有限元试卷11级 期末考试试卷
有限元基础(期末考试题)

《有限元基础》期末测试一、结构线性静力分析如图所示的托架,其顶面承受2lbf in的均匀分布载荷。
托架通过有孔的表面50/ν=,托架尺固定在墙上,托架是钢制的,弹性模量6=⨯,泊松比0.3E psi2910寸如图,单位为英寸。
试通过ANSYS求其变形图及von Mises应力分布图。
对题目分析。
进行建模,网格划分托架网格图施加约束后,就可以对实体进行加载求解,托架变形图托架变形图输出的是原型托架和施加载荷后托架变形图的对比,虚线部分即为托架的原型,托架变形图可看出,由于载荷的作用,托架上面板明显变形了,变形最严重的就是红色部分,这是因为其离托板就远,没有任何物体与其分担载荷,故其较容易变形甚至折断。
这是我们在应用托架的时候应当注意的。
节点位移图托架von Mises 应力分布图上面两个图为托架的应力分布图,由图可看出主要在两孔处出现应力集中,也就是说这些地方所受的应力的最大的,比较容易出现裂痕。
我们在应用托架的时候,应当注意采取一些设施,以便减缓其应力集中。
特别是在施加载荷时,绝对不能够超过托架所能承受的极限,否则必将导致事故的发生。
二、动力分析如图1有一梁板结构,板的四角由四根梁固定支撑,板质量集中于中央。
梁板材料相关参数为弹性模量112210/E Nm =⨯,泊松比0.3ν=,密度337.810/kg m ρ=⨯。
板的厚度0.02t =,板长2000L mm =,宽1000B mm =,板的质量100M kg =。
梁长1000h mm =,截面面积为42210A m -=⨯,惯性矩为84210J m -=⨯,现在板的表面施加均匀压力载荷如图2。
试研究该梁板结构的瞬态动力响应。
图1图2建立有限元分析模型并附加动力节点146的位移时间历程结果三、非线性屈曲分析如图,一根长200L in =,截面高度0.5h in =,截面面积20.25A in =,惯性矩24/120.0052083J Ah in ==的细长杆受轴向载荷的作用,若沿X 方向取10个主自由度,求其屈曲模态。
有限元考试试题及答案——第一组

有限元考试试题及答案一、简答题(5道,共计25分)。
1.有限单元位移法求解弹性力学问题的基本步骤有哪些?(5分)答:(1)选择适当的单元类型将弹性体离散化;(2)建立单元体的位移插值函数;(3)推导单元刚度矩阵;(4)将单元刚度矩阵组装成整体刚度矩阵;(5)代入边界条件和求解.2. 在划分网格数相同的情况下,为什么八节点四边形等参数单元精度大于四边形矩形单元?(5分)答:在对于曲线边界的边界单元,其边界为曲边,八节点四边形等参数单元边上三个节点所确定的抛物线来代替原来的曲线,显然拟合效果比四边形矩形单元的直边好。
3。
轴对称单元与平面单元有哪些区别?(5分)答:轴对称单元是三角形或四边形截面的空间的环形单元,平面单元是三角形或四边形平面单元;轴对称单元内任意一点有四个应变分量,平面单元内任意一点非零独立应变分量有三个.4。
有限元空间问题有哪些特征?(5分)答:(1)单元为块体形状。
常用单元:四面体单元、长方体单元、直边六面体单元、曲边六面体单元、轴对称单元。
(2)结点位移3个分量。
(3)基本方程比平面问题多。
3个平衡方程,6个几何方程,6个物理方程。
5.简述四节点四边形等参数单元的平面问题分析过程。
(5)分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。
二、论述题(3道,共计30分)。
1. 简述四节点四边形等参数单元的平面问题分析过程.(10分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。
《弹性力学及有限单元法》期末考试试卷

《弹性力学及有限元基础》期末考试班级: 姓名: 学号:一.填空题(37分)1(9分). 杆件在竖向体力分量f (常量)的作用下,其应力分量为:x C x 1=σ;32C y C y +=σ;0=xy τ。
支承条件如图所示,C 1 =______ ;C 2=______; C 3=______。
2(12分). 一无限长双箱管道,深埋在地下,如图2所示,两箱中输送的气体压强均为σ0,设中间隔板AB (图中阴影所示)的位移分量为:u = Cx , v = 0,隔板材料模量为E 和μ。
计算隔板上各点的应力分量:σx = _______, σy ,= ______, σz =______。
3(9分). 圆环的内半径为r ,外半径为R ,受内压力q 1及外压力q 2的作用。
若内表面的环向应力为0,则内外压力的关系是:_________________。
4(10分).等截面实心直杆受扭矩的作用,假设应力函数为:()()222222y bx a by x a k -++-=Φ,扭矩引起的单位长度扭转角测得为θ,材料的剪切弹性模量为G ,a 、b 均为常数,则k = _____ 二.分析题5.(20分)一宽度为b 的单向薄板,两长边简支,横向荷载为⎪⎭⎫⎝⎛=b y p p πsin 0,计算板的挠度方程。
(设材料的弹性模量为E ,泊松比为μ,薄板的弯曲刚度为D )6.(20分)如图,一长度为l 的简支梁,在距右端为c 的位置作用一集中荷载P ,请用里兹法计算梁的挠度曲线。
(设挠度曲线为)(x l ax w -=,a 为代求系数)7.(23分)1cm 厚的三角形悬臂梁,长4m ,高2m 。
其三个顶点i , j , k 及内部点m 的面积坐标如图所示。
在面积坐标(1/8,1/2,3/8)处和j 节点处受到10kN 的集中力的作用,在jk 边受到垂直于斜边的线性分布力的作用。
用一个4节点的三角形单元对此题1图 题2图 x 题5图悬臂梁进行有限元分析,域内任一点的位移都表示成⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+++=+++=m m k k j j i i m m k k j j i i v N v N v N v N v u N u N u N u N u 。
(完整版)有限元考试试题及答案

e an dAl l t h i ng si nt he i rb ei n ga re go o2. 如图2所示,有一正方形薄板,沿对角承受压力作用,厚度t=1m ,载荷F=20KN/m ,设泊松比µ=0,材料的弹性模量为E ,试求它的应力分布。
(15分)图23. 图示结点三角形单元的124边作用有均布侧压力q ,单元厚度为t ,求单元的等效结点荷载。
图3图1一、简答题1. 答:1)合理安排单元网格的疏密分布2)为突出重要部位的单元二次划分3)划分单元的个数4)单元形状的合理性5)不同材料界面处及荷载突变点、支承点的单元划分6)曲线边界的处理,应尽可能减小几何误差7)充分利用结构及载荷的对称性,以减少计算量2. 答:形函数应满足的三个条件:a.必须能反映单元的刚体位移,就是位移模式应反映与本单元形变无关的由其它单元形变所引起的位移。
b.能反映单元的常量应变,所谓常量应变,就是与坐标位置无关,单元内所有点都具有相同的应变。
当单元尺寸取小时,则单元中各点的应变趋于相等,也就是单元的形变趋于均匀,因而常量应变就成为应变的主要部分。
c.尽可能反映位移连续性;尽可能反映单元之间位移的连续性,即相邻单元位移协调。
3. 答:含义:所谓的等参数单元,就是在确定单元形状的插值函数和确定单元位移场的插值函数中采用了完全相同的形函数。
意义:构造出一些曲边地高精度单元,以便在给定地精度下,用数目较少地单元,解决工程实际地具体问题。
4. 答:有限单元法是基于变分原理的里兹(Ritz)法的另一种形式,从而使里兹法分析的所有理论基础都适用子有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法.利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,面且事先不要求满足任何边界条件,因此它可以用来处理很复杂的连续介质问题。
有nl⎥⎦⎤⎢⎣⎡5.0025.025.011212---==E k k ⎥⎦⎤⎢⎣⎡5.0025.0011313-==E k k ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡5.125.025.05.125.0005.05.00025.075.025.025.075.032222212222E E E E k k k k +=++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---5.025.025.0125.025.005.025.0025.05.032312323E E E k k k =+=⎥⎦⎤⎢⎣⎡---5.0025.025.022424E k k ==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡025.025.00025.0000025.0032522525E E E k k k =+=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.15.00025.075.025.025.075.025.0005.043333313333E E E E k k k k =++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---125.025.05.05.0025.025.05.025.0025.043533535E E E k k k =+=⎥⎦⎤⎢⎣⎡0025.0043636E k k ==⎥⎦⎤⎢⎣⎡75.025.025.075.024444E k k ==⎥⎦⎤⎢⎣⎡---25.0025.05.024545E k k == ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.175.025.025.075.05.00025.025.0005.045535525555E E E E k k k k =++=⎥⎦⎤⎢⎣⎡---25.0025.05.045656E k k ==⎥⎦⎤⎢⎣⎡25.0005.046666E k k ==把上面计算出的,…,对号入座放到总刚矩阵中去,于是得到11k 66k []K的具体表达式。
有限元期末考试题及答案

有限元期末考试题及答案一、选择题1. 有限元方法是一种数值分析方法,主要用于求解什么类型的数学问题?A. 线性代数方程B. 微分方程C. 积分方程D. 代数方程答案:B2. 在有限元分析中,单元的划分是基于什么原则?A. 单元数量B. 单元形状C. 问题域的几何特性D. 计算资源答案:C3. 下列哪项不是有限元分析中常用的单元类型?A. 三角形单元B. 四边形单元C. 六面体单元D. 圆形单元答案:D二、填空题4. 有限元方法中,______是指将连续的物理域离散成有限数量的小区域,这些小区域称为单元。
答案:离散化5. 在进行有限元分析时,通常需要定义材料属性,包括______、密度和弹性模量等。
答案:泊松比三、简答题6. 简述有限元方法的基本步骤。
答案:有限元方法的基本步骤包括:定义问题域、离散化问题域、选择单元类型、定义材料属性、构建全局刚度矩阵、施加边界条件、求解线性代数方程、提取结果。
7. 解释什么是有限元分析中的收敛性,并说明影响收敛性的因素。
答案:收敛性是指随着单元数量的增加,有限元分析结果逐渐接近真实解的性质。
影响收敛性的因素包括单元的类型、形状、大小以及网格的布局等。
四、计算题8. 假设有一个长度为2米的杆,两端固定,中间施加了一个向下的力F=1000N。
如果杆的材料是钢,其弹性模量E=210 GPa,泊松比ν=0.3,请计算杆的弯曲位移。
答案:首先,根据Euler-Bernoulli梁理论,可以写出弯曲位移的方程为:\[ w(x) = \frac{F}{384EI} L^3 \]其中,\( w(x) \) 是位移,\( F \) 是施加的力,\( L \) 是杆的长度,\( E \) 是弹性模量,\( I \) 是截面惯性矩。
对于一个矩形截面,\( I \) 可以表示为:\[ I = \frac{bh^3}{12} \]假设杆的截面宽度为b,高度为h,代入上述公式,可以计算出位移。
(完整word版)有限元考试试题及答案

江西理工大学研究生考试试卷一、 简答题(共40分,每题10分)1. 论述单元划分应遵循的原则。
2. 说明形函数应满足的条件。
3. 说明四边形等参数单元中“等参数”的含义,即为什么要引入等参数单元。
4. 阐述边界元法的主要优缺点。
二、 计算题(共60分,每题20分)1. 一杆件如图3所示,杆件上方固定后,在下方受垂直向下的集中力作用,已知:杆件材料的杨氏模量2721/100.3in lbf E E ⨯==,截面积2125.5in A =,2275.3in A =,长度in L L 1221==,集中力lbf P 100=,用有限元方法求解B 点和C 点位移。
备注:(1)1 lbf (磅力,libra force ) = 4.45 N 。
(2)杨氏模量、弹性模量、Young 氏弹性模量具有相同含义(10分)20__12__—20__13__ 学年 第___一___学期 课程名称:_____有限元及数值模拟________ 考试时间:___2012___ 年__11__月___3___日考试性质(正考、补考或其它):[ 正考 ] 考试方式(开卷、闭卷):[ 开卷 ] 试卷类别(A 、B):[ A ] 共 九 大题温 馨 提 示请考生自觉遵守考试纪律,争做文明诚信的大学生。
如有违犯考试纪律,将严格按照《江西理工大学学生违纪处分规定》(试行)处理。
学院 专业 学号 姓名 题号 一二三四五六七八九十十一十二总 分得分pyA1A2L1L2图12. 如图2所示,有一正方形薄板,沿对角承受压力作用,厚度t=1m,载荷F=20KN/m,设泊松比µ=0,材料的弹性模量为E,试求它的应力分布。
(15分)图23. 图示结点三角形单元的124边作用有均布侧压力q,单元厚度为t,求单元的等效结点荷载。
图3一、简答题1. 答:1)合理安排单元网格的疏密分布2)为突出重要部位的单元二次划分3)划分单元的个数4)单元形状的合理性5)不同材料界面处及荷载突变点、支承点的单元划分6)曲线边界的处理,应尽可能减小几何误差7)充分利用结构及载荷的对称性,以减少计算量2. 答:形函数应满足的三个条件:a.必须能反映单元的刚体位移,就是位移模式应反映与本单元形变无关的由其它单元形变所引起的位移。
《有限元》期末考题

一、填空(共10个空,每空2分,共20分)11、有限元法是近似求解连续场问题的数值方法。
2、有限元法将连续的求解域离散,得到有限个单元,单元和单元之间用节点相连。
3、直梁在外力作用下,横截面上的内力有剪力和弯矩两个。
4、平面刚架结构在外力作用下,横截面上的内力有剪力、弯矩和轴力。
5、进行直梁的有限元分析,梁单元上每个节点的节点位移为挠度和转角。
、平面刚架结构中,已知单元e的坐标变换矩阵[T e]及局部坐标系x´O´y ´下的单元刚度矩阵[K´]e,则单元在整体坐标系xOy下的单元刚度矩阵为 P31 。
7、平面刚架结构中,已知单元e的坐标变换矩阵[T e]及整体坐标系xOy下的单元节点力矩阵{p}e,则单元在局部坐标系x´O´y´下的单元节点力矩阵为 P30 。
8、在弹性范围和小变形的前提下,节点力和节点位移之间是线性系。
9、弹性力学问题的方程个数有 15个,未知量个数有 15 个。
10、弹性力学平面问题的方程个数有个,未知量个数有个。
11、把经过物体内任意一点各个截面的应力状况叫做一点的应力状态。
12、形函数在单元节点上的值,具有本点为 1 、它点为零的性质,并且在三角形单元的任一节点上,三个形函数之和为 1 。
13、形函数是定义于元内部坐标连续函数。
14、在进行节点编号时,要尽量使同一单元的相邻节点的号码差尽可能小,以便最大限度地缩小刚度矩阵带宽,节省存储、提高计算效率。
15、三角形单元的位移模式为。
16、矩形单元的位移模式为。
17、在选择多项式位移模式的阶次时,要求所选的位移模式应该与局部坐标系的方位无关,这一性质称为几何各向同性。
18、单元刚度矩阵描述了节点力和节点位移之间的关系。
19、在选择多项式作为单元的位移模式时,多项式阶次的确定,要考虑解答的收敛性,即要满足单元的完备性和协调性的要求。
20、三节点三角形单元内的应力和应变是常数,四节点矩形单元内的应力和应变是线性变化的。
有限元期末考试试题

有限元期末考试试题有限元期末考试试题有限元分析是一种数值计算方法,广泛应用于工程领域中的结构分析、热传导、流体力学等问题。
作为有限元分析的基础,期末考试试题将涵盖有限元的基本原理、方法和应用。
本文将以期末考试试题为主线,深入探讨有限元分析的相关知识。
一、选择题1. 有限元分析的基本思想是什么?A. 将连续体划分为有限个单元B. 将连续体划分为无限个单元C. 将连续体划分为两个单元D. 将连续体划分为三个单元2. 有限元分析中,单元是指什么?A. 物理实体B. 离散区域C. 数学模型D. 计算节点3. 有限元分析的目的是什么?A. 求解连续体的精确解B. 求解连续体的近似解C. 求解连续体的数值解D. 求解连续体的解析解二、填空题1. 有限元分析中,单元的划分应满足什么条件?单元的划分应满足连续性和完整性的条件。
2. 有限元分析中,刚度矩阵的维度是多少?刚度矩阵的维度与单元自由度的个数相关。
三、简答题1. 有限元分析的步骤是什么?有限元分析的步骤包括建立有限元模型、确定边界条件、求解方程、后处理结果。
2. 有限元分析中,如何选择适当的单元类型?选择适当的单元类型需要考虑问题的特点、几何形状和边界条件等因素。
四、计算题1. 对于一个矩形截面的梁,长度为L,宽度为b,高度为h,杨氏模量为E,应力为σ,根据弹性力学理论,梁的弯曲刚度EI与梁的几何尺寸和材料性质有关。
请推导出梁的弯曲刚度的表达式。
解:根据弹性力学理论,梁的弯曲刚度EI与梁的几何尺寸和材料性质有关。
对于矩形截面的梁,弯曲刚度的表达式为:EI = (E * b * h^3) / 12其中,E为杨氏模量,b为梁的宽度,h为梁的高度。
通过以上计算题,我们可以看出有限元分析的应用范围广泛,可以用于解决各种工程问题。
通过对试题的分析和解答,我们对有限元分析的基本原理、方法和应用有了更深入的了解。
总结:本文以有限元期末考试试题为主线,辅以相关知识的解析和讨论,深入探讨了有限元分析的基本原理、方法和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何方程物理方程平衡方程
6、试述ANSYS结构分析的基本流程。(9分)
答:主要包括前处理;求解和一般后处理三个步骤:
1、前处理
1)定义单元分析类型;2)定义实常数;3)定义材料属性;4)创建实体几何模型;5)划分网格;(5分)
2、求解
《有限元法基础》课程试题参考答案及评分标准(中文试卷)
(B卷)
适用专业年级:机设、机工11级考试时间: 100分钟
命题人:李睿
一、填空题(每空2分,共20分)
1、节点2、剪力弯矩3、{p’}e=[Te]{p}e
4、节点力节点位移5、完备性协调性6、呈带状7、
二、选择题(每空2分,共20分)
1
2
3
4
5
4、平面问题中划分单元的数目是否越多越好?(8分)
答:否,划分单元的数目,视要求的计算精度和计算机的性能而定(2分)。随着单元数目的增多,有限元解逐步逼近于真实解(2分)。但是,单元数目增加,则求解的有限元线性方程组的数目增多,需要占用更多的计算机内存资源,求解时间增长(2分)。所以,在计算机上进行有限元分析时,还要考虑计算机的性能。单元数过多不经济(2分)。
6
7
8
9
10
C
B
D
D
D
BCBiblioteka BCC三、问答题(共7题,共60分)
1、试述求整体刚度矩阵的两种方法。(8分)
答:1)通过建立节点平衡方程式得到整体刚度矩阵,即对整个结构的每个节点进行受力分析,并列节点平衡方程式,得到整个结构的有限元基本方程,从而得到整体刚度矩阵(4分); 2)通过叠加法得到整体刚度矩阵,即将单元刚度矩阵直接叠加形成整体刚度矩阵(4分)。
2、试述节点力和节点载荷的区别。(8分)
答:节点力是单元和节点之间的作用力,如果取整个结构为研究对象,节点力是内力(4分);而节点载荷是结构在节点上所受到的外载荷或等效移置到节点上的外载荷(4分)。
3、平面应力问题和平面应变问题的区别是什么,试各举出一个典型平面应力和平面应变问题的实例。(8分)
答:两者的区别是:平面应力问题长、宽尺寸远大于厚度,z方向应力为0,比如起重机吊钩受力时(4分);平面应变问题长远大于宽、厚,z方向应变为0,比如水坝受力(4分)。
1)定义分析类型;2)施加载荷和位移约束条件; 3)求解。(3分)
3、一般后处理
主要查看分析结果(1分)
7、试用分块矩阵形式写出右图所示平面结构的整体刚度矩阵。(11分)
(11分)