圆形薄板的横向振动学习资料

合集下载

第十五章--薄板的振动问题(徐芝纶第四版)

第十五章--薄板的振动问题(徐芝纶第四版)


2 r2

1 r
r

1 r2
2
2

2
W


0
得常微分方程
d2 F d r2


2 r2

1 r
r

1 r2
2
2

2
W


0
取振形函数为如下的形式:
W F(r) cosn
其中n=0,1,2,…。相应于n=0,振形是轴对 称的。相应于n=1, 2;圆板的环向围线将分别 具有一个及两个波,板的中面将分别具有一根 或两根径向节线,余类推。将上式代入式
(1)试求薄板振动的频率,特别是最低频 率。
(2)设已知薄板的初始条件,即已知初挠 度及初速度,试求薄板在任一瞬时的挠度。
当然,如果求得薄板在任一瞬时的挠度, 就易求得薄板在该瞬时的内力。
设薄板在平衡位置的挠度为we=we(x,y),这
时,薄板所受的横向静荷为q=q(x,y)。按照薄板 的弹性曲面微分方程,我们有:
kx ny
Dkn sin a sin b
Ckn

4 ab
a 0
b
kx ny
0 w0 sin a sin b d x d y
Dkn

4 ab
a 0
b 0
v0
sin
kx
a
sin
ny
b
d
x
d
y
根据初始条件为
(w)t0 w0( x, y)
可得

w t
t0
薄板在平行于中面方向的所谓纵向振动,由 于它在工程实际中无关重要,而且在数学上也难 以处理,所以不加讨论。首先来讨论薄板的自由 振动。

圆形薄板的横向振动

圆形薄板的横向振动

7.6 圆形薄板的横向振动
现在来讨论圆板的自由振动,设圆板的主振动为
(7-93) 代入式(7-88)相应的自由振动方程,仍然得到 (7-94) 其中 式(7-88)可改写为 (7-95)
7.6 圆形薄板的横向振动
因而下列两个方程的解是式(7-94)的解
(7-96)
(7-97)
设主振型
(7-98)
其中
7.6 圆形薄板的横向振动
(7-42)
(7-45)
7.6 圆形薄板的横向振动
(7-89)
7.6 圆形薄板的横向振动
对于圆形薄板,极坐标系的原点宜建立在圆心,假定 圆板半径为a,那么在r=a处相应的边界条件分类如下 ①固定边 (7-90) ②简支边 (7-91) ③自由边 (7-92) (7-50) (7-49) (7-48)
7.6 圆形薄板的横向振动
为对应于n=0,振型是轴对称的;对应于n=1及n=2,圆板 的环向围线将分别具有一个及两个波,或者说,圆板讲分 别有一根及两根径向节线;对应于n=3,4,……也以此类推。 将式(7-98)代入式(7-96)及式(7-97),得到下列两 个常微分方程:
(7-99)
(7-100)
7.6 圆形薄板的横向振动
式(7-99)为n阶贝塞尔方程,其通解为
(7-101)
式(7-100)为n阶修正贝塞尔方程,其通解为
(7-102)
7.6 圆形薄板的横向振动
这样,式(7-94)的通解为 (7-103)
(7-104)
7.6 圆形薄板的横向振动
R(r)表示的在r=a处的边界条件可以这样得到,将式(798)代入式(7-93),然后再代入式(7-90)至式(792),得出以下边界条件:

弹性力学圆形薄板.ppt

弹性力学圆形薄板.ppt
所以轴对称载荷的圆板弯曲的一般解为:
(解题思路→A、B、C、K)
A2 B2 ln C ln K q4
64D
3、典型问题的边界分析
※ 对于无孔圆板受均布载荷的问题
由于薄板中心无孔,所以B和C应当等于零。 否则板中心(R=0)处内力及挠度将无限大(参 考前内力公式)。而A、K 则由边界条件求解。
d2 d 2
d d
Εz
1 2
1
d d
d2 d 2
0
在弹性曲面微分方程解答中的ω1是任意一 个特解,可以根据载荷的分布按照弹性曲面微
分方程的要求来选择;A、B、C、K任意常数,
由边界条件来决定。
对于均布载荷q,取特解ω1=N ρ 4 代入微分 方程,可解得N=q/64D。
得特解 ω1=q ρ 4/64D
M yx
M
yx
M yx x
d
x
M yx
M
yx
M yx x
d
x
M yx
M
yx
M yx x
d
x
M yx A
M yx A
M yx d x x
边界上的分布扭矩就变换为等效的分布剪力 M yx d x
x
边界上的总的分布剪力为
Vy
Qy
M yx x
d
x
除此之外,在A和B 还有未被抵消的集中剪力(也
就是有集中反力)M yx A M yx B
yz
0
u w 0 w v 0
z x
y z
u w 0 v w
z x
z y
u
w x
z
f1 ( x,
y)
v
w y
z
f2 ( x,

弹性力学圆形薄板

弹性力学圆形薄板

xz
Qx
t Ez 2 2 2 t 2 可得 Qx w t z dz 2 1 x 4 2
z d zx
Et 3 2 w 12 (1 ) x
t 2 t 2

x
Q
同样可得Qy,
记 可得
Et 2 D 12 (1 2 )

x z 0
0, 0
y z 0 xy z 0
0,
也就是说,中面的任意一部分,虽然弯曲成 弹性曲面的一部分,但它在xy面上投影的形 状却保持不变。
二、弹性曲面的基本公式
1、弹性曲面的微分方程。 薄板的小挠度问题是按位移求解的,其基 本未知函数是薄板的挠度ω 。因此把其它 所有物理量都用ω 来表示,即可得弹性曲 面的微分方程。
z t 2
3、边界条件
边界上的应力边界条件,一般难于精确满足, 一般只要求满足边界内力条件。 情况一:以矩形薄板为例,说明各种边界处 的边界条件。假设OA边是固支边界, 则边界处的 挠度和曲面的法向斜率等于零。即

x 0
0,
0 x x 0
情况二:OC具有简支边界。则边界处的挠度 和弯矩等于零。即:
y xz yx z x y

z Ez t2 2 z 4 w z 2(1 2 ) 4 Ez z3 4 t2 z z w F3 ( x, y ) 2 2(1 ) 4 3
积分得
根据薄板下面内的边界条件:
圆形薄板轴对称 弯曲问题
主要内容:
一、有关概念及假定

二、弹性曲面的基本公式 三、圆形薄板轴对称弯曲问题的求解

非线性弹性地基上圆形薄板主参数共振研究

非线性弹性地基上圆形薄板主参数共振研究
维普资讯
第2 O卷 第 6期 20 0 7年 儿 月
唐 山 学 院 学 报
J un l fTa g h n C l g o r a n s a o l e o e
V0 . O No 6 I2 .
NOV 0 .2 07
非 线 性 弹 性 地 基 上 圆 形薄 板 主 参 数 共振 研究
p r me r cr s na c ;cr ulr pl t a a t i e o n e ic a a e
0 引 言
近年 来 . 同 几 何 特 性 板 的非 线 性 振 动 得 到 了 人 们 广 泛 不
本 文 研 究 一 个 置 于 非 线 性地 基 上 圆板 的参 数 共 振 问题 。
l 非 线 性 弹 性 地 基 上 圆 形 薄 板 受 简 谐 激 励
的 基 本 方 程
考 虑 图 1 示 的周 边 固定 的 圆形 薄板 . 厚 为 h 半 径 为 所 板 。 R, 其 周 边 上 均 匀 分 布 简 谐 压 力 Ⅳr 。 在 —n + cs t考 虑 非 oS .
关键词 : 非线 性地基 ; aekn方法 ; G lr i 多尺度 法 ; 主参 数 共振 ; 圆板
中图分 类号 : 2 文献标 识码 : 03 1 A 文章编 号 :6 2—3 9 2 0 ) 6 0 1 4 17 4 X(0 7 0 —0 0 —0
S u y o i a y Pa a e r c Re o n e t d n Pr m r r m t i s na c
杨 志 安
( 山学 院 唐 山市 结 构 与振 动工 程 重 点 实 验 室 . 北 唐 山 0 3 0 ) 唐 河 6 00
摘要 : 究非 线性地 基 上 圆形 薄板 受简谐 激励 的非 线性振 动 问题 。按 照 弹性 力 学理 论 建 立 非线 性 研 地基 上 圆形 薄板 受简谐 激 励 的动 力学 方 程 , 利用 Gaekn方 法将 其 转 化 为 非 线 性振 动方 程 , 方 lr i 该 程是 马休 型方 程 。应用 非 线性 振 动 的 多尺 度 法 求 得 系 统 主参 数 共 振 的近似 解 , 并进 行 数 值 计 算。 分析 阻尼 、 地基 系数 、 何参 数 等对 共振 响应 曲线 的影 响。 几

板壳理论 课件 chapter2 弹性薄板的稳定和振动

板壳理论 课件 chapter2 弹性薄板的稳定和振动

2D
2
(2.2.7)
其中
m r K r m
2
, r
a b
(2.2.8)
利用dK/dr=0,可知r=m当时K值最小,其最小值为K=4,因而最 小的临界屈曲应力为:
s x cr
4 2 D 2 b h
(2.2.9)
第二章 弹性薄板的稳定和振动
应该注意到,当n=1, r=m时,sx具有最小值,这说明当板屈曲时, 在受压方向上可能形成几个半波,而在y轴方向则只有一个半波, 且(2.2.9)式仅当a/b为整数时才成立。 当a/b非常小时,(2.2.7)式括号内的第二项恒小于第一项,只要使括 号内的第一项取最小值m=1 ,即得sx的最小临界值。

(2.1.1)
y
Qx q0 x y
将(2.1.1)式的前两式一并代入第三式有:
2 M xy 2 M y 2M x 2 q0 x y x2 y2
(2.1.2)
第二章 弹性薄板的稳定和振动
将(1.2.4)代入(2.1.2)式中有:
4 w 4w 4w D w D w D 4 2 2 2 q x x y y4
图2.3 单向受压板
第二章 弹性薄板的稳定和振动
如以受压为正,且取代入方程(2.1.13)中,即得这一问题的 屈曲控制方程为: 边界条件是:
2w D w N x 0 2 x
4
(2.2.1)
2w x 0, a: w 0 2 x 2w y 0, b: w 0 y2
2 xy 2 w 2 w 2 w x 2 2 x y x 2 y 2 x y y x

第二章 薄板振动分析

第二章 薄板振动分析
第二章 薄板的振动问题
§2-1 薄板的自由振动
等厚度各向同性薄板的非齐次运动方程为
4w
m D
2w t 2
px, y,t
D
(1)
其中 m 为板的单位面积上的质量。p 为动载荷。
首先考虑齐次运动方程,即自由振动问题
4w m 2w 0 D t 2
(2)
令 w = T(t)W(x,y), 代入齐次方程,两边同除TW, 得
wt
ab 00
mx ny
0 sin a sin b
w sin mx st t0a来自dxdy cosmnt
in
ny
b
dxdy
sinmnt
s
in
mx
asinny
b
讨论 运用分离变量法解偏微分方程,必然导致固有值问题:
•分离变量法要求分离变量后每个函数有非零解,因此要求固有 值存在;
•方程和定解条件要求固有函数具有正交性和完备性; •非齐次初值条件或自由项(受迫振动时)或方程的解等,应能 用固有函数展开成平均收敛的级数。
2
2
dW dr
d2W dr 2
dr
对于夹支圆形薄板,可简化为
(7)
UW
Dr
d2W dr 2
2
1 r
dW dr
2
dr
(8)
设薄板振形泛函为
4W 2 m W 0
D
U
W
2
1 2
m
W
2dxdy
(9)
其中W为可能的振形函数。可以证明由泛函的驻值条件可以 导出方程(4)。
为了求固有频率或固有函数的近似解,设
32D
3a2
2m

板壳理论 15

板壳理论 15
2
现讨论特征根
m 2 2 m 2 2 2 , 2 2 2 a a
薄板的振动问题
板壳理论
14
则微分方程的解可以写成
Ym C1 cosh y C2 sinh y C3 cos y C4 sin y
其中
振形函数
m 2 2 m m 2 2 2 2 , a D a
m 1 n 1
A11
Amn 0 (m 1, n 1), Bmn 0
min 11 2
1 1 D x y w cos 2 2 2 t sin sin a b a b m
板壳理论
薄板的振动问题
12
2 wt at 2 t 2 wt qi m t 2
wt wt ( x, y, t )
其中qi — 薄板的惯性力(单位面 积)
其中m — 薄板单位面积的质量
D 4 we q
2 we 0 t 2
2 wt D ( wt we ) m 2 t 2 4 D ( wt we ) m 2 ( wt we ) t
其中Ym为常系数
W 0
W
2m
D
则有
m 4 4 D 4 a m
2
m 2 2 a
D m
当两边不全是自由边,则其振动自然频率则有
2m
D
4
m 2 2 2 a
D m
2
D m 2 2 2 m a
D m
m 2 2 2 a
m 2 2 m 2 2 2 2 , i 2 a a
板壳理论
薄板的振动问题
11
例如:设初速度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.6 圆形薄板的横向振动
7.6 圆形薄板的横向振动
分析圆形薄板的横向振动,采用
y
极坐标最方便,如图7-17所示。
P
极坐标与直角坐标的关系为
由此得到
a
O
x
7.6 圆形薄板的横向振动
利用上述关系,可以得出
(7-85)
7.6 圆形薄板的横向振动
同样能得出
(7-86) (7-87)
7.6 圆形薄板的横向振动
因而下列两个方程的解是式(7-94)的解
设主振型
(7-96) (7-97) (7-98)
7.6 圆形薄板的横向振动
为对应于n=0,振型是轴对称的;对应于n=1及n=2,圆板 的环向围线将分别具有一个及两个波,或者说,圆板讲分 别有一根及两根径向节线;对应于n=3,4,……也以此类推。 将式(7-98)代入式(7-96)及式(7-97),得到下列两 个常微分方程:
于是,式(7-46)所示的薄板振动方程 在极坐标系中成为
其中
(7-47) (7-88)
7.6 圆形薄板的横向振动
(7-42)
(7-45)
7.6 圆形薄板的横向振动
(7-89)
7.6 圆形薄板的横向振动
对于圆形薄板,极坐标系的原点宜建立在圆心,假定 圆板半径为a,那么在r=a处相应的边界条件分类如下
固定边
(7-105)
简支边
(7-106)
自由边
பைடு நூலகம்
(7-107)
7.6 圆形薄板的横向振动
例7.1 试计算外边界固定的实心圆板不出现径向节线(节 径)时较低的前三阶固有频率。
7.6 圆形薄板的横向振动
频率方程: 当n=0时,圆板不出现节径,上式为
7.6 圆形薄板的横向振动
f(x)
200
150
100
①固定边
(7-90)
(7-48)
②简支边
(7-91)
(7-49)
③自由边
(7-92)
(7-50)
7.6 圆形薄板的横向振动
现在来讨论圆板的自由振动,设圆板的主振动为
(7-93) 代入式(7-88)相应的自由振动方程,仍然得到
(7-94)
其中 式(7-88)可改写为
(7-95)
7.6 圆形薄板的横向振动
50
0
-50
0
1
2
3
4
5
6
7
8
9
r
7.6 圆形薄板的横向振动
7.6 圆形薄板的横向振动
圆板的固有频率通常表示为
7.6 圆形薄板的横向振动
7.6 圆形薄板的横向振动
7.6 圆形薄板的横向振动
7.6 圆形薄板的横向振动
7.6 圆形薄板的横向振动
(7-99)
(7-100)
7.6 圆形薄板的横向振动
式(7-99)为n阶贝塞尔方程,其通解为
(7-101)
式(7-100)为n阶修正贝塞尔方程,其通解为 (7-102)
7.6 圆形薄板的横向振动
这样,式(7-94)的通解为
(7-103)
(7-104)
7.6 圆形薄板的横向振动
R(r)表示的在r=a处的边界条件可以这样得到,将式(798)代入式(7-93),然后再代入式(7-90)至式(792),得出以下边界条件:
相关文档
最新文档