复变函数第五章1留数

合集下载

高等数学课件-复变函数与积分变换 第五章 留数 §5.1 留数定理及留数的求法

高等数学课件-复变函数与积分变换 第五章 留数 §5.1 留数定理及留数的求法

0
的去心邻域内的罗朗展开式为:
sin z
1 z2
z4
L
1n z2n
L
z
3! 5!
2n 1!
故负幂次项 z1的系数 C1 0 ,即
Res
sin z
z
, 0
0
若孤立奇点z0为f (z)的可去奇点,则
Res f (z), z0 0
例1.3
函数
f
(z)
1 z(z 1)2

z
1 处有一个
二级极点,这个函数又有下列罗朗展开式:
n
Ñc f zdz 2πiRes f z, zk (1.3) k 1
证 把在c内的孤立奇点 zk k 1,2,L ,n
用互不包含的正向简单闭曲线 ck 围绕起来 (如图5-1)
图5-1
蜒c f zdz
c1
f
z
dz
蜒 f c2
zdz L
cn
f
z dz
以 2 i 除等式两边,得
1
Cm 0
Байду номын сангаас
g z Cm Cm1 z z0 L C1 z z0 m1
C0 z z0 m L
在点 z0 是解析的,且 g z0 Cm 0

f
z
gz z z0 m
,有 z
z0 m
f
z
gz
上式两端对 z 求导 m 1 次,并取极限(z z0),

lim
在 z 1的去心邻域
0 z 1 1
内的罗朗展开式,由于
f
z
z
1
12
z
1
1
n0
1n
z

复变函数第五章留数

复变函数第五章留数
第五章 留数
§1 孤立奇点 §2 留数
1
§5.1 孤立奇点
一、孤立奇点定义
如果函数f z在z0不解析, 但在z0的某个去心邻域
0 z z0 内处处解析, 则称z0为f z的孤 立 奇 点.
例如
1 sin
1
, z0
=
0为奇点,
但不是孤立奇点.
z
z 1 n 1,2,为奇点, n , z 0,
]
sinz
cosz
zzk
sinz sinz
z
zk
1
tgzdz
C
2i 8 1 16i
31
例4 计算 z4 sin 1 dz, C为 z 1 2.
C
z
解 奇点:z 0, 奇点类型不清楚,

z4
sin 1 z
z4
1 z
1 3! z3
1 5! z5
1 7! z7
z3
z 3!
1 5! z
1 7! z3
Re
s
f
z,0
c1
1 120
C
z4
sin
1 z
dz
2i
Re
s
f
z,0
60
i
32
例5 计算
C
z z4 1
dz,C为 z
2,正向.
解 显然 z 1,i 都是 f z 的一级极点,
f z ( z z0 )m z ,
其中 z在z0解析,且 z0 0,m为正整数,

z

0
f
z
的m


点.
例如 对于 f z z(z 1)3,z0 0, z0 1分别是其一级

第5章-留数及其应用02-留数

第5章-留数及其应用02-留数

3 留数的计算方法
例1: 解: 因为
z 1, z 2,
f (z)dz
z 3
Re s[
f
( z ), 1]
lim
z1
( ห้องสมุดไป่ตู้
1)
(z
ez 1)( z
2)
lim
z1
ez z
2
e
Re s[
f
( z ),
2]
lim
z2
( z
2)
(z
ez 1)( z
2)
lim
z2
ez z
1
e
2
解:
注: 当极点的级数高(三级或者三级以上),则计算繁杂.
第五章 留数及其应用
第二讲 留数与留数定理
主要内容
1. 留数的定义 2. 留数定理 3. 留数的计算方法 4. 函数在无穷远点的留数
1 留数的定义
回顾:复变函数的积分 柯西-古萨基本定理: 柯西积分公式: 高阶导数公式: 闭路变形原理:
明星公式:
2 留数定理
如果函数 f(z) 在某区域 D 内除有限个孤立奇点外处处解析, 则利用复合闭路定理可以得到留数的一个基本定理. 定理: 设 f(z) 在区域内 D 除有限个孤立奇点z1, z2,…,zn外处处解 析, C 是 D 内包含所有奇点在其内部的分段光滑正向曲线, 则
f (z)dz
z 3
f (z)dz
z 2
4 函数在无穷远点处的留数
N 1
Res f (z), zk Res f (z), 0
k 1

《复变函数》第5章

《复变函数》第5章

例: 对 f (z) z3 1.
f (1) 0, f (1) 3z 2 z 1 3 0
z 1 是 f (z)的一级零点.
2020/4/6
《复变函数》(第四版) 第五章
第7页
定理: z0 是 f (z)的m级极点
证:
f
(z)
(z
1 z0
)m
g
(z)
z0

f
1 的m级零点. (z)
f
复 变 函 数(第四版)
第五章 留 数
§1 孤立奇点 §2 留数 §3 留数在定积分计算上的应用 *§4 对数留数与辐角原理
2020/4/6
《复变函数》(第四版) 第五章
第1页
§1 孤立奇点
1. 定 义
如果函数 f (z)在 zo处不解析, 但在 zo的某 一去心邻域 0 < | z-zo |<δ处处解析, 则称zo 为函数 f (z)的孤立奇点. 例:z 0 为 f (z) sin 1 的孤立奇点 .
5
2020/4/6
《复变函数》(第四版) 第五章
第4页

z = 0 分别是 本性奇点.
sin z
z
,
sin z4
z
,
sin
1 z
的可去、3极、
(1) zo为 f(z)的可去奇点
相当于实函可去间断点
lim f (z)存在且有限
zz0
f (z)在zo点的某去心邻域内有界.
(2) zo为 f (z)的极点
例:
z
0

ez 1 z2
的一级极点.
z
1

(z 1)3 sin( z 1)
的二级零点.

《复变函数与积分变换》 留数—计算规则

《复变函数与积分变换》 留数—计算规则

三、在 ∞ 点的留数 定义 2.2 设 ∞ 是 f ( z ) 的孤立奇点 , 则 f ( z ) 在 R < z < +∞ 内解析 ,
C 是 R < z < +∞ 内一条简单闭
y C
O
§5.2 留 数 —— 在 ∞ 点的留数
R
x
定理 2.2 若 f ( z ) 在 C U {∞} 上有有限个奇点:z1 ,L , z n , ∞ , 则
1 P ( z ) , z = 0 是 f ( z ) 的 3 级极点 . z3 1
解二:把 f ( z ) 在 z = 0 点展成洛朗级数 :
z − sin z 1 = 6 z6 z = 1 3 1 5 1 7 z − z − 3! z + 5! z − 7! z + L
O
1 = − c1 . ∫ C f ( z ) dz, 则 Res f ( z ) , ∞ 2π i Ñ
× zn
f ( z ) ,∞ . = − 2π i Res
§5.2 留 数 —— 在 ∞ 点的留数
规则 IV Res [ f ( z ), ∞ ] = − Res f ( )
(5)
假设 z0 是 f ( z ) 的 k 级极点 , k < m ,
f ( z ) = c− k ( z − z0 )
−k
+ L + c−1 ( z − z0 ) + c0 + c1 ( z − z0 ) + L
−1 m− k
( z − z0 )
0
m
f ( z ) = c− k ( z − z0 )
§5.2 留 数 —— 计算规则

复变函数5章:留数

复变函数5章:留数
3z + 2 1 3z + 2 = 2 2 z (z + 2) z z + 2
而 3z + 2 在z=0处解析,且不等于0,所以z=0为二级极点 =0处解析 且不等于0 所以z=0为二级极点 处解析,
z+2
§5.1 孤 立 奇 点
二 孤立奇点的分类
2. 极 点 【例】求下列函数的奇点,如果是极点,指出级数 求下列函数的奇点,如果是极点,
f (z) = ∑cn (z − z0 )n , ( 0 < z − z0 < δ )
∞ n=0
则称孤立奇点 则称孤立奇点z0为f(z)的可去奇点 孤立奇点z 【注】令f(z0)=c0,则f(z)在z0处解析
§5.1 孤 立 奇 点
二 孤立奇点的分类
f (z) =
n=−∞
cn (z − z0 )n , ∑
z→z0
或写作 lim f (z) = ∞.
z→z0
§5.1 孤 立 奇 点
二 孤立奇点的分类
2. 极 点 【例】求下列函数的奇点,如果是极点,指出级数 求下列函数的奇点,如果是极点,
3z + 2 (1) f (z) = 2 , z (z + 2)
1 (2) 3 z − z2 − z + 1
解:(1) z=0, -2为函数f(z)的孤立奇点 为函数f 由于
3z + 2 (1) f (z) = 2 , z (z + 2)
1 (2) 3 z − z2 − z + 1
解:(1) z=0, -2为函数f(z)的孤立奇点 为函数f 同理
1 3z + 2 3z + 2 = 2 z (z + 2) z + 2 z 2

复变函数 第五章留数

复变函数 第五章留数

F(t)
c
n
t
n
cnt
n
(2)
n 1
n0
第五章 留数
相应地规定:如果 t = 0 是 F(t) 的可去奇点、m 级极点或本
性奇点,则称z 是 f (z) 的可去奇点、m 级极点或本性奇点。
将式(1)写成
f
(z)
c
n
z
n
c0
cn zn
(3)
n 1
n 1
将式(2)写成
F(t)
cn t n
c0
cnt
( n 0, 1, 2, , m 1)
f
(m) (z0 ) m!
a0
0
故必有 f (z) cm (z z0 )m cm1(z z0 )m1 cm2 (z z0 )m2
(z z0 )m[cm cm1(z z0 ) cm2 (z z0 )2 ]
(z z0)m (z)
根据 0 z z0 内 f (z) 的 Laurent 级数的不同,孤立奇点 分为三种类型。
第五章 留数
1、可去奇点
如果 Laurent 级数中不含 z z0 的负幂项,孤立奇点 z0 称为 f (z) 的可去奇点。

c0 c1(z z0 ) cn (z z0 )n
在 0 z z0 内收敛于 f (z) 。
lim f (z)
zz0

lim f (z)
z z0
第五章 留数
如果 f (z)以 z0为其孤立奇点,则下列四个条件是等价的。 它们中的任何一条都是 m 级极点的特征:
(1) f (z) 在以 z0 点为中心的去心邻域内的 Laurent 级数只 有有限多个 z z0 的负幂项;

复变函数之留数定理

复变函数之留数定理

∫ f
( z )在a点的留数:Res [
f
(z), a]
=
a−1
=
1

i
f (ζ )dζ ,
C
它是f (z)在a的充分小去心邻域内洛朗展式中 z−1a 的系数。
故∫C f (ζ )dζ = 2π i Res[ f (z), a],
C:在a的使f (z)解析的去心邻域K 内 < 任一条围绕 a 的正向闭路。
第五章 留数及其应用
留数是复变函数又一重要概念,有着非常广泛的应用.
5.1 留数定理
一 、留数的定义和计算
设 a 是 f (z) 的孤立奇点, 则∃δ > 0,使得
f (z)在K : 0 < z − a < δ 解析,f (z)在K内可展为洛朗级数:
∑+∞
f (z) =
an(z − a)n,
n=−∞
留数定理(P103定理1):设f (z)在闭路C上解析, y
C
∫ ∑ 在C内部除n个孤立奇点a1, a2 ,, an外解析,则 n
a1 C1 a2 C2
C
f (z)d z
=

i Res f (z), ak 。
k =1
0 a3 C3
证明 ∀k =1, 2,n, 以ak为圆心作充分小的圆周Ck ,
an Cn
x
使得C1,C2 ,,Cn都在C 的内部,且它们彼此完全分离(如图)。
由多连通区域柯西积分定理和留数定义得
n
n
∫ ∑ ∫ ∑ C
f (z)d z =
k =1
Ck
f (z)d z = 2π i Res f (z), ak 。#
k =1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

证明: 若z0是f (z)的m阶零点 即 f (z) (z z0 )m(z)
((z)在 z0 处解析, 泰勒级数:(z) a0 a1(z z0 ) )
f (z)在z0处的泰勒级数为
f (z) a0 (z z0 )m a1 (z z0 )m1 a2 (z z0 )m2
f (z0 ) f (z0 ) f (m1)(z0 ) 0, f (m)(z0 ) a0 0.
则孤立奇点z0称为 f (z)的本性奇点.
例如:f (z) sin 1 以z 1为它的本性奇点
因为sin
1
1 z
在z 1的去心邻域0 z 1 上的罗朗展式为
1
1
z
sin
(1)n ( 1 )2n1
1 z n0 (2n 1)! 1 z
1 ( 1 ) 1 ( 1 )3 (1)n ( 1 )2n1
z 1是f (z)的本性奇点.
或 z沿实轴从点1的右侧趋向于1
z沿实轴从点1 的左侧趋向于1
1
lim e z1极限不存在,且不为 z 1
z 1是f (z)的本性奇点课. 件
1
lim e z1
z1
1
lim e z1 0,
z1
9
综上所述:
定理5.1 若函数f (z)在0 z z0 R内解析,则
z 1是(z2 1)( z 2)3的一级零点
z 2是(z2 1() z 2)3的三级零点,
z 1是f (z)的二级极点,(见例7,m 1 3 n)
z 2是可去奇点, (见例7,m 3 n)
z 0,2,3, 4, 是f (z)的三级极点.
(见例7, m 0 3 n)
k
课件
3
5.1.1 孤立奇点的定义及分类
定义: 若 f (z)在 z0不解析,但在0 z z0 内解析,
则称z0为f (z)的一个孤立奇点.
若z0为f (z)孤立奇点,
则f (z)在z0的去心邻域(圆环域)
0 z z0 上解析.
f (z)在0 z z0 上的罗朗展开式
cn (z z0 )n 存在
z
1
z n 1 z z2 课件 zn
z 1
1 z n0
2
5.1 解析函数的孤立奇点
引例:求下列函数的奇点(不解析点) z2 3
(1) f (z) (z 1)( z 3)
z1 1, z2 3
(2)
f
(z)
1
sin
z
z 0为奇点,
-3
1
z 1 k 1,2, 也是奇点,
z 0为可去奇点. 课(件见例7, m 3 n)
19
3)
f (z)
(z2 1)( z 2)3
(sin z)3
解: sinz 0 z n zk 0,1,2, 奇点
又(sinz) 0 z zk
z zk 是(sin z)3的三级零点,
z 1是z2 1的一级零点 z 2是(z 2)3的三级零点,
z3
(1)n
n0
z2n1 z
(2n 1)! z3
1 3!
z2 5!
z4 7!
z 0为可去奇点.

(sinz z) 0,(sinz z)' 0,
z0
z0
(sinz z)'' 0,(sinz z)(3) 0
z0
z0
z 0是(sin z z)的三级零点。
z 0是z3的三级零点。
例5:考察函数 f (z) z sin z 在原点的性质 解: f (z)在z 0解析 f (0) 0
f '(z) 1 cosz f '(0) 0
f "(z) sin z f "(0) 0 f "'(z) cosz f "'(0) 1 0
所以,z 0是f (z)的三阶零点。
若f (z)在 0 z z0 R 上解析,则f (z) cn (z z0 )n
ez
zn
z2
zn
1 z
n0 n!
2!
n!
n
z
sin z (1)n
z 2n1
z3 z5 z
n0
(2n 1)!
3! 5!
z
cos z
(1)n
z2n
1 z2 z4
n0
(2n)!
2! 4!
sin z 1 (z 1 z3 1 z5 ) z z 3! 5!
1 1 z2 1 z4 3! 5!
z 0为f (z)的可去奇点。
课件
5
(2)极点:罗朗级数中含有限多个(z z0 )负幂项; 如果在罗朗级数中只有有限多个zz0的负幂项,且其中
关于(zz0)1的最高幂为 (zz0)m, 即
f (z)=cm(zz0)m+...+c2(zz0)2+c1(zz0)1+c0+c1(zz0)+...
(m1, cm0),则孤立奇点z0称为函数 f (z)的m阶极点.
上式也可写成 其中 g (z) =
f (z)
cm+
(z
1 z0 )m
g(
cm+1(zz0) +
z) ,()
cm+2(zz0)2
+...
z0
n-
我们根据罗朗展式中负幂项的多少,对孤立奇点进行分类:
(1)可去奇点:若罗朗展式中不含有(z z0 )负幂项,
我们 称z0为课f件( z )的可 去奇点.
4
这时, f (z)= c0 + c1(zz0) +...+ cn(zz0)n +.... 0<|zz0|< ,
显然,lim f (z) 则在圆z域z0|zz0|<
课件
20
5.1.3 孤立奇点 的定义及分类 定义: 距离原点无限远的点,统称为无穷远点 ,记作
由于函数在无穷远点没有定义,所以无穷远点总是一个 奇点。我们关心的是,在怎样的情况下,构成孤立奇点?
反之
泰勒级数的系数cn
f (n() z0 ) , n!
c0 c1 cm1 0, cm 0,
f (z) cm (z z0 )m cm1(z z0 )m1
(z z0 )m[cm cm1(z z0 ) ] (z z0 )m g(z)
g(z)为对应的和函数,g(z)课在件 z0解析,g(z0 ) cm 0 13
c0.补充定义f (z0 ) c0
内就有 f (z)=c0+c1(zz0)+...+cn(zz0)n
+...,
从而函数 f (z)在z0就成为解析的了.所以z0称为可去奇点.
例1:f (z) sin z z 0是f (z)的奇点,孤立奇点。 z
f (z)在z 0去心邻域 0 z 内的罗朗级数为
z0为f
(z)的可去奇点
lim
z z0
f
(z)存在且有限
z0为f
(z)的极点
lim
z z0
f
(z)
z0为f (z)的本性奇点
lim
z z0
f
(z)不存在且不为
我们可以利用上述极限的不同情形来判别孤立奇点的
类型.
课件
10
例4 判定下列函数的孤立奇点的类型。
ez 1 (1)
z
z 0为孤立奇点
lim ez 1 lim (ez 1)' lim ez 1 z 1为可去奇点。
(4) 例7的结论
若z a 分别是(z)与 (z)的m阶与n阶零点,则
当m n时,z a为(z) 的(m n)阶零点, (z)
当m n时,z a为(z) 的(n m)阶极点,
当m
n时,z
(z) 课a件为
(
z)
的可去奇点.
17
(z)
例8 下列函数有什么奇点?如果是极点,指出其阶数。
ez 1 1) f (z) z2
解 奇点为z 0.
f (z)在z 0的去心邻域0 z 1内的洛朗级数
f (z)
ez 1 z2
1 z2
(
n0
zn n!
1)
1
1 zn,
z n0 (n 2)!
z 0是f (z)的一级极点. (定义)
或 (ez 1) 0,(ez 1) 0
c os z
解: f (z)的奇点是满足cos z 0的点,这些点是
zk k
因为(cosz)'
2
(k
0,1, sin z
)
0
z zk
z zk
所以,zk 是 cos z 的一阶零点
zk

1 c os z
的一阶极点。课件
15
例7 设(z)与 (z)分别以z a为m阶与n阶零点
问1)(z) (z) 、 2 )(z) (z) 在 z a 有何性质? 解 可设 (z) (z a)m1(z) (z) (z a)n 1(z)
z0
z0
z2 (z2 ) 0,(z2 ) 0,
z0
z0
z0
z 0是ez 1的一级零点,
z 0是z2的二级零点,
z 0是f (z)的一级极点. (见例7, m 1 2 n)
课件
18
sin z z 2) z3
解:奇点为 z 0
函数在z 0的去心邻域内对应的罗朗级数为:
sin z z
Pn (z) (z z0 )m Qnm (z)
Qnm (z)是一个(n-m)次多项式,在z0解析,且Qnm (z0 ) 0,
所以,z0是Pn (z)的m阶零点。
问题: z 0 f (z) z sin课z件 零点的阶数?
相关文档
最新文档