10.2分式的基本性质2教案

合集下载

1.1第2课时分式的基本性质.1 第2课时 分式的基本性质(教案)

1.1第2课时分式的基本性质.1 第2课时 分式的基本性质(教案)

1.1 分式第2课时 分式的基本性质教学目标知识与技能⒈了解分式的基本性质,灵活运用分式的基本性质进行变形.⒉掌握分式约分的基本技巧,理解最简分式的概念,会将分式约分为最简分式. ⒊通过与分数的类比,掌握基本的数学思想和方法.过程与方法⒈通过对分式基本性质的探索和归纳,初步学会运用类比转化的思想方法研究数学问题. ⒉通过探究分式的基本性质及约分,积累数学活动经验.情感、态度与价值观通过研究解决问题的过程,培养学生合作交流的意识和探究精神.重点难点重点理解并掌握分式的基本性质,分式的约分.难点灵活运用分式的基本性质进行分式变形.教学过程一、导入⒈下列分数是否相等?可以进行变形的依据是什么?21,42,63 ⒉分数的基本性质是什么?需要注意的是什么?⒊类比分数的基本性质,你能猜想出分式有什么性质吗?二、新知⒈如何用语言和式子表示分式的基本性质?分式的分子和分母都乘以(或除以)同一个非零整式,所得分式与原分式相等.用式子表示为:h g h f g f ⋅⋅=,hg h f g f ÷÷=(h ≠0). ⒉应用分式的基本性质应注意什么?学生思考、讨论后总结.学生归纳出以下要点:①分子、分母应同时做乘、除法中的同一种变换;②所乘(或除以)的必须是同一个整式;③所乘(或除以)的整式应该不为零.⒊议一议下列等式是否成立?为什么?gf g f =--,g f g f -=-. 学生思考、归纳后,在小组内进行交流,最后得出规律性结论.符号法则:分式的分子、分母及分式本身的符号,如果改变其中两个,分式的值不变.三、典型例题教材第4页 例3 根据分式的基本性质填空: ⑴()aa a =--21; ⑵()xyy x =; ⑶()5352=-x x x . 对于第⑴⑵题,看分母如何变化,想分子如何变化;对于第⑶题,看分子如何变化,想分母如何变化,从而得出新的知识.四、再探新知⒈分式的约分像例3(3)这样,根据分式的性质,把一个分式的分子与分母的公因式约去(即分子与分母都除以它们的公因式),叫作分式的约分.⒉最简分式 分式xx x 352-经过约分后得到35-x ,其分子与分母没有公因式.像这样,分子与分母没有公因式的分式叫作最简分式.教材第5页 例4 约分: ⑴23424ab ab ; ⑵44222+--a a a a . 教材第6页 例5 先化简,再求值:22222yx y xy x -+-,其中5=x ,3=y .五、总结⒈分式的基本性质是什么?⒉运用分式的基本性质时的注意事项.⒊经历分式基本性质得出的过程,从中学到了什么方法?受到什么启发?⒋符号的法则.⒌分式的约分.⒍最简分式.六、作业《学法》大视野板书设计分式的基本性质⒈分式的基本性质 ⑴hg h f g f ⋅⋅=(h 为不等于0的整式) ⑵hg h f g f ÷÷=(h 为不等于0的整式) ⑶符号法则:分式的分子、分母及分式本身的符号,如果改变其中两个,分式的值不变. ⒉典型例题例3⒊分式的约分⒋最简分式例4例5教学反思本节主要学习分式的基本性质及分式约分,在教学中应把重点放在分式约分上,所以在教学过程中,采用“类比”的思想,与分数进行比较讲解,有效地节省教学时间。

分式的基本性质 优秀课教案

分式的基本性质   优秀课教案

第2课时 分式的基本性质1.理解并掌握分式的基本性质和符号法则;(难点)2.理解分式的约分、通分的意义,明确分式约分的理论依据;(重点)3.能正确、熟练地运用分式的基本性质,对分式进行约分和通分.(难点)一、情境导入中国古代的数学论著中就有对“约分”的记载,如《九章算术》中就曾记载“约分术”,并给出了详细的约分方法,这节课我们就来学习分式化简的相关知识,下面先来探索分式的基本性质.二、合作探究探究点一:分式的基本性质【类型一】 利用分式的基本性质对分式进行变形下列式子从左到右的变形一定正确的是( )A.a +3b +3=a bB.a b =ac bcC.3a 3b =a bD.a b =a 2b2 解析:A 中在分式的分子与分母上同时加上3不符合分式的基本性质,故A 错误;B 中当c =0时不成立,故B 错误;C 中分式的分子与分母同时除以3,分式的值不变,故C 正确;D 中分式的分子与分母分别乘方,不符合分式的基本性质,故D 错误;故选C.方法总结:考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.【类型二】不改变分式的值,将分式的分子、分母中各项系数化为整数不改变分式0.2x +12+0.5x的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A.2x +12+5xB.x +54+xC.2x +1020+5xD.2x +12+x解析:利用分式的基本性质,把0.2x +12+0.5x的分子、分母都乘以10得2x +1020+5x.故选C.方法总结:观察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需根据分式的基本性质让分子和分母同乘以某一个数即可.【类型三】 分式的符号法则不改变分式的值,使下列分式的分子和分母都不含“-”号.(1)-3b 2a ;(2)5y -7x 2;(3)-a -2b 2a +b . 解析:在分子的符号,分母的符号,分式本身的符号三者当中同时改变其中的两个,分式的值不变.解:(1)原式=-3b2a ;(2)原式=-5y7x 2;(3)原式=-a +2b2a +b.方法总结:这类题目容易出现的错误是把分子的符号,分母的项的符号,特别是首项的符号当成分子或分母的符号.探究点二:约分及最简分式【类型一】 判定分式是否为最简分式下列分式是最简分式的是( )A.2a 2+a abB.6xy 3aC.x 2-1x +1D.x 2+1x +1解析:A 中该分式的分子、分母含有公因式a ,则它不是最简分式.错误;B 中该分式的分子、分母含有公因数3,则它不是最简分式.错误;C 中分子为(x +1)(x -1),所以该分式的分子、分母含有公因式(x +1),则它不是最简分式.错误;D 中该分式符合最简分式的定义.正确.故选D.方法总结:最简分式的标准是分子,分母中不含公因式.判断的方法是把分子、分母分解因式,并且观察有无公因式.【类型二】 分式的约分约分:(1)-5a 5bc 325a 3bc 4;(2)x 2-2xy x 3-4x 2y +4xy 2. 解析:先找分子、分母的公因式,然后根据分式的基本性质把公因式约去.解:(1)-5a 5bc 325a 3bc 4=5a 3bc 3(-a 2)5a 3bc 3·5c =-a25c; (2)x 2-2xy x 3-4x 2y +4xy 2=x (x -2y )x (x -2y )2=1x -2y. 方法总结:约分的步骤;(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.三、板书设计1.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法则:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;若只改变其中一个符号或三个全变号,则分式的值变成原分式值的相反数.本节课的流程比较顺畅,先探究分式的基本性质,然后顺势探究分式变号法则.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.第2课时 平行四边形的判定定理3与两平行线间的距离1.复习并巩固平行四边形的判定定理1、2;2.学习并掌握平行四边形的判定定理3,能够熟练运用平行四边形的判定定理解决问题;(重点)3.根据平行四边形的性质总结出求两条平行线之间的距离的方法,能够综合平行四边形的性质和判定定理解决问题.(重点,难点)一、情境导入小明的父亲的手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?你能想出几种办法?二、合作探究 探究点一:对角线互相平分的四边形是平行四边形【类型一】 利用平行四边形的判定定理(3)判定平行四边形已知,如图,AB 、CD 相交于点O ,AC ∥DB ,AO =BO ,E 、F 分别是OC 、OD 中点.求证:(1)△AOC ≌△BOD ; (2)四边形AFBE 是平行四边形. 解析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC ≌△BOD ;(2)此题已知AO =BO ,要证四边形AFBE 是平行四边形,根据全等三角形,只需证OE =OF 就可以了.证明:(1)∵AC ∥BD ,∴∠C =∠D .在△AOC 和△BOD 中,∵⎩⎪⎨⎪⎧AO =OB ,∠AOC =∠BOD ,∠C =∠D ,∴△AOC ≌△BOD (AAS);(2)∵△AOC ≌△BOD ,∴CO =DO .∵E 、F 分别是OC 、OD 的中点,∴OF =12OD ,OE =12OC ,∴EO =FO ,又∵AO =BO ,∴四边形AFBE 是平行四边形. 方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.熟练掌握平行四边形的判定定理是解决问题的关键.【类型二】 利用平行四边形的判定定理(3)证明线段或角相等如图,在平行四边形ABCD 中,AC 交BD 于点O ,点E ,F 分别是OA ,OC的中点,请判断线段BE,DF 的位置关系和数量关系,并说明你的结论.解析:根据平行四边形的对角线互相平分得出OA =OC ,OB =OD ,利用中点的意义得出OE =OF ,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE 是平行四边形,从而得出BE =DF ,BE ∥DF .解:BE =DF ,BE ∥DF .因为四边形ABCD 是平行四边形,所以OA =OC ,OB =OD .因为E ,F 分别是OA ,OC 的中点,所以OE =OF ,所以四边形BFDE 是平行四边形,所以BE =DF ,BE ∥DF .方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.探究点二:平行线间的距离如图,已知l 1∥l 2,点E ,F 在l 1上,点G ,H 在l 2上,试说明△EGO 与△FHO 的面积相等.解析:结合平行线间的距离相等和三角形的面积公式即可证明.证明:∵l 1∥l 2,∴点E ,F 到l 2之间的距离都相等,设为h .∴S △EGH =12GH ·h ,S △FGH=12GH ·h ,∴S △EGH =S △FGH ,∴S △EGH -S △GOH =S △FGH -S △GOH ,∴S △EGO =S △FHO .方法总结:解题的关键是明确三角形的中线把三角形的面积等分成了相等的两部分,同底等高的两个三角形的面积相等.探究点三:平行四边形判定和性质的综合如图,在直角梯形ABCD 中,AD∥BC ,∠B =90°,AG ∥CD 交BC 于点G ,点E 、F 分别为AG 、CD 的中点,连接DE 、FG.(1)求证:四边形DEGF 是平行四边形; (2)如果点G 是BC 的中点,且BC =12,DC =10,求四边形AGCD 的面积.解析:(1)求出平行四边形AGCD ,推出CD =AG ,推出EG =DF ,EG ∥DF ,根据平行四边形的判定推出即可;(2)由点G 是BC 的中点,BC =12,得到BG =CG =12BC=6,根据四边形AGCD 是平行四边形可知AG =DC =10,根据勾股定理得AB =8,求出四边形AGCD 的面积为6×8=48.解:(1)∵AG ∥DC ,AD ∥BC ,∴四边形AGCD 是平行四边形,∴AG =DC .∵E 、F 分别为AG 、DC 的中点,∴GE =12AG ,DF =12DC ,即GE =DF ,GE ∥DF ,∴四边形DEGF 是平行四边形;(2)∵点G 是BC 的中点,BC =12,∴BG =CG =12=6.∵四边形AGCD 是平行四边形,DC =10,AG =DC =10,在Rt △ABG 中,根据勾股定理得AB =8,∴四边形AGCD 的面积为6×8=48.方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键.三、板书设计 1.平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;2.平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离.3.平行四边形判定和性质的综合.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流.在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.。

分式的基本性质(2)教案2

分式的基本性质(2)教案2

16.1.2 分式的基本性质教学目标1.知识与技能理解并掌握分式的基本性,了解最简分式的概念.根据分式的基本性质,•对分式进行约分化简及分式的通分运算,并能正确地找出最简公分母.2.过程与方法通过对分式基本性质的归纳,培养学生观察、类比、推理能力,•通过对分式约分,提高学生分析、解决问题的能力.3.情感、态度与价值观由分数、分式的基本性质的类比,加深对基本概念的理解,形成勤奋学习的良好习惯. 教学重点难点重点:根据分式的基本性,对分式进行约分、通分等有关计算.难点:把分式化成最简分式以及找最简公分母.课时安排2课时教与学互动设计第2课时(一)创设情境,导入新课做一做1.下列各式与x y x y-+相等的是 (C ) A .()5()5x y x y -+++ B .22x y x y-+ C .222()x y x y --(x ≠y ) D .2222x y x y -+ 2.下列各式中,变形不正确的是 (C )A .23y -=-23yB .66y y x x-=- C .3344x x y y =- D .-8833x x y y -=-- 3.分式约分的根据是 分式的基本性质 .(二)合作交流,解读探究明确 ①分式的通分和分数的通分类似②通分的依据──→分式的基本性质做一做 不改变分式的值,把213x 和512xy 化成相同分母的分式. 归纳 分式的通分,•即要求把几个异分母的分式分别化为与原来的分式相等的同分母分式.通分的关键是确定几个分式的公分母.通常取各分母所有因式的最高次幂作为公分母,叫最简公分母.最简公分母:(1)系数取最小公倍数;(2)字母取所有字母;(3)所有字母的最高次幂,特别强调,当分母是多项时,应先将各分母分解因式,再确定最简公分母.(三)应用迁移,巩固提高例1分式1a b +,222a a b -,b b a-的最简公分母为 ( ) A .(a 2-b 2)(a+b )(a-b ) B .(a 2-b 2)(a+b )C .(a 2-b 2)(b-a )D .a 2-b 2解:因为a 2-b 2=(a+b )(a-b ) b-a=-(a-b )因此最简公分母为a 2-b 2,故选D .例2(1)21a b ,21ab ;(2)1x y -,1x y +;(3)221x y -,21x xy +. 解:(1)21a b 与21ab的最简公分母为a 2b 2,所以 21a b =21b a b b =22b a b ,21ab =21a a b a =22a ab ; (2)1x y -与1x y +的最简公分母为(x-y )(x+y ),即x-y ,所以 1x y -=1()()()x y x y x y +-+=22x y x y +- ,1x y +=1()()()x y x y x y -+-=22x y x y--; (3)因为x 2-y 2=(x+y )(x-y ),x 2+xy=x (x+y ),所以221x y -与21x xy+的最简公分母为x (x+y )(x-y ),即x (x 2-y 2), 因此221x y -=22()x x x y -,21x xy +=22()x y x x y --. 例3 某人骑自行车匀速爬上一个斜坡后立即匀速下坡回到出发点,若上坡速度为v 1,下坡速度为v 2,求他上、下坡的平均速度为 ( )A .122v v + B .1212v v v v + C .1212v v v v + D .12122v v v v + 【分析】设坡长为S ,则上坡时间为1S v ,下坡时间为2S v ,故平均速度为122S S S v v +,•再运用分式的性质即可求解. 【答案】 D例4已知1x -1y=3,求分式2322x xy y x xy y +---的值. 【分析】 条件分式求值有两种途径:一种是将条件变形,求得待求式的特征;•一种是将待求式进行变形,以适应已知条件. 解法一:因为1x -1y=3,所以y-x=3xy , 从而2322x xy y x xy y +---=32()2()xy y x xy y x -----=32323xy xy xy xy ---=35xy xy --=35. 解法二:=2322x xy y x xy y +---=223112y x y x +---=1132()112()x y x y-----=32323-⨯--=35--=35. 备选例题1.(学案例4)(2005年中考·大连)若分式x y x y +-中的x 、y 的值都变为原来的3倍,则此分式的值 ( )A .不变B .是原来的3倍C .是原来的13 D .是原来的16【答案】 A(四)总结反思,拓展升华根据分式的基本性质对分式进行约分和通分,约分的关键是约去最大公约式,化成最简分式.通分的关键是确定几个分式的公分母,即最简公分母,•如果各个分母能因式分解,应先因式分解,再确定最简公分母.(五)课堂跟踪反馈一、夯实基础1.下列分式中,最简分式是 (C ) A .22427bc a B .22()b a a b ++ C .a b a b-+ D .22a b a b -- 2.分式8b a ,a b a b-+,22x y x y -+,22x y x y --中,最简分式有 (C ) A .1个 B .2个 C .3个 D .4个 3.分式2223c a b ,224a b c -,252b ac 的最简公分母是 (D ) A .12abc B .-12abc C .24a 2b 4c 2 D .12a 2b 4c 2 4.分式m m n -,m n m -,2m n m +,m n m n -+的最简公分母是 (C ) A .(m-n )2(m+n )2 B .(m-n )2(m+n )C .(m-n )(m+n )D .(m-n )(m+n )25.下列各式约分中,正确的是 (B )A .2a b a b ++=bB .a b a b --+=-1C .a b a b---=-1 D .22a b a b --=a-b 6.1x+y 可变形为 (C ) A .1y x + B .1x y + C .1xy x + D .1x x + 7.填空(1)化简322a a b a bc += a b bc+. (2)化简()()()()()()a b b c c a a c c b b a ------= -1 . (3)分式213x x -与229x -的最简公分母是 x (x+3)(x-3) . (4)已知x y =45,则x y x y +-= -9 . (5)若x+1x =3,则x 2+21x=7. 二、提升能力8.通分 (1)212a b ,234ab ,256ac ; (2)11x -,11x +,231x x -; (3)222x x x +-,2144x x x --+. 【答案】(1)最简公分母是12a 2b 2c 2,所以212a b =2221626bc a b bc =2222612bc a b c 234ab =2223343ac ab ac =2222912ac a b c ;256ac =2225262ab ac ab =22221012ab a b c; (2)因为最简公分母是(x+1)(x-1),所以11x -=1(1)(1)x x x +-+, 11x +=1(1)(1)x x x -+-;(3)最简公分母是x (x-2)2 所以222x x x +-=2(2)x x x +-=2(2)(2)(2)x x x x +--=224(2)x x x -- 2144x x x --+=21(2)x x --=2(1)(2)x x x x --=22(2)x x x x --. 9.已知:1a -1b =5,两种方法求3432a ab b a ab b ----的值. 【答案】 197 三、开放探究10.已知y 1=2x ,y 2=12y ,y 3=22y ,……,y 2 004=20032y ,求y 1·y 2 004的值. 【答案】 2。

苏科版八年级数学下_10.2分式的基本性质

苏科版八年级数学下_10.2分式的基本性质

别除以它们的公因式,叫做分式的约分.
2. 找公因式的方法
(1)当分子、分母都是单项式时,先找分子、分母系数的最
大公约数,再找相同字母的最低次幂,它们的积就是公
因式;
(2)当分子、分母都是多项式时,先把多项式分解因式,再
按(1)中的方法找公因式.
感悟新知
3. 约分的方法
知2-讲
(1)若分式的分子、分母都是单项式,就直接约去分子、分
(1) 1255xx2yy2=
(
3x 5y
);(2)a+ab22b=(a2a+22ba2b );
(3)
x23-x xy=
3
(x-y
).
知1-讲
解题秘方:观察等号两边已知的分子或分母发生了
什么样的变化,再根据分式的基本性质
用相同的变化确定所要填的式子.
感悟新知
知1-讲
解法提醒: 解决与分式的恒等变形有关的填空题时,一般从分子
常取最简公分母.
感悟新知
3. 通分的一般步骤 (1)确定最简公分母;
知3-讲
(2)用最简公分母分别除以各分母求商;
(3)用所得的商分别乘各分式的分子、分母得出同分母分式.
4. 约分与通分的关系
感悟新知
例 7 把下列各组分式通分:
(1) 6x52yz3和 4x33y2z;
(2)
x-a y,
3x-b 3y,
式,再按照分母都是单项式时求最简公分母的方法,
从系数、相同因式、不同因式三个方面去确定.
感悟新知
知2-讲
解:(1)分母 6x2yz3、4x3y2z 的的最简公分母是 12x3y2z3, 6x52yz3= 6x52·yz32·xy2xy= 1120xx3yy2z3, 4x33y2z= 4x33·y2z3·z23z2= 129xz32y2z3;

《分式的基本性质》第2课时教学设计【初中数学人教版八年级上册】

《分式的基本性质》第2课时教学设计【初中数学人教版八年级上册】

《分式的基本性质》教学设计第2课时分式的基本性质是分式运算的基础,它们是后续学习分式运算的强有力武器.分数与分式关系密切,它们是具体与抽象、特殊与一般的关系,所以在教学分式的基本性质时,要利用学生已有的分数基础,通过分数类比,并注意从具体到抽象、从特殊到一般的认识过程,引导学生理解分式的基本性质,要充分突显类比方法在教学中的统帅作用.分式的约分和通分,是进行分式四则运算中不可或缺的变形.分式的约分找出公因式是关键,约分时,一定要约去分子、分母的所有公因式;分式的通分找出最简公分母是是关键,确定最简公分母先要将各分母分解因式,然后确定公倍式.所教学分式基本性质的运用时,要引导学生观察、分析题目的特点,选择恰当的方法给分式进行变形.如不改变分式的值,使分子、分母里的系数变为整数的题,分子分母系数既有小数的,又有分数的,引导学生思考分子分母既要化整,又要最简.在约分或通分的过程中,要依据分式的性质,千万不能改变分式值的大小.1. 理解分式的基本性质;并能灵活运用这些性质进行分式的恒等变形.2. 通过分式的恒等变形的过程提高学生的运算能力.3. 通过类比、探索分数的基本性质,初步掌握类比的思想方法,积累数学活动经验. 【教学重点】理解分式的基本性质,对分式基本性质的初步运用.【教学难点】灵活运用分式的基本性质对分式进行化简、变形.多媒体课件、教具等.一、提出问题,思考引入问题1 喜羊羊和美羊羊共同去一块面积为a 的草地吃草,吃草前,二位决定平分地盘,喜羊羊说:“我要把它平分2份,我要1份.”美羊羊说:“我要把它平分4n 份,我要2n 份.”聪明的同学,你知道他们的分地方案分到的面积都是一样多的吗?追问1:按照喜羊羊的分地方案,喜羊羊分地多少?喜羊羊分地是2a . 追问2:按照美羊羊的分地方案,美羊羊分地多少?美羊羊分地是n na 42. 追问3:2a 与nna 42相等吗? 通过有趣的问题情景引出问题,激发学生的学习兴趣,为学习分式的基本性质做好铺垫.二、合作交流,探究新知问题2 请同学们思考:32与64相等吗?276与92相等吗?为什么? 32与64相等,因为32262464=÷÷=. 276与92相等,因为9232736276=÷÷=. 追问1:通过32与64,276与92之间的变形过程,你能说出这样变形的依据是什么吗? 根据分式的性质,分式的分子、分母同时除了同一个不等于零的数,分式的值不变. 追问2:分数的基本性质是什么?你能类比猜想出分式的基本性质吗?分数的基本性质:分数的分子、分母乘(或除以)同一个不等于0的数,分数的值不变. 分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.追问3:你能说出分数的基本性质与分式的基本性质的区别吗?在分数的基本性质中,“数”是一个具体的、唯一确定值.在分式的基本性质中,“整式”的值随整式中的字母的取值不同而变化.追问4:你能尝试用符号语言表示分式的基本性质吗?分式的基本性质:MB M A B A M B M A B A ÷÷=⨯⨯=;(M 是不等于零的整式) 追问5:上面的等式中,M B A ,,三个字母分别表示什么?M 的取值范围为什么不等于零?归纳:M B A ,,三个字母分别表示整式,M 是不等于零的整式.三、运用新知例1 下列等式的右边是怎样从左边得到的?(1)()022≠=c bcac b a ;(2)y x xy x 23=;(3)()01≠++=+z z xy z xz xy x . (1)解:∵c ≠0,∴bcac c b c a b a 222=⋅⋅=; 追问:为什么“c ≠0”?(2)解:∵x ≠0,∴yx x xy x x xy x 233=÷÷=; 追问:为什么题目没有给出x ≠0的条件?(3)解:∵z ≠0,∴()zxy z xz z xy z x xy x ++=⋅⋅+=+11. 例2 填空(在括号内填入适当的整式,使分式的值不变):(1)()ba ab b a 2=+;(2)()b a ab a b a +=--222. 分析:(1)从左边分式到右式,要保证分式的值不变,需根据分式的基本性质对分式的分子、分母同时乘以a . (2)先将分式的分子、分母分解因式,其中隐含0≠-b a ,要使分子变为b a +,就要分子分母同除以b a -.解:(1)∵()ba ab a a ab a b a ab b a 22+=⋅⋅+=+,∴括号内填ab a +2. (2)∵()()()a b a b a a b a b a aba b a +=--+=--222,∴括号内填a . 归纳约分定义:在例2(2)中,我们利用分式的基本性质,约去aba b a --222的分子、分母的公因式b a -,这就是约分.即:把分式分子、分母的公因式约去,这种变形叫分式的约分.追问:分式约分的依据是什么?分式约分的依据:分式的分子与分母都除以同一个不等于零的整式,分式的值不变. 归纳通分定义:在例2(1)中,我们利用分式的基本性质,将分式abb a +的分子、分母同时乘以a ,把ab b a +和b a ab a 22+化成同分母的分式,这就是通分.即: 把几个异分母的分式化成与原来的分式相等的同分母的分式,叫做分式的通分. 追问:分式通分的依据是什么?分式通分的依据:分式的分子与分母都乘以同一个不等于零的整式,分式的值不变.例3 约分:(1)c ab bc a 2321525- (2)96922++-x x x (3)y x y xy x 33612622-+- 分析:约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.解:(1)b ac b abc ac abc cab bc a 353555152522232-=⋅⋅-=-; (2)()()()33333969222+-=+-+=++-x x x x x x x x ; (3)()()()y x y x y x y x y xy x -=--=-+-236336126222. 追问:现在会解决课前提出的问题吗?(2a 与n na 42是否相等) 相等.理由如下:2242242a n n n na n na =÷÷=. 例4 通分:(1)b a 223与cab b a 2-;(2)52-x x 与53+x x . 分析:通分之前,首先要确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.解:(1)cb a bc bc b a bc b a 2222232323=⋅⋅=,()c b a ab a a c ab a b a c ab b a 2222222222-=⋅⋅-=-; (2)()()()2510255525222-+=+-+=-x x x x x x x x x ,()()()25153********--=-+-=+x x x x x x x x x . 四、巩固新知1. 约分:(1)c ab b a 2263;(2)2228mn n m ;(3)532164xyz yz x -;(4)x y y x --3)(2.答案:(1)bc a 2;(2)n m 4;(3)24zx -;(4)-2(x -y )2.2. 通分:(1)321ab 和c b a 2252 (2)xy a 2和23x b (3)223ab c 和28bca - (4)11-y 和11+y 答案:(1)321ab = c b a ac 32105,c b a 2252= c b a b 32104;(2)xy a 2= y x ax 263,23x b = y x by 262;(3)223ab c = 223812c ab c , 28bc a -= 228c ab ab ;(4)11-y =)1)(1(1+-+y y y ,11+y =)1)(1(1+--y y y .3. 不改变分式的值,使下列分式的分子和分母都不含“-”号. (1) 233ab y x --;(2) 2317b a ---;(3) 2135x a --; (4) m b a 2)(--.答案:(1) 233ab y x ;(2) 2317b a -;(3) 2135x a ; (4) m b a 2)(--. 五、归纳小结1. 分式的基本性质.(1)分式的基本性质MB M A B A M B M A B A ÷÷=⨯⨯=;(M B A ,,均为整式,且0≠M ) (2)分式的基本性质的作用:分式进行变形的依据.2. 运用基本性质需要注意的问题;3. 分式基本性质的研究方法.从分数→分式,从特殊→一般.4. 利用分式的基本性质将分式的分子、分母化成整系数形式,体现了数化繁为简的策略,并为分式作进一步处理提供了便利条件.略.。

分式的基本性质教案

分式的基本性质教案

分式的基本性质教案分式的基本性质教案分式的基本性质教案1一、教材分析1、教材的地位及作用“分式的基本性质”是人教版八年级上册第十一章第一节“分式”的重点内容之一,它是后面分式变形、通分、约分及四则运算的理论基础,掌握本节内容对于学好本章及以后学习方程、函数等问题具有关键作用。

2、教学重点、难点分析:教学重点:理解并掌握分式的基本性质教学难点:灵活运用分式的基本性质进行分式化简、变形3、教材的处理学习是学生主动构建知识的过程。

学生不是简单被动的接受信息,而是对外部信息进行主动的选择、加工和处理,从而获得知识的意义。

学习的过程是自我生成的过程,是由内向外的生长,其基础是学生原有知识与经验。

本节课中,学生原有的知识是分数的基本性质,因此我首先引导学生通过分数的基本性质,这就激活了学生原有的知识,然后引导学生通过分数的基本性质用类比的方法得出分式的基本性质。

让学生自我构建新知识。

通过例题的讲解,让学生初步理解“性质”的运用,再通过不同类型的练习,使其掌握“性质”的运用.最后引导学生对本节课进行小结,使学生的知识结构更合理、更完善。

二、目标分析:数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。

教学的目的就是应从实际出发,创设有助于学生自主学习的问题情境,引导学生通过思考、探索、交流获得知识,形成技能,发展思维,学会学习,使学生生动活泼地、主动地、富有个性的学习,促进学生全面、持续、和谐地发展。

为此,我从知识技能、数学思考解决问题、情感态度四个方面确定了教学目标:1、知识技能:1)了解分式的基本性质2)能灵活运用分式的`基本性质进行分式变形2、数学思考:通过类比分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。

3、解决问题:通过探索分数的基本性质,积累数学活动的经验。

4、情感态度:通过研究解决问题的过程,培养学生合作交流意识与探索精神。

三、教法分析1、教学方法数学是一门培养人的思维,发展人的思维的重要学科。

分式基本性质教案

分式基本性质教案

分式基本性质教案教案标题:分式基本性质教案教案目标:1. 理解和掌握分式的基本概念和表示方法。

2. 了解分式的基本性质,包括分式的约分、通分和运算法则。

3. 能够灵活运用分式的基本性质解决实际问题。

教案步骤:1. 导入新知识(5分钟)- 引导学生回顾分数的定义、简单运算和小数与分数之间的转换关系。

- 提问:你们还记得分数的基本性质吗?分数可以进行哪些运算操作?2. 提出学习目标(5分钟)- 向学生介绍本节课的学习目标,并强调学习分式基本性质的重要性。

- 说明学习本节课的知识对于解决实际问题和在日常生活中的应用的意义。

3. 分式的约分和通分(15分钟)- 通过示例演示如何约分和通分,并分类介绍两种运算的定义和步骤。

- 给学生提供一些练习题,让他们运用所学知识进行实践。

4. 分式的加减运算(15分钟)- 介绍分式的加减运算法则,强调在运算过程中需要通分。

- 利用具体例子和练习题让学生理解和掌握分式的加减运算方法。

5. 分式的乘法运算(10分钟)- 讲解分式的乘法运算法则,强调分子与分母的乘法规律。

- 通过示例演示分式的乘法运算步骤,并让学生进行练习。

6. 分式的除法运算(10分钟)- 介绍分式的除法运算法则,强调除法转化为乘法的原理。

- 通过具体例题和练习题帮助学生熟悉分式的除法运算方法。

7. 实际问题应用(10分钟)- 给学生提供一些实际问题,让他们运用所学分式的基本性质进行解决。

- 引导学生思考如何将实际问题转化为分式形式,并找到解决问题的方法。

8. 总结和作业布置(5分钟)- 对本节课所学知识进行总结,并与学生一起回顾和强化要点。

- 布置课后作业,让学生练习巩固所学的分式基本性质。

教学辅助工具:1. 教学课件或黑板2. 分式操练题3. 实际问题应用题目4. 学生作业本教学评估:1. 教师通过课堂观察评估学生对分式的基本性质的理解和掌握程度。

2. 对学生完成的练习题和实际问题的解答进行评分和批改。

八年级数学下册《分式的基本性质》教案、教学设计

八年级数学下册《分式的基本性质》教案、教学设计
2.作业难度分层,以满足不同学生的学习需求;
3.鼓励学生在完成作业过程中,积极思考、提问,培养自主学习能力;
4.教师应及时批改作业,给予反馈,帮助学生发现问题、改进学习方法。
(3)教师进行解答,并对本节课的重点知识进行强调。
(4)布置课后作业,要求学生课后巩固所学知识,为下一节课的学习打下基础。
五、作业布置
为了巩固学生对分式基本性质的理解与应用,以及提高学生的实际操作能力,特布置以下作业:
1.请学生完成课本后的练习题,包括:
-约分和通分的练习题,以巩固对分式简化方法的理解;
3.分式在实际问题中的应用:将分式知识应用于实际问题,是学生需要掌握的一项重要技能。
教学设想:选取与学生生活密切相关的实际问题,引导学生运用分式知识进行分析、解决。通过实际操作,培养学生的应用能力和解决实际问题的能力。
(二)教学设想
1.采用启发式教学,引导学生主动探究:在教学过程中,教师应充分运用提问、讨论等方式,激发学生的思维,引导学生主动探究分式的性质和运用。
2.学生在运算能力上的差异:约分、通分等运算对学生来说可能存在一定难度,教师应针对不同学生的运算能力,进行有针对性的指导,提高学生的运算技巧。
3.学生在解决问题上的策略选择:学生在解决分式相关问题时,可能不知道如何运用分式的基本性质。教师应引导学生掌握解决问题的策略,培养学生灵活运用知识的能力。
4.学生学习兴趣的激发:教师要通过生动有趣的教学方式,激发学生对分式学习的兴趣,提高学生的学习积极性。
二、学情分析
八年级的学生已经具备了一定的数学基础,对分数的概念和性质有了一定的了解。在此基础上,学习分式的基本性质,对学生来说是知识的拓展和深化。然而,由于分式的抽象性和复杂性,学生在理解和应用上可能会遇到困难。因此,在教学过程中,教师需关注以下几点:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学过程 预设问题:
1. 分式的分子、分母是多项式时,怎样约分?
2. 约分的步骤是什么?
3. 应用分式性质进行约分时要注意什么?
教学过程设计
(一) 创设情境,导入新课(自探、合探)
1.分式的基本性质用字母表示为:__________________________________________.
2.因式分解:m 2 –m= , x 2-9= , a 2-2a-3=
3. 不改变分式的值,将下列分式中分子和分母的各项系数都化为整数:
(1)y x y x 2.0203.01.0-+ = (2)n
m n m 5.03.035.1--= 4.
21?11x x x -=+-,111?2+-=-x x x 则?处应填上_______ _ _ 5.根据分式的性质进行约分,把下列分式化为最简分式:
a
a 1282=_____;c a
b b
c a 23245125=_______,()()b a b a ++13262=__________, (二)自探、合探
例1:将下列分式进行约分(提示:怎样找到分子分母的公因式呢?可参考书上7页例2)
(1)()22y x xy
x ++ (2)2232m m m m -+- (3)22699
x x x ++-
(三)学生展示、评价
(2)、(3)两组派学生展示,两组评价。

(四)、教师精讲
通过上面的例题,总结分子分母是多项式时,进行约分的步骤;
1. 先将能分解的分子分母分解因式
2. 找到分子分母的公因式,利用分式的性质进行约分。

3. 检查分式是否是最简分式
注意:当分子、分母中的各项是相乘关系时才能进行约分。

(五)巩固练习:
1、下列分式哪些是可以约分的?对可以约分的分式尝试写出约分的结果。

A 、m m --44
B 、4
4---m m C 、2)2(2m m m -- D 、n m n m +-22 E 、n m n m ++22 F 、21-+x x 2、下列约分正确的是( ) A 1x y x y
-+=-- B 022=--y x y x C b a b x a x =++ D 33=+m m 3、约分:(1)22248ab
b a ; (2)()()a ab a b a --1241822; (3)12122+--x x x (六)检测:1、化简分式2b
ab b +的结果是: ( ) A 、
b a +1 B 、b a 11+ C 、2
1b a + D 、b ab +1 2、下列分式中是最简分式是( ) A 2222n m n m +- B 9322-+m m m C 32
2)
(y x y x +- D 222)(n m n m -- 3、当m=________时,
()()4
322--+m m m 的值为0. 5、化简求值: (1)22
2448x y x xy --其中4
1,21==y x 。

(2)96922+--a a a 其中5=a
(七)小结(1)知识 ;(2)注意:
(八)作业 :书上8页基础2,提升1、2
(九)课后反思:
10.2 分式的性质(第二课时)学案
(一)创设情境,导入新课(自探、合探)
1.分式的基本性质用字母表示为:__________________________________________.
2.因式分解:m 2 –m= , x 2-9= , a 2-2a-3=
3. 不改变分式的值,将下列分式中分子和分母的各项系数都化为整数:
(1)y x y x 2.0203.01.0-+ = (2)n
m n m 5.03.035.1--= 4.
21?11x x x -=+-,111?2+-=-x x x 则?处应填上_______ _ _ 5.根据分式的性质进行约分,把下列分式化为最简分式: a
a 1282=_____;c a
b b
c a 23245125=_______,()()b a b a ++13262=__________,
(二)自探、合探
例1:将下列分式进行约分(提示:怎样找到分子分母的公因式呢?可参考书上7页例2)
(1)
()22y x xy x ++ (2)2232m m m m -+- (3)22699
x x x ++-
(五)巩固练习: 1、下列分式哪些是可以约分的?对可以约分的分式尝试写出约分的结果。

A 、m m --44
B 、4
4---m m C 、2)2(2m m m -- D 、n m n m +-22 E 、n m n m ++22 F 、21-+x x 2、下列约分正确的是( ) A 1x y x y
-+=-- B 022=--y x y x C b a b x a x =++ D 33=+m m 3、约分:(1)22248ab
b a ; (2)()()a ab a b a --1241822; (3)12122+--x x x
(六)检测:
1、化简分式
2b ab b +的结果是: ( ) A 、b a +1 B 、b a 11+ C 、21b
a + D 、
b ab +1 2、下列分式中是最简分式是( ) A 2222n m n m +- B 9322-+m m m C 3
2
2)(y x y x +- D 222)(n m n m -- 3、当m=________时,()()
4322--+m m m 的值为0.
5、化简求值:
(1)2
2
2448x y x xy --其中41
,21==y x 。

(2)96922+--a a a 其中5=a。

相关文档
最新文档