位置度公差
位置度公差的计算

位置度公差的计算
计算公式适用于采用螺栓连接和螺钉连接(或其它类似情况)的孔的位置公差,其孔的分布可以呈任何形式。
1,活动紧固件连接(螺栓连接)的计算公式
(1)用螺栓连接2个或2个以上的零件,且被连接件均为光孔,其孔径大于螺栓直径:
计算公式:t≤K*S
S=Dmin-dmax
K的推荐值:不需调整的连接K=1
需调整的连接K=0.8或K=0.6
注:t---位置度公差值(公差带的直径或宽度)S---孔与紧固件轴之间的间隙Dmin---最小孔径dmax---最大轴径K---间隙利用系数
(2) 考虑结构、加工等因素,被连接件采用不相等的位置度公差ta、tb时,则:ta+tb≤2t 注:若连接三个或更多零件而采用不相等的位置度公差时,则任意2个零件的位置度公差组合必须满足:ta+tb≤2t
2,固定紧固件连接的计算公式
(1)螺钉连接的零件中有一个是螺孔(或其它不带间隙的过盈配合孔),其它均为光孔,其孔径大于螺钉直径,
则:t≤0.5*K*S
S=Dmin-dmax
K的推荐值:不需调整的连接K=1
需调整的连接K=0.8或K=0.6
(2) 考虑结构、加工等因素,被连接件采用不相等的位置度公差ta、tb时,则螺孔(或过盈配合孔)与任一零件的位置度公差的组合必须满足:ta+tb≤2t
3,按上述公式计算确定的位置度公差,经圆整后按标准公差值选取。
4,采用螺钉连接时,如螺孔(或过盈配合孔)的垂直度误差影响较大,则上述公式不能保证自由的装配,为保证自由的装配的要求,则螺孔(或过盈配合孔)的位置度公差可采用延伸公差带。
位置度公差及其计算方法

一、位置度公差注法的原理
• 在几何精度设计中,确定中心距是一个重要的方 面。
• • • • 坐标尺寸注法存在着以下缺点: 1.加工时产生累积误差; 2.用两点法测量各个中心距不能保证坐标方向。 位置度公差注法建立在由理论正确尺寸和几何图框给出的 理想位置上。见图6-1到6-5。
二、位置度公差的标注
五、采用延伸公差带的位置度公差
• 1. 问题的提出(图6-16、6-17) • 对于通孔连接方式,都能保证装配互换; • 对于螺孔连接方式,螺钉与通孔的装配会发生干涉,因此, 不能保证装配互换。
五、采用延伸公差带的位置度公差
• 2. 延伸公差带的概念 • 针对图6-17所示的干涉情况,可以用以下四种方法解决装 配互换问题。 • 1)另加垂直度公差要求(图6-18) • 会增加生产成本,不是一种理想的方法。 • 2)增大通孔的直径尺寸(图6-19) • 这种方法在一定条件下可行(比值l1/l2较小)可行,但比 值较大时不一定适用。
五、采用延伸公差带的位置度公差
• 3)缩小螺孔的位置度公差 • 缩小螺孔的位置度公差对制造不利,不宜采用。 • 4)采用延伸公差带 • 把螺孔位置度公差带从螺孔本身长度范围内移到螺钉杆部 与通孔发生干涉的部位,即移到包含着通孔全长范围内的 螺孔轴线延伸部分,这就是所谓的延伸公差带。图6-20。
五、采用延伸公差带的位置度公差
• 一般情况,各零件上通孔直径的基本尺寸和极限偏差都相同,其轴 线的位置度公差值也相同,且采用最大实体要求,通孔的形状误差 由最大实体实效边界控制。
三、位置度公差的计算
• (2)螺孔连接方式的位置度公差计算(图6-15) • 一般情况下,螺孔(包括过盈配合销钉孔)和通孔的位置 度公差值相同,而通孔的位置度公差采用最大实体要求, 螺孔的位置度公差不采用最大实体要求,而采用独立原则。 t=(DM-dM)/2=0.5Xmin • 上式中,紧固件采用包容要求
位置度公差的概念

位置度公差的概念
位置度公差(Positional tolerance)是在工程制图中用来描述零件的尺寸和位置等要求的一种公差标注方式。
它用于确定一个特定的几何元素(如点、线、面等)的理论位置与实际位置之间的偏差范围。
位置度公差包括两个部分:公差值和公差带。
公差值表示允许的实际位置与理论位置之间的最大偏差值,公差带表示公差值两侧的偏差范围,即实际位置可以在公差带内任意位置。
位置度公差常用于描述工件的几何要求,如平行度、垂直度、同轴度、对称度等。
例如,如果一个零件上标注了一个位置度公差为±0.1mm的平行度要求,表示这个零件上的平行线之间
的最大偏差不得超过0.1mm。
位置度公差的概念主要用于确保零件组装和功能的正确性,减少零件之间的相互影响和误差,提高产品的质量和性能。
在制造过程中,位置度公差常常与其他公差标注方式(如尺寸公差、形位公差等)结合使用,形成完整的公差控制系统,以确保工件的相互配合和组装符合设计要求。
位置度公差及其计算

二、位置度公差的标注
• (2)圆周布置孔组。 • ①基准孔尺寸公差与被测孔位置度公差的关系采用最大实 体要求:图6-10。 • ②不规定孔组在零件上的确定位置:图6-11、6-12。
• 图6-11所示的爪形扳手上的四销组内四个销只要求能够分别插入螺纹 堵盖上的四孔组内四个孔中,可以施力,但不要求它们的端面贴合。 因此,不要求四个销的轴线垂直于扳手端面,也不要求四个销的几何 图框的轴线与扳手外圆柱面或内孔的轴线同轴线。 • 图6-12所示的滤油网盖上四孔组内四个孔的轴线应垂直于基准端面A, 因为装配时该端面与箱体上相应的端面贴合。但不要求四个孔的几何 图框的轴线与滤油网盖外圆柱面或内孔的轴线重合。
五、采用延伸公差带的位置度公差
• 1. 问题的提出(图6-16、6-17) • 对于通孔连接方式,都能保证装配互换; • 对于螺孔连接方式,螺钉与通孔的装配会发生干涉,因此, 不能保证装配互换。
五、采用延伸公差带的位置度公差
• 2. 延伸公差带的概念 • 针对图6-17所示的干涉情况,可以用以下四种方法解决装 配互换问题。 • 1)另加垂直度公差要求(图6-18) • 会增加生产成本,不是一种理想的方法。 • 2)增大通孔的直径尺寸(图6-19) • 这种方法在一定条件下可行(比值l1/l2较小)可行,但比 值较大时不一定适用。
六、位置度公差的一些应用
• 1.点的位置度公差(6-26)
六、位置度公差的一些应用
• 2.面的位置度公差(6-27)
六、位置度公差的一些应用
• 3.非圆形孔组的位置度公差(6-28)
六、位置度公差的一些应用
• 4.圆周布置键槽组或键齿组的位置度公差(6-29)
二、位置度公差的标注
孔组的两种设计要求 • (1)第一种设计要求。装配时不仅要求被连接的两个零 件上对应孔组内各孔的位置分别对准,而且要求这两个零 件上的某些其他要素也应分别对准。(对孔组和各孔的位 置变动量都应规定较严格的位置度公差。) • (2)第二种设计要求。装配时仅要求被连接的两个零件 上对应孔组内各孔的位置分别对准,而不要求这两个零件 上的某些其他要素也分别对准。(对各孔的位置变动量应 规定较严格的位置度公差,而对孔组位置度公差或定位尺 寸公差则应规定的较松。) • 孔组位置度公差与各孔位置度公差的关系:前者一定要不 小于后者。
让你更容易理解的位置度公差

③复合位置度公差注 法:图6-13。
• 四个孔的实际轴线应同时位 于孔组位置度公差带和各孔 位置度公差带内,即四个孔 的实际轴线应位于两个公差 带的重叠部分,但各孔位置 度公差带中心不必位于孔组 位置度公差带内,则满足设 计要求。
三、位置度公差的计算
• 1. 孔组内各孔位置度公差的计算 • 孔组内各孔的位置度公差带计算公式由紧固件与被连接零 件的连接方式决定。 • 通孔连接方式:用螺栓、销钉等紧固件穿过两个或几个被 连接零件上的通孔; • 螺孔连接方式:把双头螺柱、螺钉等紧固件拧入一个被连 接零件的螺孔中,且穿过其余的被连接零件上的通孔。 • (1)通孔连接方式的位置度公差计算(图6-14) t=DM-dM=Xmin • 上式中,紧固件采用包容要求
二、位置度公差的标注
孔组的两种设计要求 • (1)第一种设计要求。装配时不仅要求被连接的两个零件上对应孔组内各孔的位
置分别对准,是孔组内部的孔的位置要对准,而且要求这两个零件上的某些其他要素 也应分别对准。(对孔组的位置和各孔的位置变动量都应规定较严格的位置度公差。) • • 换句话说就是既要保证孔组的位置度公差还要保证各孔的位置度公差,孔组的位置度 公差可以保证零件的边是不是对齐的。 (2)第二种设计要求。装配时仅要求被连接的两个零件上对应孔组内各孔的位置分别 对准,而不要求这两个零件上的某些其他要素也分别对准。(对各孔的位置变动量应 规定较严格的位置度公差,而对孔组位置度公差或定位尺寸公差则应规定的较松。) 孔组位置度公差与各孔位置度公差的关系是孔组的位置度公差一定要大于或等于各个 孔的位置度公差。
孔组位置度公差
பைடு நூலகம்
各孔位置度公差
二、位置度公差的标注
• ②位置度公差与定位尺寸公差组合注法:图6-4和6-8。
位置度公差及其计算

位置度公差及其计算
一、位置公差
位置公差定义为衡量尺寸特性的容许偏差,其可以测量相对于指定的
位置尺寸偏差值,是用来检查零件尺寸上的不规则度。
位置公差是应用着
重于零件尺寸的位置关系的公差,是衡量零件尺寸前后位置的公差标准,
其指定取决于每个零件的设计要求。
二、计算位置公差
1、首先,根据设计要求,确定位置公差要达到的要求,包括容许偏差、最大偏差等,然后制定位置公差的相关要求。
2、根据上述设计要求,对位置公差要求进行适当的标准化。
具体可
以分为公差、基本公差、保护层等等,这样就能够有效地加以控制位置公
差要求。
3、在上述标准化基础上,进行公差调整,调整过程可能涉及到精度、工艺参数等,以满足位置公差的要求。
4、最后对调整后的位置公差进行核查,可以采用先进的仪器仪表,
对精密零件来说,采用电子测量仪,以确保核查结果的准确性。
三、优点
(1)位置公差具有高效性:因为位置公差的标准化,可以减少不必
要的错误,大大提高工作效率,有助于提高生产的效率。
(2)更好的保证质量:位置公差的标准化,采用先进的仪器仪表,
可以更好的检查零件的精度,保证零件质量。
位置度公差详解

位置度實例:sheet film
如何測量位置度 (5 of 5 pages)
A=11.54-11.50=0.04
11.54
B
C
11.50 =實際的測量結果
A
C=SQRT((A=0.04)^2+(B=0.05)^2)=0.064
<
=GD=C*2=0.064*2=0.128 0.128 = OK 0.2
如何用Werth自動影像測量儀計算位置度 3: 按圖紙將被測孔的實際幾何中心 測量.
4: 以手動輸入的方式將被測孔的理 論位置作出來(即在以理論的坐標 作圓).
理論圓(心)位置
實際的幾何中心 基準 A
實際的幾何位置
如何計算測量後其位置度公差的結果
基準 A
位置度的求法(一):
如何用Werth自動影像測量儀計算位置度 1: 以基位A,B孔連線建成Y軸,并將A孔 圓心定義為坐標原點.
2: 以A點為原點,使Y軸反時針方向 旋轉 28.16°,并設定為新的Y軸.
坐標點 point A
位置度的求法(一):
11.54
如何測量位置度 (3 of 5 pages)
6.92
Not OK
ø0.2
實際的幾何中心
基準 A
位置度實例:sheet film
如何測量位置度 (4 of 5 pages)
如何計算測量後其位置度公差的結果:
目標位置
實際位置
=位置度
B A
B=6.97-6.92=0.05
6.92 6.97 =實際的測量結果
1: 以基位A,B孔連線建成時針方向 旋轉 28.16°,并設定為新的Y軸.
坐標點 point A
位置度實例:sheet film
位置度公差及其计算解释

三、位置度公差的计算
装配时,如果设计要求各个被连接零件上孔组内各孔分别对 准,但不要求这些零件的外圆柱面或内孔的基准轴线彼此 重合,则可采用图6-11、图6-12或6-13所示注法。
δl=t1+T+tp Tp——销组或孔组几何图框轴线对外圆柱面或内孔轴线的 一般同轴度公差值
t2 = δl –T-T1 T——被测孔的尺寸公差值 T1——基准孔的尺寸公差值
四、位置度公差标准数值的选择方法
1. 按GB/T 1184-1996选择位置度公差标准数值
四、位置度公差标准数值的选择方法
2. 按GB/T 1800.3-1998选择位置度公差标准数值(表6-2) 利用a(A)、b(B)、c(C)、d(D)、e(E)、f(F)、g(G)的基本偏差 的数值作为通孔与紧固件之间的标准最小间隙。
三、位置度公差的计算
2. 孔组位置度公差的计算
(1)矩形零件(基准要素为平面要素)
满足第一种设计要求:只需计算各孔位置度公差值t1,不必 计算孔组位置度公差值t2,因为它们相等。(图6-6)
满足第二种设计要求:(图6-7和图6-4)
t2=δl-T δl为孔的轴线至零件有关侧面的距离的允许变动量,T为通孔直 径的尺寸公差值
孔组位置②位置度公差与定位尺寸公差组合注法:图6-4和6-8。
四个孔的实际轴线必 须位于Φt1位置度公差 带内,且I、II、III孔 的实际轴线还必须位 于相应的定位尺寸公 差带内,才能满足设 计要求。
二、位置度公差的标注
孔组应平行于一个侧面的注法,见图6-9。
五、采用延伸公差带的位置度公差
3. 延伸公差带的位置度公差注法 只适用于零件图,不适用于部件图和装配图。 图6-21。
图6-22 图6-23。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这是本人对于位置度公差的理解过程(或思维过程)的总结,如果大家觉得有价值就参考一下,如果大家觉得没意思,就一笑了之。
还是按习惯分成七步来讲,如果不小心又把大家给讲晕了,那是我的无心之错,敬请谅解。
举个例子也许能弥补一下表达能力的不足:
[attachment=25911]
第一步:确定公差带的大小和形状。
公差带大小及形状是由公差框格中的公差值来确定的,公差值的大小就是公差带的大小,其形状则由公差值有无直径符号来确定,如果公差值前有直径符号,它的公差带就是一个直径等于公差值的圆柱;如果公差值前没有直径符号,它的公差带就应该是相距公差值的两平行平面。
从上面的例子中可以看出,6个φ8的孔的位置度公差带是直径为0.1的圆柱,而4个φ12的孔的位置度公差带是直径为0.2的圆柱。
第二步:根据公差带的实体状态修正符号确定补偿公差。
公差带的实体状态由公差值后面的修正符号来确定。
如果没有任何修正符号,则表示位置度公差带在RFS状态,即公差带的大小与被测孔的实际尺寸无关;如果带MMC符号,则表示公差带适用于被测孔在MMC时,当被测孔的实际尺寸从MMC向LMC偏离时,该偏离量将允许被补偿到位置度公差带上;如果带LMC符号,则表示公差带适用于被测孔在LMC 时,当被测孔的实际尺寸从LMC向MMC偏离时,该偏离量将允许被补偿到位置度公差带上。
上图中两个位置度公差均是MMC状态,因此它们的公差带的大小与被测孔的实际尺寸相关。
比如对φ8的孔来说,当它的实际尺寸在MMC时(φ8),它的位置度要求为φ0.1,当它的实际尺寸在LMC时(φ8.25),它的位置度公差带就变成了φ0.1+(φ8.25-φ8)=φ0.35。
同样道理,对φ12的孔来说,当它的实际尺寸在LMC时,允许的最大位置度误差可以达到φ0.6。
第三步:参照基准体系的建立。
参照基准体系是由形位公差框格内的参照基准按序指定基准形体来建立的。
图中两个位置度的参照基准体系相同,均由基准A和B指定的基准形体建立,其中基准A的是由零件的端面建立的基准平面,它作为第一基准约束了零件的三个自由度(两个旋转自由度及一个平移自由度),基准B是由零件的外圆建立的基准轴线,它作为第二基准约束了零件的两个自由度。
这样基准A和B定位后,零件就只剩下绕B轴旋转的一个自由度。
由于这两组孔的位置与这个自由度没有关系,因此本例就没有对这个自由度作出限制。
同时要注意的是,基准B是带MMB修正符的,因此它模拟基准就是基准形体B的MMB边界。
当基准形体B的实际尺寸向它的LMB偏离时,将允许有基准的漂移。
(至于基准漂移对位置度公差的影响,我们可以另行专题讨论)
第四步:确定位置度公差带在参照基准系统内的方向和位置。
公差带位于是由基本尺寸定义的相对于参照基准的理论正确位置。
例中6个φ8的孔的6个位置度公差带应与整体与A基准平面平行,并相距8mm,并沿B基准轴线径向均匀分布(60°夹角);而四个φ12的孔的四个位置度公差带绕B轴径向均匀分布,其中心线交于B轴,交点距A基准20mm,并与A基准平面成30°角。
第五步:确定被测形体的被测要素。
形位公差框格的标注方式决定了被测形体的被测要素。
另外如果形位公差框格下有BOUNDARY的注释,则被测要素是指形体的周边轮廓。
例中的两个形位公差框格均标注在尺寸的下面,它表示被测形体的被测要素是孔的中心,因此它要求的是孔的中心线满足在理论位置的公差带的要求。
第六步:考虑同步要求。
同步要求的条件是:1)参照基准相同,2)基准的顺序相同,3)基准的修正符号相同。
当我们在评估图纸上的一个形位公差时,要考虑是否与其它形位公差符合同步要求的条件。
本例中的两个位置度的参照基准,基准顺序及修正符号均相同,因此它们符合同步要求的条件,这就要求我们对这两个位置度公差同时评价,同时满足。
如果用检具测量的话,就要求我们对这两个位置度在一次装夹后同时评判。
第七步:测量方法及评估依据的确定。
经过前面六步的分析,我们对位置度具体要求已经很清晰了。
最后一步的目的是找出一种合适的测量方法来评价这个位置度以能更深入地理解它。
从设计的角度来说,如果我们用形位公差清晰地定义了一张图纸却找不到一种合适的测量方法来评价它,那这种设计也是失败的。
从上面这个例子来说,我们已经了解了基准形体及其状态,公差带的大小形状及其修正符号,公差带的位
置及被测要素;并且我们也知道了这两个位置度要满足同步要求,这样我们就可设计一个功能检具来同时测量这两个位置度。
基准形体A可以用一平板来作为它的模拟基准形体,而形体B的模拟基准形体则是垂直于基准形体A的一个内径为80.2的套筒。
零件按A,B定位后可以旋转,并在B的模拟基准形体内微量窜动。
检测这两个位置度的检测销是两组分别位于它们的理论正确位置的销子,这两组销子的相对位置固定。
第一组六根用于评估φ8的孔的销子直径为φ7.9,第二组四根用于评估φ12的孔的销子直径为φ11.8,要求零件一次装夹后,两组销子能同时完全进入零件的相应孔内。
当你理解了位置度的具体含义及要求,并且知道了如何来评价这个位置度后,还能有什么问题呢?
对于其它形位公差的理解过程,大致与这个过程类似。
对我而言,任何复杂的形位公差,经过这七步的分析后都能得到较为全面透彻的理解。
希望对大家能有点参考价值。