反映数据出现频繁程度的两个量频数与频率.二、讲授新课1.例题讲解我们不仅要学好基础知识,还要强健自己的体魄,长大后才能更好地工作.同学们,你们平时最喜爱的体育运动是什么?乒乓球、篮球、足球、游泳、羽毛球、跳绳、踢毽子…….你最喜爱的体育明星是谁?下面是小亮调查的七(1)班50位同学喜欢的足球明星,结果如下:(投影片)示方式是什么?这些数据没有经过统计、整理,必须把A、B、C、D的个数全部数清,才能比较出哪位球星是该班同学最喜欢的.数据越多越不方便,所以我认为小亮的数据表示方式不太好.你能设计出一个比较好的表示方式吗?小组相互交流,共同探讨.我们小组用如下方式表示:(二)此种表示方式的优点是什么?简单明了,一眼可以看出哪个最多、哪个最少.我们小组采用如下方式表示数据.此种表示方式的优点是什么?直观,一目了然.不仅可以很快判断出哪个最多,哪个最少,还可比较出差别是否悬殊很大.从上表可以看出,A、B、C、D出现的次数有的多,有的少,或者说它们出现的频繁程度不同.我们称每个对象出现的次数为频数(absolute,frequency).而每个对象出现的次数与总次数的比值为频率(relative frequency).分别计算A 、B 、C 、D 的频数与频率.A 的频数为23,A 的频率为5023.B 的频数为8,B 的频率为254. C 的频数为13,C 的频率为5013. D 的频数为6,D 的频率为253. 三、课堂练习1.设计一个方案,了解你们班同学最喜欢的科目是哪科,为什么喜欢? 分析:先列表,再统计,调查探讨喜欢的原因.调查不爱学的那门科目的原因.(课后完成)科目 语文 数学 英语 历史 地理 政治 物理 美体 学生数 频数 频率[生]可以用上例中的图(三)表示的形式.[师]这种图叫频数分布直方图.可不可以用频率分布来表示,小明、小亮从同一本书中分别随机抽取了6页,在统计了1页、2页、3页、4页、5页、6页的“的”和“了”出现的次数后,分别求出了它们出现的频率,并绘制了下图图5-1[生]频率在至之间变化的字是“的”字.“了”字的频率在至之间变化. [师]你认为该书中“的”和“了”两个字使用的频率哪个高?[生]我认为是“的”字.3.做一做(1)为了了解中学生的身体发育情况,对某中学同年龄的60名女学生的身158 167 154 159 166 169 159156 166 162 159 156 166 164160 157 156 160 157 161 158158 153 158 164 158 163 158153 157 162 162 159 154 165166 157 151 146 151 158 160165 158 163 162 161 154 163165 162 162 159 157 159 149164 168 159 153有时只知道这一点还不够,还希望知道身高在哪个范围内的学生多,在哪个小范围内的学生少,也就是说,希望知道这60名女学生的身高数据在各个小范围内所占的比的大小.(学生填下表)频率分布表落在各个小组内的数据的个数叫做频数.小结:整理数据时,可以按照下面的步骤进行.1.计算最大值与最小值的差.2.决定组距与组数.3.决定分点4.列频率分布表.下节课我们将继续学习对各种数据的统计表的处理.四、课时小结本节课主要学习了如下内容.1.频数与频率两个基本概念.2.会求一组数据的频数与频率,并会选择合理的表示方式来表示数据.例用频数分布直方图、图表、扇形区域分布图等表示所收集的数据情况.五、课后作业习题六、活动与探究为了提高学生的数学实践能力、提高学生学习数学的兴趣,课堂内、外多让学生去观察分析自己身边的事情.提出问题、探讨解决问题的方法.写一些实习作业,逐步掌握统计里的实习作业的问题如何表述,完成的步骤、实习报告的写法.例如要了解当地初中八年级男生的身高情况.[过程]具体要求包括:(1)如何选取样本、样本容量多大.(2)计算哪些统计量(平均数、中位数、众数、频数、频率等).(3)数据如何整理.(4)如何估计总体情况.[结果]具体步骤包括:(1)确定抽取样本的对象.在统计里,所要了解的情况涉及的范围往往很大,为了使样本对总体的估计更加精确,所确定的抽取样本的对象力求具有代表性.例如想要了解一个城市的初中某年级某门学科的学习情况,如果要选一个学校作为抽取样本的对象,那么这个学校不应是学习成绩较好或较差的学校,而应是成绩较为适中的学校.可见抽取样本对象的确定直接关系到所得结果的可靠程度.(2)确定抽取样本的方法并抽取样本(随机抽样、系统抽样、分层抽样)(3)计算和分析数据,写出书面报告.为了保证所得结论具有参考价值,所以要求数据来源于实际且真实,计算准确无误.为此,必须提高学生的责任心,用高度认真负责的态度对待身边每一个细小的问题,以小见大,逐步提高自身能力.频数分布表与频数分布直方图(2)教学目标知识目标1.如何收集与处理数据.2.会绘制频数分布直方图与频数分布折线图.3.了解频数分布的意义,会得出一组数据的频数分布.能力目标1.初步经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理能力.2.通过经历调查、统计、研讨等活动,发展学生实践能力与合作意识.情感与价值观目标通过学习,培养学生勇于提出问题,大胆设计,勇于探索与解决问题的能力.教学重点1.了解频数分布的意义,会得出一组数据的频数分布直方图、频数分布折线图.2.数据收集与处理.教学难点1.决定组距与组数.2.数据分布规律.教学方法交流探讨式教具准备投影片教学过程一、导入新课请大家一起回忆一下,我们如何收集与处理数据.1.首先通过确定调查目的,确定调查对象.2.收集有关数据.3.选择合理的数据表示方式统计数据.4.根据所收集的数据进行数据计算.根据特征数字,估计总体情况,设计可行的计划与方案,并不断实施与改进方案.大家能否帮卖雪糕的李大爷设计一种方案,确定各种牌子的雪糕应进多少?首先应开展调查.统计一下李大爷每天卖出的A、B、C、D、E五个牌子雪糕的数量.二、讲授新课(出示投影片)这是小丽统计的最近一个星期李大爷平均每天能卖出的A图5-2A、B两种雪糕卖出的较多,可以多进些,D种雪糕卖出的少,可以少进些.A多进多少?B多进多少?D进多少?如何通过比例确定?A占总数的25%,B占总数的35%,C占总数的13%,D占总数的8%,E占总数的19%.如何确定进货的总数,还应考虑哪些因素?还应考虑当天气温情况,天气凉,气温低时少进货.天气热,气温高时多进货,即进雪糕总数应考虑当天气温变化.不能每天都进518支雪糕.2.做一做[例]学校要为同学们订制校服,为此小明调查了他们班50名同学的身高,结果(单位 cm).141 165 144 171 145 145 158150 157 150 154 168 168 155155 169 157 157 157 158 149150 150 160 152 152 159 152159 144 154 155 157 145 160160 160 158 162 155 162 163155 163 148 163 168 155 145172填写下表,并将上述数据用适当的统计图表示出来.(表二)同学们想一想,你同父母一起去商店买衣服时,衣服上的号码都有哪些,标志是什么?我看到有些衣服上标有M、S、L、XL、XXL等号码.但我不清楚代表的具体范围.适合什么人穿.但肯定与身高、胖瘦有关.这位同学很善动脑,也爱观察. S代表最小号,身高在150~155 cm的人适合穿S号.M号适合身高在155~160 cm的人群着装…….厂家做衣服订尺寸也并不是按所有人的尺寸定做,而是按某个范围分组批量生产.如何确定组距与组数呢?分组组数的确定,不仅与数据多少有关,还与数据的取值情况有关.在实际决定组数时,常有一个尝试过程:先定组距,再计算出相应的组数.看看这个组数是否大致符合确定组数的经验法则.在尝试中,往往要比较相应于几个组距的组数,然后从中选定一个较为合适的组数.我们一起看下表:小亮的做法.144 cm以下 145~149 cm 150~154 cm3 6 9155~159 cm 160~164 cm 165~169 cm16 9 5170 cm以上2小亮是怎么做的?先分组,再得到相应各组的学生人数.图5-3图.注:数据越多,分的组数也应越多,当数据在100以内时,通常按照数据的多少,分成5~12组.为了更好地刻画数据的总体规律,我们还可以在得到的频数分布直方图上取点、连线,得到如下的频数分布折线图.(投影片)图5-4表一是没有经过整理的数据.数据多,而且数量表示上不简单、不直观.各个数据所占人数多少也没有直接给出,还需要计算.表二,优点:数量表示上确切.即准确表示出各个数据所占的人数.缺点:不能直观反映数据的总体规律.数据也较多.图5-3、图5-4能直观形象地将数据表示出来,而且能刻画出数据的总体规律.中间人数较集中,两边较少.小结.我们在收集到一些数据后,一定要选择合理的表示方式表示所收集的数据.常用表格与图表两种方式.何时用哪种方式,应根据我们研究问题的侧重点来定.具体问题具体分析.不要生搬硬套,应多总结、提炼研究问题的思想和方法.不要一味去模仿.只要多动脑去思考.我相信同学们会创新出更好的方法.三、课堂练习1.储蓄所太多必将增加银行支出,太少又难以满足顾客的需求.为此,银行在某储蓄所抽样调查了50名顾客,他们的等待时间(进入银行到接受受理的时间间隔,单位 mi n)如下:15 20 18 3 25 34 6 0 1724 23 30 35 42 37 24 21 114 12 34 22 13 34 8 22 3124 17 33 4 14 23 32 33 2842 25 14 22 31 42 34 26 1425 40 14 24 11(1)将数据适当分组,并绘制相应的频数分布直方图.(2)这50名顾客的平均等待时间是多少?根据这个数据,你认为应该给银行提什么建议?最小值为0.∴42-0=42.②决定组距与组数.③决定分点列表如下.绘制频数分布直方图(如下图)学生完成下图.图5-5四、课时小结本节课学习了如下内容.1.如何整理所收集的数据.2.将数据用适当的统计图表示出来.(1)表格形式.(2)频数分布直方图(3)频数分布折线图.3.各种统计图、表的优缺点.4.根据统计图表信息,提出合理化建议.今后我们还要学习一些统计知识,一些图表的制作.例如频率分布直方图,以及它的意义.五、课后作业习题六、活动与探究1.将一批数据分组时,每个小组的频数与频率各指什么?2.分组时应注意哪些问题?。