市第届迎春杯小学数学竞赛决赛试题优选稿

合集下载

2017年迎春杯五年级竞赛决赛数学试卷二试(答案解析)

2017年迎春杯五年级竞赛决赛数学试卷二试(答案解析)
答案 34
解析 A、A+1、B、B+1均不为质数;也不能是质数的n次方.所以,B只能是14.(B为6、10
时,B+1都是质数),此时B+1为15,B(B+1)含有质因数2、3、5、7;最小符合条件的A
为20,所以,A+ B最小值为34 .
在空格里填入数字1~6,使得每行、每列和每宫数字都不重复,每个灰格里的数,在它周
解答
如图,0为三角形ABC内一点.三角形OAC、三角形OAB、三角形OBC的面积分别为30、
60、120 .如果AD= 1.5DB,AE=2EC,求∶
(1) OM: MB.
(2)三角形OMN的面积 .
学而思培优
(1) 1:2.
(2) 16.
(1)方法一∶延长BO交AC于K,
由左图得,BO∶OK=60∶10=6∶1,BO=号BK;
学而思培优
2017年迎春杯五年级竞赛决赛数学试卷二试
填空 将一个正四面体的6条棱中的3条染成黑色,另外3条染成白色,有_种不同的染色方
法.(旋转后相同的染色方法视为同一种染色方法)
如果两个正整数A和ຫໍສະໝຸດ 满足以下条件 ∶①A(A+ 1)是B(B+ 1)的倍数; ②A和(A+ 1)都不是B或者(B+ 1)的倍数; 那么,A+ B的最小值是_
店的编号居然还是a2,此时,甲刚好走到一个编号为三位完全平方数的加油站.
那么,AB两地相距多少千米 ?
840.
从出发到甲、丙相遇为第一阶段,从甲丙相遇到乙、丙相遇为第二阶段,乙第一阶段走了52
,第二阶段走了72,所以∶
t:ta=5:2,
8,8,=1∶(号×台
{(P-1)=b-1,可得P=97,B2= 121; (S-5P+5d): s=5:2
号加油站开始,依次是1号、2号、3号……;每隔7千米,有一个便利店,从A地的1号便利

迎春杯历年试题全集(上)

迎春杯历年试题全集(上)

迎春杯历年试题全集学而思在线http://目录北京市第1届迎春杯小学数学竞赛决赛试题 (3)北京市第2届迎春杯小学数学竞赛决赛试题 (7)北京市第3届迎春杯小学数学竞赛决赛试题 (15)北京市第4届迎春杯小学数学竞赛决赛试题 (16)北京市第5届迎春杯小学数学竞赛决赛试题 (18)北京市第6届迎春杯小学数学竞赛决赛试题 (20)北京市第7届迎春杯小学数学竞赛决赛试题 (23)北京市第8届迎春杯小学数学竞赛决赛试题 (25)北京市第9届迎春杯小学数学竞赛决赛试题 (28)北京市第10届迎春杯小学数学竞赛决赛试题 (31)北京市第1届迎春杯决赛试题1.天安门广场是世界上最大的广场,面积约44万平方米,合____亩。

2.计算:3.计算:4.一个五位数与9的和是最小的六位数,这个五位数是____。

5.某数的小数点向右移动一位,比原来的数大18,原来的数是____。

6.甲、乙两数的和是305.8,乙数的小数点向右移动一位就等于甲数,甲数等于____。

7.最大的四位数比最大的两位数多____倍。

8.在一个减法算式里,被减数、减数与差的和等于120,而差是减数的3倍,那么差等于____。

9.在8个不同约数的自然数中,最小的一个是____。

10.甲数是36,甲乙两数的最小公倍数是288,最大公约数是4,乙数应该是____。

11.一个三位数,个位与百位上的数字的和与积都是4,三个数字相乘的积还是4,这个三位数是____。

12.一个三位数能同时被2、5、7整除,这样的三位数按由小到大的顺序排成一列,中间的一个是____。

13.一个分母是最小质数的真分数,如果这个分数的分子增加了4倍,分母加上8得到一个新的分数,那么这两个分数的和是____。

14.一个人步行每小时走5公里,如果骑自行车每1公里比步行少用8分钟,那么他骑自行车的速度是步行速度的____倍。

15.水果店卖出库存水果的五分之一后,又运进水果66000斤,这时库存水果比原库存量多六分之一,原来库存水果____万斤。

北京市迎春杯小学数学竞赛决赛历年试题全集(下)

北京市迎春杯小学数学竞赛决赛历年试题全集(下)

北京市迎春杯小学数学竞赛决赛历年试题全集(下)迎春杯历年试题全集(下)目录北京市第11届迎春杯小学数学竞赛决赛试题 (3)北京市第12届迎春杯决赛试题 (5)北京市第13届迎春杯决赛试题 (7)北京市第14届迎春杯决赛试题 (9)北京市第15届迎春杯决赛试题 (11)北京市第16届迎春杯小学数学竞赛预赛试题 (13)北京市第17届迎春杯科普活动日队际交流邀请赛试题 (14)北京市第18届迎春杯决赛试题 (17)北京市第19届迎春杯数学科普活动日计算机交流题 (19)北京市第20届迎春杯小学生竞赛试题 (21)北京市第21届迎春杯小学数学科普活动日数学解题能力展示初赛试卷 (23)北京市第11届迎春杯小学数学竞赛决赛试题1.计算:0.625×(+)+÷―2.计算:[(-×)-÷3.6]÷3.某单位举行迎春茶话会,买来4箱同样重的苹果,从每箱取出24千克后,结果各箱所剩下的苹果重量的和,恰好等于原来一箱的重量。

那么原来每箱苹果重________千克。

4.游泳池有甲、乙、丙三个注水管。

如果单开甲管需要20小时注满水池;甲、乙两管合开需要8小时注满水池;乙、丙两管合开需要6小时注满水池。

那么,单开丙管需要________小时注满水池。

5.如图是由18个大小相同的小正三角形拼成的四边形。

其中某些相邻的小正三角形可以拼成较大的正三角形若干个。

那么,图中包含“*”号的大、小正三角形一共有________个。

6.如图,点D、E、F与点G、H、N分别是三角形ABC与三角形DEF各边的中点。

那么,阴影部分的面积与三角形ABC的面积比是。

7.五个小朋友A、B、C、D、E围坐一圈(如下图)。

老师分别给A、B、C、D、E发2、4、6、8、10个球。

然后,从A开始,按顺时针方向顺序做游戏:如果左邻小朋友的球的个数比自己少,则送给左邻小朋友2个球;如果左邻小朋友的球的个数比自己多或者同样多,就不送了。

2022-2023学年度第一学期迎春杯系列竞赛一年级数学试题

2022-2023学年度第一学期迎春杯系列竞赛一年级数学试题

2022/2023学年度第一学期“迎春杯”系列竞赛一年级数学试题【出卷人: 审卷人: 】 2022.12 一、填空题(第空3分,共48分)。

1.今天是小红的生日,妈妈买了一个生日蛋糕(如右图)。

小红今年( )岁,去年她( )岁,明年她( )岁。

2.照样子接着在右边再摆2个正方形,至少还要( )根小棒。

3.想一想,下面的图形再添( )个小正方体,就能搭成右边的大正方体? 4.红红和亮亮,他们手里都抓着10颗小星星。

你能猜出他们的另一只手里有几颗小星星吗?在括号里写一写。

5.在 里填上合适的数。

二、选择题。

(填写正确答案序号)(每小题5分,共20分) 1. 6+( )<10,( )里最大可以填几。

① 4 ② 3 ③ 2 2.最大的一位数和最小的两位数合起来是多少( )。

① 11 ② 10 ③ 19学校 姓名 班级 学号 装 订 线3. 10位女同学,每人发一朵花,买下面哪两束比较合适?()① 4+5 ② 4+6 ③ 5+64.明明在计数器上拨了5个珠子表示一个数。

这个数比10大,比15小。

这个数是多少()。

① 5 ② 15 ③ 14三、解决问题。

(7+7+6+6+6=32分)1.王老师带着9个小朋友在玩老鹰抓小鸡游戏,已经抓住了6个小朋友,还剩几个人在做游戏?=(人)2.停车场一共有8辆小汽车,先开走4辆,接着又开走2辆,停车场现在还有多少辆小汽车?=(辆)3.(1)美术组和围棋组一共有多少人?=(人)(2)舞蹈组比美术组多多少人?=(人)(3)舞蹈组男生有6人,女生有多少人?=(人)。

四年级下册数学试题2019年“迎春杯”数学花园探秘决赛试卷(小中组a卷)(含答案解析)全国通用

四年级下册数学试题2019年“迎春杯”数学花园探秘决赛试卷(小中组a卷)(含答案解析)全国通用

2019年“迎春杯”数学花园探秘决赛试卷(小中组A卷)一、填空题(共4小题,每小题8分,满分32分)1.(8分)算式33+43+53+63+73+83+93的计算结果是.2.(8分)蓉蓉从一班转到了二班,蕾蕾从二班转到了一班,于是一班学生的平均身高增加了2厘米,二班学生的平均身高减少了3厘米,如果蕾蕾身高158厘米,蓉蓉身高140厘米,那么两个班共有学生人.3.(8分)如图,图中3个大三角形都是等边三角形,则图中共有个三角形.4.(8分)今天是1月30日,我们先写下130;后面写数的规则是:如果刚写下的数是偶数就把它除以2再加上2写在后面,如果刚写下的数是奇数就把它乘以2再减去2写在后面,于是得到:130、67、132、68…,那么这列数中第2016个数是.二、填空题(共4小题,每小题10分,满分40分)5.(10分)请将1~6分别填入如图的6个圆圈中,使得每条直线上的圆圈中填的所有数的和都相等(图中有3条直线上各有3个圆圈,有2条直线上各有2个圆圈);那么两位数=.6.(10分)在A、B、C三个连续的小水池中各放入若干条金鱼,若有12条金鱼从A池游到C池中,则C池内的金鱼将是A池的2倍,若有5条金鱼从B池游到A池中,则A 池与B池的金鱼数将相等,此外,若有3条金鱼从B池游到C池中,则B池与C池中的金鱼数也会相等,那么A水池中原有条金鱼.7.(10分)如图,长方形ABCD的长AB为20厘米,宽BC为16厘米,长方形内放着两个重叠的正方形DEFG和BHIJ,已知三个阴影长方形的周长相等,那么长方形INFM的面积为平方厘米.8.(10分)在如图所示每个格子里填入数字1~5中的一个,使得每一行和每一列数字都不重复,每个“L”状大格子跨了两行和两列,上圆圈中的数表示相邻两个格子内数字的和(如图给出了一个填1~4的例子,如中图第3行从左到右四格依次为3,4,1,2)那么图中最下面一行的五个数字按从左到右的顺序依次组成的五位数是.三、填空题(每小题12分,满分36分)9.(12分)用数字1至9组成一个没有重复数字的九位数要求、、、、、、、这八个两位数均能写成两个一位数的乘积;那么算式++的计算结果是.10.(12分)图③是由6个图①这样的模块拼成的,如果最底层已经给定两块的位置(如图②),那么剩下部分一共有种不同的拼法.11.(12分)甲乙两人轮流从1~9这9个自然数中取不同的数,对方取过的数不能再取,谁取得的数中先有三个数成等差数列谁就获胜;甲先取了8,乙接着取了5;为了确保甲必胜,甲接下来取的一个数的所有可能值的乘积是.2019年“迎春杯”数学花园探秘决赛试卷(小中组A卷)参考答案与试题解析一、填空题(共4小题,每小题8分,满分32分)1.(8分)算式33+43+53+63+73+83+93的计算结果是2016.【解答】解:33+43+53+63+73+83+93=13+23+33+43+53+63+73+83+93﹣13﹣23=(1+2+3+…+9)2﹣1﹣8=[(1+9)×9÷2]2﹣9=452﹣9=2025﹣9=2016;故答案为:2016.2.(8分)蓉蓉从一班转到了二班,蕾蕾从二班转到了一班,于是一班学生的平均身高增加了2厘米,二班学生的平均身高减少了3厘米,如果蕾蕾身高158厘米,蓉蓉身高140厘米,那么两个班共有学生15人.【解答】解:158﹣140=18(厘米),18÷2+18÷3=9+6=15(人)答:两个班共有学生15人.故答案为:15.3.(8分)如图,图中3个大三角形都是等边三角形,则图中共有30个三角形.【解答】解:根据分析,小三角形的个数为:9个;含有两个小三角形的三角形的个数为:18个;大三角形的个数为:3个,故总的三角形的个数是:9+18+3=30个.4.(8分)今天是1月30日,我们先写下130;后面写数的规则是:如果刚写下的数是偶数就把它除以2再加上2写在后面,如果刚写下的数是奇数就把它乘以2再减去2写在后面,于是得到:130、67、132、68…,那么这列数中第2016个数是6.【解答】解:依题意可知:数字规律是130、67、132、68、36、20、12、8、6、5、8、6、5、8、6、5、去掉钱7项是循环周期数列2016﹣7=2009.每3个数字一个循环2009÷3=667 (2)循环数列的第二个数字就是6.故答案为:6二、填空题(共4小题,每小题10分,满分40分)5.(10分)请将1~6分别填入如图的6个圆圈中,使得每条直线上的圆圈中填的所有数的和都相等(图中有3条直线上各有3个圆圈,有2条直线上各有2个圆圈);那么两位数=63.【解答】解:依题意可知:A+C+D=A+B=B+D+F=E+F=E+B+C.B=C+D.B+D=E.E+C=A.①D=1,C=2,B=3,E=4,A=6,F=5.②D=2,C=1,B=3,E=5,A=6,F=4.那么两位数=63.故答案为:63.6.(10分)在A、B、C三个连续的小水池中各放入若干条金鱼,若有12条金鱼从A池游到C池中,则C池内的金鱼将是A池的2倍,若有5条金鱼从B池游到A池中,则A 池与B池的金鱼数将相等,此外,若有3条金鱼从B池游到C池中,则B池与C池中的金鱼数也会相等,那么A水池中原有40条金鱼.【解答】解:若5条金鱼从B游到A,则A和B相等,那么B池水中的鱼比A中的多10条.若有3条金鱼从B池游到C池中,则B池与C池中的金鱼数也会相等,说明B池水中的鱼比C多6条.所以A池水中的鱼比C池水中的金鱼少4条.若有12条金鱼从A池游到C池中,说明C比A多4+12+12=28条.则C池内的金鱼将是A池的2倍.那么一份就是28条.A中有28条.那么原来A中的金鱼数量为28+12=40条.故答案为:40条.7.(10分)如图,长方形ABCD的长AB为20厘米,宽BC为16厘米,长方形内放着两个重叠的正方形DEFG和BHIJ,已知三个阴影长方形的周长相等,那么长方形INFM的面积为32平方厘米.【解答】解:阴影部分的总周长为:(20+16)×2=72,四边形IMFN的周长是72÷3=24,所以MF+FN=12 ①,因为正方形的边长相等:MF+MG=FN+EN,则MF﹣FN=EN﹣GM,所以EN﹣GM=EN+BJ﹣(GM+BH)=AB﹣BC=4,则MF﹣FN=4 ②,根据①②式可得:(12+4)÷2=8,(12﹣4)÷2=4,长方形IMFN的面积为4×8=32.故答案为:32.8.(10分)在如图所示每个格子里填入数字1~5中的一个,使得每一行和每一列数字都不重复,每个“L”状大格子跨了两行和两列,上圆圈中的数表示相邻两个格子内数字的和(如图给出了一个填1~4的例子,如中图第3行从左到右四格依次为3,4,1,2)那么图中最下面一行的五个数字按从左到右的顺序依次组成的五位数是24531.【解答】解:图1,左上角8=3+5,若5在左边,则第一列的第4行的9无法确定,则必须是左3右5.同理右下角的4=1+3,若1在左边,第四列的第4行和第5行无法确定,所以左3右1.图2,第一列的第2行和第6行的和是3,只能是1和2,而第6行有1了,所以第一列的第2行是1,第6行是2,同理可知第6列的第1行是2,第4行是3.图3,第一行还有1和4两个数,1在第4列,则7无法确定,所以第3列是1,第4列是4,第2行第4列是3,第5列第4行是2,第4列第4行是1,因为第2行4已经存在,所以第6列,第第2行是5,第4行是5,由此可以推出第1列的第4行是5,第5行是4.图4,其他按此方法,填入即可,故答案为24531.三、填空题(每小题12分,满分36分)9.(12分)用数字1至9组成一个没有重复数字的九位数要求、、、、、、、这八个两位数均能写成两个一位数的乘积;那么算式++的计算结果是1440.【解答】解:跟数字9组合的数字只有4.所以放在最后.和数字7组合的只有2,27或者72,只能有一个数字所以.再分析数3,组合只有63和35.数字5后面只能有54.∴=35.再分析数字8,组合可以是28,18,81,所..=728+163+549=1440.故答案为:1440.10.(12分)图③是由6个图①这样的模块拼成的,如果最底层已经给定两块的位置(如图②),那么剩下部分一共有2种不同的拼法.【解答】解:如图:答:剩下部分一共有2种不同的拼法.故答案为:2.11.(12分)甲乙两人轮流从1~9这9个自然数中取不同的数,对方取过的数不能再取,谁取得的数中先有三个数成等差数列谁就获胜;甲先取了8,乙接着取了5;为了确保甲必胜,甲接下来取的一个数的所有可能值的乘积是168.【解答】解:若甲接下来取的一个数是1,则乙取4,那么下一轮无论甲取几,均不能构成等差数列,且下一轮乙再取一个数均能构成等差数列(4、5、6或3、4、5),甲输;若甲接下来取的一个数是2,则乙取4,同理,甲输;若甲接下来取的一个数是3,则乙取6,同理,甲输;若甲接下来取的一个数是4,则乙取6(否则甲下一轮取6直接获胜),则甲只能取7(否则乙下一轮取7直接获胜),这样,乙这轮不可能构成等差数列,下一轮可以取1或9均能构成等差数列(1、4、7或7、8、9),甲胜;若甲接下来取的一个数是6,则无论乙取几,甲再取一个数均能构成等差数列(4、6、8或者6、7、8);若甲接下来取的一个数是7,则无论乙取几,甲再取一个数均能构成等差数列(6、7、8或者7、8、9);若甲接下来取的一个数是9,则乙取7(否则甲下一轮取7直接获胜),则下一轮无论甲取几,乙再取一个数均能构成等差数列(3、5、7或5、6、7).综上,为了确保甲必胜,甲接下来取的一个数可以是4、6、7,所有可能值的乘积是:4×6×7=168.故答案为:168.。

最新小学生迎春杯数学竞赛题.doc

最新小学生迎春杯数学竞赛题.doc

最新小学生迎春杯数学竞赛题最新小学生迎春杯数学竞赛题:1.元旦是星期一,下一个元旦是星期一的年份是( )年。

4. 要使12 9 这个积是 6 的倍数,并要使m+n最小,则m=( ),n=( )。

5.小明写出4个连续自然数的和,与小强写出的7个连续自然数的和相等,小明写的最小数与小强写出的最大数是一样的,这个一样的数是( )。

6.A、B两个不相同的数字,要使算式成立。

A=( );B=( )。

7.700以内能被7整除的所有数中,( )包含有个数字1。

8.8个选手进行象棋比赛,每2个选手中都进行一场比赛,胜者得2分,负者得0分,如果和棋各得1分,比赛结束后8名选手得分各不相同,依得分顺序排好名次后,发现第2名的得分与第5、6、7、8名的四个选手得分的和相等,第4名得9分,那么第一名得到了( )分。

二、解答下列各题并写出解答过程。

9.甲乙两人从A、B两地同时出发,相向而行,按预定速度他们将在下午5时在途中相遇,如果他们每人每小时都比预定速度快1千米,则可在下午4时相遇,如果他们每人每小时都比预订速度慢1.5千米,即要在下午7时相遇,A、B两地的距离是千米。

10.试证明:在任意4个奇数中,一定可以选出2个数,它们的和或差的未位是0。

福州市小学生迎春杯数学竞赛试题参考答案1、根据平方差公式,原式=(。

平年多出一天,闰年多出2天。

四年一闰,从开始,共要过3个闰年8个平年,超出14天,又回到周一元旦。

4、M=3,N=15、9。

7X=4(X+4.5),解得X=6.6+3=96、A=8,B=67、34。

解:个位从37到937共10个十位有14、112、119、212、217、315、412、419、511、616共10个百位有157到287共14个。

因此共34个。

8、13。

8名选手的循环赛总盘数是28。

总分是56分。

后四名选手,看成4人循环赛,要赛6盘,每盘出现2分,这四人之间的比赛要累计12分,那么这四人的最后总得分至少要有12分,同时第二名至少12分,第四名9分。

迎春杯数学竞赛试题

迎春杯数学竞赛试题

迎春杯数学竞赛试题一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?- A. 0- B. 1- C. 2- D. 32. 如果一个圆的半径是5厘米,那么它的周长是多少? - A. 10π厘米- B. 15π厘米- C. 20π厘米- D. 25π厘米3. 一个数的平方根是8,那么这个数是:- A. 16- B. 64- C. 8- D. 无法确定4. 以下哪个表达式的结果不是整数?- A. (-3)^2- B. √16- C. 2^3- D. 1/35. 以下哪个数是完全数?- A. 6- B. 28- C. 496- D. 36二、填空题(每空3分,共15分)1. 如果一个三角形的三个内角分别是50°、60°和______,那么它是一个锐角三角形。

2. 一个数的立方根是2,那么这个数是______。

3. 一个等差数列的前三项分别是2、5、8,那么它的公差是______。

4. 如果一个分数的分子是15,分母是______,那么它的倒数是1/3。

5. 一个圆的直径是14厘米,它的面积是______平方厘米(结果保留π)。

三、解答题(每题10分,共20分)1. 一个长方体的长、宽、高分别是3厘米、4厘米和5厘米,求它的体积。

2. 一个等差数列的前10项之和是110,首项是2,公差是d。

求这个数列的第10项。

四、证明题(每题10分,共10分)证明:对于任意的正整数n,n^3 - n^2 + n - 1 可以被6整除。

答案:一、选择题1. B2. C3. B4. D5. C二、填空题1. 70°2. 83. 34. 455. 39π三、解答题1. 长方体的体积是 3cm * 4cm * 5cm = 60立方厘米。

2. 等差数列的第10项是 2 + (10-1) * d = 2 + 9d,由于前10项之和是110,我们有 10 * (2 + 2 + (10-1) * d) / 2 = 110,解得 d = 3,因此第10项是 2 + 9 * 3 = 29。

迎春杯历年试题全集(上)

迎春杯历年试题全集(上)

迎春杯历年试题全集学而思在线目录北京市第 1 届迎春杯小学数学竞赛决赛试题 (3)北京市第 2 届迎春杯小学数学竞赛决赛试题 (7)北京市第 3 届迎春杯小学数学竞赛决赛试题 (15)北京市第 4 届迎春杯小学数学竞赛决赛试题 (16)北京市第 5 届迎春杯小学数学竞赛决赛试题 (18)北京市第 6 届迎春杯小学数学竞赛决赛试题 (20)北京市第 7 届迎春杯小学数学竞赛决赛试题 (23)北京市第 8 届迎春杯小学数学竞赛决赛试题 (25)北京市第 9 届迎春杯小学数学竞赛决赛试题 (28)北京市第 10 届迎春杯小学数学竞赛决赛试题 (31)北京市第 1 届迎春杯决赛试题1.天安门广场是世界上最大的广场,面积约 44 万平方米,合____亩。

2.计算:3.计算:4.一个五位数与 9 的和是最小的六位数,这个五位数是____。

5.某数的小数点向右移动一位,比原来的数大 18,原来的数是____。

6.甲、乙两数的和是 305.8,乙数的小数点向右移动一位就等于甲数,甲数等于____。

7.最大的四位数比最大的两位数多____倍。

8.在一个减法算式里,被减数、减数与差的和等于 120,而差是减数的 3 倍,那么差等于____。

9.在 8 个不同约数的自然数中,最小的一个是____。

10.甲数是 36,甲乙两数的最小公倍数是 288,最大公约数是 4,乙数应该是____。

11.一个三位数,个位与百位上的数字的和与积都是 4,三个数字相乘的积还是 4,这个三位数是____。

12.一个三位数能同时被 2、5、7 整除,这样的三位数按由小到大的顺序排成一列,中间的一个是____。

13.一个分母是最小质数的真分数,如果这个分数的分子增加了 4 倍,分母加上 8 得到一个新的分数,那么这两个分数的和是____。

14.一个人步行每小时走 5 公里,如果骑自行车每 1 公里比步行少用 8 分钟,那么他骑自行车的速度是步行速度的____倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

市第届迎春杯小学数学
竞赛决赛试题

集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-
北京市第4届迎春杯小学数学竞赛决赛试题
1. 计算下面的算式,答案保留整数部分,小数部分四舍五入。
33.33332-3.1415926÷0.618≈________。

2. 大小两数之和为,大数的倍与小数的2倍之和是16,那么大数
是________。

3. 某班同学在班主任老师带领下去种树,学生恰好平均分成三组,如果
老师与学生每人种树一样多,共种了1073棵,那么平均每人种了
________棵树。

4. 下面的算式里,相同的汉字代表同一个数字,不同的汉字代表不同的
数字。如果以下三个等式成立:

迎迎×春春=杯迎迎杯,
数数×学学=数赛赛数,
春春×春春=迎迎赛赛。
那么,迎+春+杯+数+学+赛=________。
5. 把下面的正方形分割为三种面积不同的小正方形,并且小正方形的个
数是8。(只画出分割线)

6. 妈妈给小青11.1元,让他去买5斤香蕉、4斤苹果,结果他买的数量
给弄颠倒了,从而还剩下0.6元。那么苹果每斤的售价是________
元。
7. 把1988表示成28个连续偶数的和,那么其中最大的那个偶数是
________。

8. 甲、乙、丙三人的平均年龄为42岁,若将甲的岁数增加7岁,乙的
岁数扩大2倍,丙的岁数缩小2倍,则三人岁数相等。丙的年龄为
________岁。

9. 如图,已知AE=AC,CD=BC,BF=AB,那么,
=________。
10. 两个数的最大公约数是21,最小公倍数是126。这两个数的和是
________

相关文档
最新文档