第一型曲线积分 第一型曲线积分的定义
第一类曲线积分的计算

第一类曲线积分的计算第一类曲线积分的计算1、定义定义1 :设L 为平面上可求长度的曲线段,)y ,x (f 为定义在L 上的函数.对曲线L 作分割T ,它把L 分成n 个可求长度的小曲线段)n ,,2,1i (L i ,i L 的弧长记为i s ,分割T 的细度为i ni 1s max T ,在i L 上任取一点(i ,).n ,,2,1i )(i 若存在极限J s ),(f lim i i n1i i 0T且J 的值与分割T 及点),(i i 的取法无关,则称此极限为)y ,x (f 在L 上的第一型曲线积分,记作 .ds )y ,x (f L (1) 定义2: 若L 为空间可求长曲线段,)y ,x (f 为定义在L 上的函数,则可类似地定义)z ,y ,x (f 在空间曲线L 上的第一型曲线积分为J s ),,(f lim i i i n1i i 0T ,(此处i s 为i L 的弧长,i n i 1s max T ,J 为一常数),并且记作 L .ds )z ,y ,x (f (2) 2、物理意义(1)设某物体的密度函数f (P )是定义在 上的连续函数.当 是直线段时,应用定积分就能计算得该物体的质量。
现在研究当 是平面上某一可求长度的曲线段时物体的质量的计算问题.首先对 作分割,把 分成n 个可求长度的小曲线段i (i=1,2,…,n),并在每一个i 上任取一点P i由于f (P )为 上的连续函数,故当i 的弧长都很小时,每一小段i 的质量可近似地等于f (P i)i ,其中 i 为小曲线段i 的长度.于是在整个 上的质量就近似地等于和式i n1i i )P (f 当对 的分割越来越细密时,上述和式的极限就应是该物体的质量。
(2)空间曲线L 的重心坐标为(,,)(,,)yz LLx x y z dlM x Mx y z dl,(,,)(,,)zx LLy x y z dlM y Mx y z dl,(,,)(,,)xy LLz x y z dlM z Mx y z dl(3) 曲线L 的绕z 轴(x, y 轴)的转动惯量是22()(,,)z LJ x y x y z dl3、几何意义1) 当被积函数为1时, 积分的值恰为曲线的长度。
曲线积分及其与路径无关问题

曲线积分与路径无关问题1. 第一型曲线积分(1)对弧长的曲线积分的模型:设给定一条平面曲线弧L :AB ,其线密度为),(y x ρ求弧AB 的质量m 。
⎰=Lds y x f m ),(,(2)若BA L AB L ==21,,则⎰1),(L ds y x f =⎰2),(L ds y x f ,即对弧长的曲线积分与积分弧段有关,但与积分弧段的方向无关。
(3)对弧长的曲线积分的计算设),(y x f 在曲线弧L 上有定义且连续,L 的参数方程为⎩⎨⎧==)()(t y t x ψϕ ,)(βα≤≤t ,其中)(t ϕ、)(t ψ在[]βα,上具有一阶连续导数,且0)()(2'2'≠+t t ψϕ,则曲线积分⎰Lds y x f ),(存在,且⎰Lds y x f ),(=[]dt t t t t f )()()(),(2'2'ψϕψϕβα+⋅⎰ )(βα<特别,当1),(=y x f 时,⎰Lds y x f ),(表示曲线弧L 的弧长。
当曲线弧L 的方程为)(x g y = )(b x a ≤≤,)(x g 在[]b a ,上有连续的导数,则⎰Lds y x f ),(=[]dx x g x g x f da)(1)(,2'+⋅⎰;把线弧L 的方程为)(x f y =化作参数方程⎩⎨⎧==)(x g y xx ,)(b x a ≤≤,⎰Lds y x f ),(=[]dy y h y y h f dc)(1),(2'+⋅⎰ )(d y c ≤≤2. 第二型曲线积分(1) 第二型曲线积分的模型: 设有一平面力场j y x Q i y x P y x F ),(),(),(+=,其中),(),,(y x Q y x P 为连续函数,一质点在此力场的力作用下,由点A 沿光滑曲线L 运动到点B ,求力场的力所作的功W 。
dy y x Q dx y x P W L),(),(+=⎰,(2)设L 为有向曲线弧,L -为与L 方向相反的有向曲线弧,则dy y x Q dx y x P L),(),(+⎰dy y x Q dx y x P L),(),(+-=⎰-即第二型曲线积分方向无关(3)设xoy 平面上的有向曲线L 的参数方程为⎩⎨⎧==)()(t y t x ψϕ ,当参数t 单调地由α变到β时,曲线的点由起点A 运动到终点B ,)(t ϕ、)(t ψ在以α及β为端点的闭区间上具有一阶连续导数,且0)()(2'2'≠+t t ψϕ,函数),(y x P 、),(y x Q 在L 上连续,则曲线积分dy y x Q dx y x P L),(),(+⎰存在,且⎰+Ldy y x Q dx y x P ),(),(=[][]{}dt t t t Q t t t P ⎰+βαψψϕϕψϕ)()(),()()(),(''这里的α是曲线L 的起点A 所对应的参数值,β是曲线L 的终点B 所对应的参数值,并不要求βα<。
高等数学第10章 曲线积分与曲面积分

80
81
82
10.7.2 旋度的定义及其物理意义
83
84
85
66
67
实际上,我们常常碰到的曲面是双侧曲面,但单侧 曲面也存在,最有名的单侧曲面是拓扑学中的莫比乌斯 带,如图10.28所示.它的产生是将长方形纸条ABCD 先 扭转一次,然后使B与D,及A与C粘合起来构成的一个 非闭的环带.若想象一只蚂蚁从环带上一侧的某一点出发, 蚂蚁可以不用跨越环带的边界而到达环带的另一侧,然 后再回到起点;或者用一种颜色涂这个环带,不用越过 边界,可以涂满环带的两侧.显然这是双侧曲面不可能出 现的现象
第10章 曲线积分与曲面积分
解决许多几何、物理以及其他实际问题时,不仅需 要用到重积分,而且还需要将积分区域推广到一段曲线 弧或一片曲面上,这样推广后的积分称为曲线积分和曲 面积分.本章还将介绍格林公式、高斯公式及斯托克斯公 式,这三个公式刻画了不同类型的积分之间的内在联系, 并且在微积分、场论及其他学科中有着广泛的应用。
46
47
48
49
50
51
10.4 第一型曲面积分
通过讨论非均匀密度的空间曲面壳质量这一物理问 题,本节引入第一型曲面积分的概念并研究了相关性质。 10.4.1 实例 质量分布在可求面积的曲面壳上,曲面壳占有空间 曲面Σ,其密度函数为ρ(x,y,z),求曲面壳的质量.
52
53
54
55
15
16
17
18
19
20
21
10.2.3 向量值函数在有向曲线上的积分的计算法 设向量值函数F(x,y,z)=P(x,y,z)i+Q(x, y,z)j+R(x,y,z)k在有向曲线Γ上有定义且连续, 有向曲线弧Γ为简单曲线,它的参数方程为
第一型曲线积分的定义

第一型曲线积分的定义第一型曲线积分,是微积分中的一种重要概念与计算方法,它涉及曲线和向量场之间的积分。
本文将介绍第一型曲线积分的定义、性质和计算方法。
一、第一型曲线积分的定义第一型曲线积分,也称为曲线的线积分,是指在曲线上某个有向长度元素$\mathrm{d}s$上的函数值与该长度元素的乘积$d\boldsymbol{s}$在整个曲线上的积分。
设$C$是曲线,其参数方程为$\boldsymbol{r}(t)=(x(t), y(t), z(t)), t\in[a,b]$,则$C$的长度由公式:$$ L(C)=\int_{C}\mathrm{d}s=\int_{a}^{b}\left[\ left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\r ight)^{2}+\left(z^{\prime}(t)\right)^{2}\right]^{\f rac{1}{2}} \mathrm{d}t $$计算曲线$C$上的一个标量函数$f(x,y,z)$在曲线上的第一型曲线积分,即为:$$ \int_{C} f(x, y, z) \mathrm{d}s=\int_{a}^{b}f\left(\boldsymbol{r}(t)\right)\left[\left(x^{\prim e}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}\right]^{\frac{1}{2}}\mathrm{d}t $$若积分路径可以看成向量值函数$\boldsymbol{r}(t)$的积分,第一型曲线积分就可以写作:$$ \int_{\boldsymbol{r}}\boldsymbol{F}(\boldsymbol{r}) \cdot \mathrm{d}\boldsymbol{r}=\int_{a}^{b}\boldsymbol{F}\left(\boldsymbol{r}(t)\right) \cdot \boldsymbol{r}^{\prime}(t) \mathrm{d}t=\int_{a}^{b} \boldsymbol{F} \cdot \mathrm{d}\boldsymbol{s} $$其中$\boldsymbol{F}(\boldsymbol{r})$是向量场,$\mathrm{d}\boldsymbol{r}$表示一个有向长度元素,$\cdot$表示向量内积运算,$\mathrm{d}\boldsymbol{s}=\boldsymbol{r}^{\prime}(t ) \mathrm{d} t$表示线元素。
第一型曲线积分的计算

L
2
4
2 2 求圆柱面 x y 1位于平面z 0上方与z y 例 6 下方那部分的侧面积 A.
当f ( x, y ) 0 时, f ( x, y ) ds 表示以 L 为准线,
L
母线平行于z轴, 高为z f ( x, y )的柱面面积。
s i (i 1, 2, , n ) ,同时也以 si
表示第 i 小段弧长。
(2)近似
(i , i )si ,
则 mi f (i ,i )si 。
y
M1 M2
M i1
(3)求和
m f ( i , i )si 。
n i 1
(i ,i )
Mi
L
M n1
2 y 2 R 2 , y 0.
例2
( x y)ds, L : 连接三点 O(0,0), A(1,0), B(0,1)的折线.
L
9 2 2 2 x y z 例 3 计算 ( x 2 y 2 z 2 )ds, 其中L : . 2 L x z 1
§6.4
第一型曲线积分的计算
一、第一型曲线积分的概念
曲线形物体的质量
设曲线形物体在xoy 平面上占有可求长曲线 L, 其线密度为连续函数 f ( x, y) ,求该物体的质量 m。
y
M1
M2
M i1
(i ,i )
Mi
L
M n1
A
B
o
x
(1)分割 在 L上 任取点列 M 1 , M 2 , M n 1 ,把 L 分为 n 小 段
2 2 2 2 x y z R 例 4 计算 (y 2 z )ds, 其中L : . L x yz 0
重积分、曲线积分、曲面积分

重积分、曲线积分、曲面积分一、曲线积分第一型曲线积分(对弧长)定义:设L 为平面上可求长度的曲线段,(,)f x y 为定义在L 上的函数。
对曲线L 作分割T ,它把L 分成n 个可求长度的小曲线段(1,2,,),i L i n = i L 的弧长记为,i s ∆ 分割T的细度为1max ,i i nT s ≤≤=∆ 在i L 上任取一点(,)(1,2,,).i i i n ξη= 若极限1lim(,)niiiT i f s ξη→=∆∑存在,则称此极限值为(,)f x y 在L 上的第一型曲线积分(对弧长的积分),记作(,)Lf x y ds ⎰。
若L 为空间可求长曲线段,(,,)f x y z 为定义在L 上的函数,则可类似定义(,,)f x y z 在空间曲线L 上的第一型曲线积分,并且记为(,,)Lf x y z ds ⎰。
性质: 1. 若(,)(1,2,,)i Lf x y ds i k =⎰存在,(1,2,,)i c i k =为常数,则1(,)ki i Li c f x y ds =∑⎰也存在,且11(,)(,).kki i i i LLi i c f x y ds c f x y ds ===∑∑⎰⎰2. 若曲线段L 由曲线12,,k L L L 首尾相接而成,且(,)(1,2,,)i Lf x y ds i k =⎰都存在,则(,)Lf x y ds ⎰也存在,且1(,)(,).ikLL i f x y ds f x y ds ==∑⎰⎰3. 若(,)Lf x y ds ⎰与(,)Lg x y ds ⎰都存在,且在L 上(,)(,),f x y g x y ≤ 则(,)(,).LL f x y ds g x y ds ≤⎰⎰4. 若(,)Lf x y ds ⎰存在,则|(,)|Lf x y ds ⎰也存在,且|(,)||(,)|LLf x y ds f x y ds ≤⎰⎰。
5. 若(,)Lf x y ds ⎰存在,L 的弧长为s ,则存在常数c ,使得(,)Lf x y ds ⎰=cs 。
第一类第二类曲线积分区别

第一类第二类曲线积分区别曲线积分是微积分中的一个重要概念,用于描述沿曲线上某个向量场的积分。
曲线积分分为第一类和第二类曲线积分,它们在定义和计算方法上有所不同。
本文将详细介绍第一类和第二类曲线积分的区别,并分析两者的应用。
首先,我们来看第一类曲线积分。
第一类曲线积分是沿曲线对标量值函数的积分,也称为曲线对标量函数的积分。
设C是一条光滑曲线,参数方程为r(t),a≤t≤b,其中r(t)=(x(t),y(t))表示C上的点的坐标。
给定定义在C上的标量函数f(x,y),第一类曲线积分的定义为:∫[C]f(x,y)ds = ∫[a,b]f(x(t),y(t))||r'(t)||dt其中ds表示路径的微元长度,也就是沿曲线的弧长微元,可以表示为||r'(t)||dt,||r'(t)||表示r(t)的导数的模。
从第一类曲线积分的定义可以看出,它计算的是标量函数沿曲线的积分。
在计算过程中,我们需要将曲线参数方程的导数进行求导,并计算函数在曲线上的函数值,再将其乘以弧长微元进行累加。
因为第一类曲线积分是对标量函数进行积分,所以结果也是一个标量。
而第二类曲线积分是沿曲线对向量值函数的积分,也称为曲线对向量函数的积分。
设C是一条光滑曲线,参数方程为r(t),a≤t≤b,其中r(t)=(x(t),y(t))表示C上的点的坐标。
给定定义在C上的向量函数F(x,y)=(P(x,y),Q(x,y)),第二类曲线积分的定义为:∫[C]F(x,y)·dr = ∫[a,b]F(x(t),y(t))·r'(t)dt其中·表示向量的点乘运算,dr表示路径的微元切线向量,可以表示为r'(t)dt。
从第二类曲线积分的定义可以看出,它计算的是向量函数沿曲线的积分。
在计算过程中,我们需要将曲线参数方程的导数进行求导,并计算向量函数在曲线上的向量值,再将其与切线向量做点乘运算进行累加。
数学分析20.1第一型曲线积分(含习题及参考答案)

第二十章 曲线积分 1第一型曲线积分一、第一型曲线积分的定义引例:设某物体的密度函数f(P)是定义在Ω上的连续函数. 当Ω是直线段时,应用定积分就能计算得该物体的质量.当Ω是平面或空间中某一可求长度的曲线段时,可以对Ω作分割,把Ω分成n 个可求长度的小曲线段Ωi (i=1,2,…,n),并在每一个Ωi 上任取一点P i . 由f(P)为Ω上的连续函数知,当Ωi 的弧长都很小时,每一小段Ωi 的质量可近似地等于f(P i )△Ωi , 其中△Ωi 为小曲线段Ωi 的长度. 于是在整个Ω上的质量就近似地等于和式i ni i P f ∆Ω∑=1)(.当对Ω有分割越来越细密(即d=i ni ∆Ω≤≤1max →0)时,上述和式的极限就是该物体的质量.定义1:设L 为平面上可求长度的曲线段,f(x,y)为定义在L 上的函数.对曲线L 作分割T ,它把L 分成n 个可求长度的小曲线段L i (i=1,2,…,n),L i 的弧长记为△s i ,分割T 的细度为T =i ni s ∆≤≤1max ,在L i 上任取一点(ξi ,ηi ),( i=1,2,…,n). 若有极限i ni i i T s f ∆∑=→1),(lim ηξ=J ,且J 的值与分割T 与点(ξi ,ηi )的取法无关,则称此极限为f(x,y)在L 上的第一型曲线积分,记作:⎰L ds y x f ),(.注:若L 为空间可求长曲线段,f(x,y,z)为定义在L 上的函数,则可类似地定义f(x,y,z)在空间曲线L 上的第一型曲线积分⎰L ds z y x f ),,(.性质:1、若⎰L i ds y x f ),((i=1,2,…,k)存在,c i (i=1,2,…,k)为常数,则⎰∑=L ki i ids y x f c1),(=∑⎰=ki Li i ds y x f c 1),(.2、若曲线L 由曲线L 1,L 2,…,L k 首尾相接而成,且⎰iL ds y x f ),((i=1,2,…,k)都存在,则⎰L ds y x f ),(也存在,且⎰L ds y x f ),(=∑⎰=ki L i ids y x f 1),(.3、若⎰L ds y x f ),(与⎰L ds y x g ),(都存在,且f(x,y)≤g(x,y),则⎰Lds y x f ),(≤⎰Lds y x g ),(.4、若⎰L ds y x f ),(存在,则⎰L ds y x f ),(也存在,且⎰L ds y x f ),(≤⎰L ds y x f ),(.5、若⎰L ds y x f ),(存在,L 的弧长为s ,则存在常数c ,使得⎰L ds y x f ),(=cs, 这里),(inf y x f L≤c ≤),(sup y x f L.6、第一型曲线积分的几何意义:(如图)若L 为平面Oxy 上分段光滑曲线,f(x,y)为定义在L 上非负连续函数. 由第一型曲面积分的定义,以L 为准线,母线平行于z 轴的柱面上截取0≤z ≤f(x,y)的部分面积就是⎰Lds y x f ),(.二、第一型曲线积分的计算 定理20.1:设有光滑曲线L:⎩⎨⎧==)()(t y t x ψϕ, t ∈[α,β],函数f(x,y)为定义在L上的连续函数,则⎰L ds y x f ),(=⎰'+'βαψϕψϕdt t t t t f )()())(),((22. 证:由弧长公式知,L 上由t=t i-1到t=t i 的弧长为△s i =⎰='+'ii t t dt t t 1)()(22ψϕ.由)()(22t t ψϕ'+'的连续性与积分中值定理,有△s i =)()(22i i τψτϕ''+''△t i (t i-1<i τ'<t=t i ),∴i ni i i s f ∆∑=1),(ηξ=i i i ni i i t f ∆''+''''''∑=)()())(),((221τψτϕτψτϕ (t i-1<i τ',i τ''<t=t i ). 设σ=[]i i i i i n i i i t f ∆'''+'''-''+''''''∑=)()()()())(),((22221τψτϕτψτϕτψτϕ,则有in i iis f ∆∑=1),(ηξ=i i i ni iit f ∆'''+'''''''∑=)()())(),((221τψτϕτψτϕ+σ.令△t=max{△t 1,△t 2,…,△t n },则当T →0时,必有△t →0. 又复合函数f(φ(t),ψ(t))关于t 连续,∴在[α,β]上有界,即 存在常数M ,使对一切t ∈[α,β],都有|f(φ(t),ψ(t))|≤M. 再由)()(22t t ψϕ'+'在[α,β]上连续,从而在[α,β]上一致连续,即 ∀ε>0, ∃δ>0,使当△t<δ时有)()()()(2222i i i i τψτϕτψτϕ'''+'''-''+''<ε, 从而|σ|≤εM ∑=∆ni i t 1=εM(β-α), 即σlim 0→∆t =0. 又由定积分的定义,得i i i ni i i t t f ∆'''+'''''''∑=→∆)()())(),((lim221τψτϕτψτϕ=⎰'+'βαψϕψϕdt t t t t f )()())(),((22. 故⎰Lds y x f ),(=in i iit s f ∆∑=→∆1),(limηξ=i i i ni iit t f ∆'''+'''''''∑=→∆)()())(),((lim 221τψτϕτψτϕ+0lim →∆t σ=⎰'+'βαψϕψϕdt t t t t f )()())(),((22.注:1、若曲线L 由方程y=ψ(x), x ∈[a,b]表示,且ψ(x)在[a,b]上有连续的导函数时,则有⎰L ds y x f ),(=⎰'+ba dx x x x f )(1))(,(2ψψ.2、当曲线L 由方程x=φ(y), y ∈[c,d]表示,且φ(y)在[c,d]上有连续的导函数时,则有⎰L ds y x f ),(=⎰'+dc dy y y y f )(1)),((2ϕϕ. 3、对空间曲线积分⎰L ds z y x f ),,(,当曲线L 由参量方程x=φ(t),y=ψ(t),z=χ(t), t ∈[α,β]表示时,有⎰Lds z y x f ),,(=⎰'+'+'βαχψϕχψϕdt t t t t t t f )()()())(),(),((222. 4、由第一型曲线积分的定义,在Oxy 平面上,线密度为ρ(x,y)的曲线状物体对x,y 轴的转动惯量分别为:J x =⎰L ds y x y ),(2ρ和J x =⎰L ds y x x ),(2ρ.例1:设L 是半圆周⎩⎨⎧==t a y ta x sin cos , t ∈[0,π],试计算第一型曲线积分⎰+Lds y x )(22.解:⎰+L ds y x )(22=⎰++π022222222cos sin )sin cos (dt t a t a t a t a =⎰π03dt a =a 3π.例2:设L 是y 2=4x 从O(0,0)到A(1,2)的一段,试求第一型曲线积分⎰L yds . 解:⎰L yds =⎰+20241dy yy =⎰⎪⎪⎭⎫ ⎝⎛++202241412y d y =202324134⎪⎪⎭⎫ ⎝⎛+y =)122(34-.例3:计算⎰L ds x 2,其中L 为球面x 2+y 2+z 2=a 2被平面x+y+z=0所截得的圆周.解:由对称性知,⎰L ds x 2=⎰L ds y 2=⎰L ds z 2,∴⎰L ds x 2=⎰++L ds z y x )(31222=⎰L ds a 32=33πa .例4:求线密度ρ(x,y)=21xy +的曲线段y=lnx, x ∈[1,2]对于y 轴的转动惯量.解:J x =⎰L ds y x x ),(2ρ=⎰+Lds x y x 221=⎰++21222111ln dx xx x x =⎰21ln xdx x =ln4-43.习题1、计算下列第一型曲线积分:(1)⎰+L ds y x )(, 其中L 是以O(0,0), A(1,0),B(0,1)为顶点的三角形; (2)⎰+L ds y x 22, 其中L 是以原点为中心,R 为半径的右半圆周;(3)⎰L xyds , 其中L 为椭圆22a x +22by =1在第一象限中的部分;(4)⎰L ds y ||, 其中L 为单位圆周x 2+y 2=1;(5)⎰++L ds z y x )(222, 其中L 为螺旋线x=acost, y=asint, z=bt(0≤t ≤2π)的一段;(6)⎰L xyzds , 其中L 是曲线x=t, y=3232t , z=21t 2(0≤t ≤1)的一段; (7)⎰+L ds z y 222, 其中L 为x 2+y 2+z 2=a 2与x=y 相交的圆周. 解:(1) ⎰+L ds y x )(=⎰+OA ds y x )(+⎰+AB ds y x )(+⎰+BO dsy x )( =⎰10xdx +⎰102dx +⎰10ydy =1+2.(2)右半圆的参数方程为:x=Rcos θ, y=Rsin θ, -2π≤θ≤2π. ∴⎰+L ds y x 22=⎰-222ππθd R =πR 2.(3)方法一:∵y=22x a a b-, y ’=22xa a bx -, ∴⎰L xyds =⎰-+-adx x a a x b x a x a b 02222222)(1=⎰--adx x b a a a b 0222242)(2=)(3)(22b a b ab a ab +++.方法二:L 的参数方程为:x=acos θ, y=bsin θ,0≤θ≤2π.∴⎰L xyds =⎰+202222cos sin sin cos πθθθθθd b a ab=⎰-++-2022222cos 2cos 2)(224πθθd a b b a ab =)(3)(22b a b ab a ab +++. (4)方法一:圆的参数方程为:x=cos θ, y=sin θ,0≤θ≤2π, ∴⎰L ds y ||=⎰πθθ0sin d -⎰ππθθ2sin d =4. 方法二:∵|y|=21x -, (|y|)’=21xx --,∴⎰L ds y ||=2⎰--+-11222111dx x x x=2⎰-11dx =4. (5)⎰++L ds z y x )(222=⎰++π2022222)(dt b a t b a =2232b a +π(3a 2+4π2b 2).(6)x ’=1, y ’=t 2, z ’=t,∴⎰L xyzds =⎰++⋅⋅102232121232dt t t t t t =⎰+129)1(32dt t t =143216. (7)依题意,L 的参数方程可表示为:x=y=2a cos θ, z=asin θ, 0≤θ≤2π,∴⎰+L ds z y 222=⎰πθ202d a =2a 2π.2、求曲线x=a, y=at, z=21at 2(0≤t ≤1, a>0)的质量,设线密度为ρ=az 2. 解:⎰L ds a z 2=⎰+10222dt t a a t =⎰+102212dt t a =)122(3-a.3、求摆线x=a(t-sint), y=a(1-cost) (0≤t ≤π)的质心,设其质量分布均匀.解:∵dx=dt t a t a 2222sin )cos 1(+-=2asin 2t dt ,m=2a ρ0⎰π02sin dt t=4a ρ0.∴质心坐标为x=⎰-πρ002sin 2)sin (1dt t a t t a m =⎰-π0)2sin sin 2sin (2dt t t t t a =34a;y=⎰-πρ002sin 2)cos 1(1dt t a t a m =34a .4、若曲线以极坐标ρ=ρ(θ) (θ1≤θ≤θ2)表示,试给出计算⎰L ds y x f ),(的公式,并用此公式计算下列曲线的积分: (1)⎰+L y x ds e22, 其中L 为曲线ρ=a (0≤θ≤4π)的一段; (2)⎰L xds , 其中L 为对数螺线ρ=ae k θ (k>0)在圆r=a 内的部分. 解:L 的参数方程为x=ρ(θ)cos θ, y=ρ(θ)sin θ, (θ1≤θ≤θ2),ds=θθθd d dy d dx 22⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=θθρθρd )()(22'+,∴⎰L ds y x f ),(=⎰'+21)()()sin ,cos (22θθθθρθρθρθρd f .(1)⎰+L y x ds e22=⎰40πθd ae a =4πae a . (2)⎰L xds =a ⎰∞-+022222cos θθθθθd e k a e a e k k k=a 2⎰∞-+022cos 1θθθd ekk =1412222++k k ka .注:∵⎰∞-02cos θθθd e k =⎰∞-02cos 21θθk de k =⎰∞-∞-+202sin 21cos 21d e ke kk k θθθθ=θθk e d k k 202sin 4121⎰∞-+=⎰∞--022cos 4121θθθd e kk k ; ∴⎰∞-⎪⎭⎫ ⎝⎛+022cos 411θθθd e k k =k 21,即⎰∞-02cos θθθd e k =1422+k k .5、证明:若函数f(x,y)在光滑曲线L: x=x(t), y=y(t), t ∈[α,β]上连续,则存在点(x 0,y 0)∈L ,使得⎰L ds y x f ),(=f(x 0,y 0)△L ,其中△L 为L 的弧长. 证:∵f 在光滑曲线L 上连续,∴⎰L ds y x f ),(存在,且⎰Lds y x f ),(=⎰'+'βαdt t y t x t y t x f )()())(),((22.又f(x(t),y(t))与)()(22t y t x '+'在[α,β]上连续,由积分中值定理知, ∃t 0∈[α,β],使⎰L ds y x f ),(=f(x(t 0),y(t 0))⎰'+'βαdt t y t x )()(22= f(x(t 0),y(t 0))△L. 令x 0=x(t 0), y 0=y(t 0), 则(x 0,y 0)∈L, 且⎰L ds y x f ),(=f(x 0,y 0)△L.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
i
f ( ( i), ( i)) 2 ( i) 2 ( i )t i . (4)
令 t max{t1 , t 2 ,
t 0
, t n }, 则当 T 0 时, 必有
t 0. 现在证明 lim 0.
这里 t i 1 i, i ti . 设
f ( ( i), ( i))[ 2 ( i ) 2 ( i ) 2 ( i) 2 ( i)]ti ,
i 1 n
则有
f ( , )s
i 1 i i n i 1
n ||T || 0
, n). 若有极限
i i i
lim
f ( , )s
i 1
J,
且 J 的值与分割 T 与点 ( i , i ) 的取法无关, 则称此 极限为 f ( x , y ) 在 L 上的第一型曲线积分, 记作
L
f ( x , y )ds .
若 L 为空间可求长曲线段 , f ( x , y , z ) 为定义在 L上 的函数, 则可类似地定义 f ( x , y , z )在空间曲线 L 上
, k ) 都存在, 则 L f ( x , y )ds
也存在, 且
L
L
f ( x , y )ds f ( x , y )ds .
i 1 Li
k
3. 若 f ( x , y )ds 与 g ( x , y )ds都存在, 且在 L 上
L
f ( x , y ) g( x , y ), 则
且
L
f ( x , y )ds g ( x , y )ds .
L
|ds 也存在, 4. 若 L f ( x , y )ds 存在,则 L |f ( x , y ) | f ( x , y )ds | | f ( x , y ) | ds.
L L
5. 若 L f ( x , y )ds 存在, L 的弧长为 s, 则存在常数
的第一型曲线积分, 并且记作
L
f ( x , y , z )ds .
于是前面讲到的质量分布在曲线段 L 上的物体的质
量可由第一型曲线积分 (1) 或 (2) 求得. 1. 若L f i ( x , y )ds( i 1, 2,
k i 1 k
, k ) 在 ci ( i 1, 2,
, k )为
(2) 近似求和:在每一个 i 上任取一点 Pi . 由于
f ( P ) 为 上的连续函数, 故当 i 的弧长都很小时,
每一小段 i 的质量可近似地等于f ( Pi ) i , 其中 i
为小曲线段 i 的长度. 于是在整个 上的质量就近似地等于和式
f ( P ) .
0 z f ( x , y )的部分的面积就是 f ( x , y )ds .
L
z
z f ( x, y 20 1
二. 第一型曲线积分的计算
x ( t ), t [ , ], 定理20.1 设有光滑曲线 L : y ( t ), f ( x , y ) 为定义在 L 上的连续函数, 则
L
f ( x, y )ds
2 2 f ( ( t ), ( t )) ( t ) ( t )dt . (3)
证 由弧长公式知道, L 上由 t ti 1 到 t ti 的弧长
si
ti t i 1
2 ( t ) 2 ( t )dt .
一. 第一型曲线积分的定义
设某物体的密度函数 f ( P ) 是定义在 上的连续函 数当 是直线段时, 应用定积分就能计算得该物体 的质量. 现在研究当 是平面或空间中某一可求长度的曲线 段时物体的质量的计算问题.
(1) 分割:把 分成 n 个可求长度的小曲线段 i
( i 1, 2, , n).
c, 使得
L
L
f ( x , y )ds cs ,
L
这里 inf f ( x , y ) c sup f ( x , y ).
6. 第一型曲线积分的几何意义 若 L 为坐标平面 Oxy上的分段光滑曲线, f ( x , y ) 为L 上定义的连续非负函数. 由第一型曲线的定义, 易见 以 L为准线, 母线平行于 z 轴的柱面上截取
i 1 i i
n
(3) 当对 的分割越来越细密(即 d max i 0 )
1i n
时, 上述和式的极限就应是该物体的质量. 由上面看到, 求物质曲线段的质量, 与求直线段的质
量一样, 也是通过“分割、近似求和、取极限”来得 到的. 下面给出这类积分的定义. 定义1 设 L 为平面上可求长度的曲线段, f ( x , y ) 为
由 2 (t ) 2 ( t ) 的连续性与积分中值定理, 有
si 2 ( i ) 2 ( i )ti (ti 1 i ti ).
所以
f ( , )s
i 1 i i
n
i
i 1
n
2 2 f ( ( i ), ( i )) ( i ) ( i )t i ,
定义在 L 上的函数. 对曲线 L 做分割 T ,它把 L 分成
n 个可求长度的小曲线段 Li ( i 1, 2,
1 i n
, n), Li 的弧长
记为 si , 分割 T 的细度为 || T || max si , 在 Li 上任取 一点 ( i ,i ) ( i 1, 2,
常数, 则 L ci f i ( x , y )ds 也存在, 且
c
L i 1
i
f i ( x , y )ds ci f i ( x , y )ds .
i 1 L
k
2. 若曲线段 L 由曲线 L1 , L2 ,
, Lk 首尾相接而成,
Li
f ( x , y )ds ( i 1,2,