复变函数1-5 习题课解析
复变函数课后部分答案讲解

x y
1 3
2 ,
8
即
x 1 .
y 11
3.将下列复数化为三角式和指数式: 1) 5i; 3)1 i 3;
解:
1)z
5[cos(
)
i
sin(
)]
5e 2
i
;
2
2
3) z
2[cos(
)
i
sin(
)]
2e 3
i
;
3
3
4. 求下列各式的值:
1)(1 i 3)10;
知识点3.
课堂练习:
2.若(1 i)n (1 i)n , 试求n的值。
解:由已知可得,
n
22 (cos
n
i sin
n
)
n
22 (cos
n
i sin
n
),
即
4
4
4
4
sin n sin n
4
4
n n 2k.
44
则n 4k, k Z.
ecos1[cos(sin1) i sin(sin1)]
Im{exp[exp(i)]} ecos1 sin(sin1);
sin(1 i) ei(1i) ei(1i)
e1i e1i
2i
2i
e1(cos1 i sin1) e1(cos1 i sin1) 2i
知识点4. 知识点5.
知识点6.
课堂练习: 4.讨论函数f (z) x3 i(1 y)3的可导性与解析性。
解:因为u x3, v (1 y)3,
复变函数论第三版课后习题答案解析

第一章习题解答(一)1.设z ,求z 及Arcz 。
解:由于3i z e π-== 所以1z =,2,0,1,3Arcz k k ππ=-+=±L 。
2.设121z z =,试用指数形式表示12z z 及12z z 。
解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。
3.解二项方程440,(0)z a a +=>。
解:12444(),0,1,2,3k ii za e aek πππ+====。
4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。
证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
复变函数与积分变换课后习题答案详解

…复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)/——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππ2222e cos isin i i 442222-⎛⎫⎛⎫⎛⎫=-+-=+-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 3331313;;;.22n i i z i ⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解: ∵()()()()(){}332321i 31i 3113133133288-+⎛⎫-+⎡⎤⎡⎤==--⋅-⋅+⋅-⋅-⎪ ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴1i 3Re 12⎛⎫-+= ⎪ ⎪⎝⎭, 1i 3Im 02⎛⎫-+= ⎪ ⎪⎝⎭. ④解:∵()()()()()2332313133133i 1i 328⎡⎤--⋅-⋅-+⋅-⋅-⎛⎫⎢⎥-+⎣⎦= ⎪ ⎪⎝⎭()180i 18=+=∴1i 3Re 12⎛⎫-+= ⎪ ⎪⎝⎭, 1i 3Im 02⎛⎫-+= ⎪ ⎪⎝⎭. ⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩.∴当2n k =时,()()Re i 1k n =-,()Im i 0n =; 当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++ ①解:2i 415-+=+=.2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i 51365++=++=⋅=.()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 2222++== ()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈,则z x x ==.∴z z =.命题成立.5、设z ,w ∈,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式 3352π2π;;1;8π(13);.cos sin 7199i i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i 17e 5025i θ⋅--==其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e i i =③解:ππi i 1e e -==④解:()28π13i 16ππ3θ-==-.∴()2πi 38π13i 16πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3) 33i的平方根.⑴i 的三次根. 解:()133ππ2π2πππ22i cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ31cosisin i 662=+=+z .25531cos πisin πi 662=+=z39931cos πisin πi 662=+=-z⑵-1的三次根 解:()()1332π+π2ππ1cos πisin πcosisin 0,1,233k k k +-+=+=∴1ππ13cos isin 332=+=z2cos πisin π1=+=-z35513cos πisin π332=+=-z33i 的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i44ππ2π2π4433i 6e 6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬ ⎪⎝⎭⎩⎭,其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
复变函数课后习题讲解

e 2 k (cos ln 3 i sin ln 3), (1 i )i eiLn (1i ) e e
1 ( 2 k ) 4
k 0, 1, 2, e
i ln 2 ( 2 k ) 2 4
i[ln 1 i ] i (arg(1 i ) 2 k )
2
2
15.求Ln(i),Ln(3 4i)和它们的主值。
解 Ln(i ) Ln i i (arg(i ) 2k ) i (
2
2k )
1 i (2k ), k 0, 1, 2, 2 i ln(i ) ln i i arg(i ) 2 Ln(3 4i ) ln 3 4i i[arg(3 4i ) 2k ] 4 ln 5 i[( arctan ) 2k ] 3 4 ln 5 i[(arctan (2k 1) )], k 0, 1, 2, 3 4 ln(3 4i) ln 3 4i i arg(3 4i ) ln 5 i ( arctan ) 3
3 i
0
z 2 dz z 2 dz z 2 dz z 2 dz z 2 dz.
0 i c3 c4
i
3 i
C3 : z it 0 t 1 ; C4 : z 3t i 故
0 t 1 ,
26 i 3
3 i
0
z dz t idz 3t i 3dt 6
1 i t 1 i 2t dt= 1 i t 2 i 2t 3 dt
0 0
1 5 1 i = 1+i i. 6 6 3 3
复变函数课后部分习题解答精编版

(1)(3-i)5解:3-i=2[cos( -30°)+isin(-30°)] =2[cos30°- isin30°](3-i)5=25[cos(30°⨯5)-isin(30°⨯5)]=25(-3/2-i/2) =-163-16i(2)(1+i )6解:令z=1+i 则x=Re (z )=1,y=Im (z )=1 r=z =22y x +=2tan θ=x y =1x>0,y>0∴θ属于第一象限角∴θ=4π ∴1+i=2(cos4π+isin 4π) ∴(1+i )6=(2)6(cos 46π+isin 46π) =8(0-i )=-8i1.2求下式的值 (3)61-因为-1=(cos π+sin π)所以61-=[cos(ππk 2+/6)+sin(ππk 2+/6)] (k=0,1,2,3,4,5,6).习题一1.2(4)求(1-i)31的值。
解:(1-i)31 =[2(cos-4∏+isin-4∏)]31=62[cos(12)18(-k ∏)+isin(12)18(-k ∏)](k=0,1,2)1.3求方程3z +8=0的所有根。
解:所求方程的根就是w=38-因为-8=8(cos π+isin π) 所以38-= ρ [cos(π+2k π)/3+isin(π+2k π)/3] k=0,1,2其中ρ=3r=38=2即w=2[cosπ/3+isinπ/3]=1—3i1w=2[cos(π+2π)/3+isin(π+2π)/3]=-22w=2[cos(π+4π)/3+isin(π+4π)/3]= 1—3i3习题二1.5 描出下列不等式所确定的区域或者闭区域,并指明它是有界还是无界的,单连通还是多连通的。
(1) Im(z)>0解:设z=x+iy因为Im(z)>0,即,y>0而)x-∞∈,(∞所以,不等式所确定的区域D为:不包括实轴的上半平面。
复变函数习题及解答

第一章 复变函数习题及解答1.1 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数)(1)1-; (2)ππ2(cosisin )33-; (3)1cos isin αα-+;(4)1ie +; (5)i sin R e θ; (6)i +答案 (1)实部-1;虚部 2;辐角为4π2π,0,1,2,3k k +=±±;主辐角为4π3;原题即为代数形式;三角形式为4π4π2(cosisin )33+;指数形式为4πi 32e .(2)略为 5πi 35π5π2[cos sin ], 233i e +(3)略为 i arctan[tan(/2)][2sin()]2c e αα(4)略为 i;(cos1isin1)ee e +(5)略为:cos(sin )isin(sin )R R θθ+(6)该复数取两个值略为 i i isin ),arctan(1isin ),πarctan(1θθθθθθθθ+=+=+1.2 计算下列复数 1)()103i 1+-;2)()31i 1+-;答案 1)3512i 512+-;2)()13π/42k πi632e 0,1,2k +=;1.3计算下列复数(1 (2答案 (1(2)(/62/3)i n eππ+1.4 已知x 的实部和虚部.【解】令i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得到2212()2i x p q xy +=-+,根据复数相等,所以即实部为 ,x ±虚部为 说明 已考虑根式函数是两个值,即为±值.1.5 如果 ||1,z =试证明对于任何复常数,a b 有||1az bbz a +=+【证明】 因为||1,11/z zz z z =∴=∴=,所以1.6 如果复数b a i +是实系数方程()01110=++++=--n n n n a z a z a z a z P 的根,则b a i -一定也是该方程的根.证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且()()kkz z =,故由共轭复数性质有:()()z P z P =.则由已知()0i ≡+b a P .两端取共轭得 即()0i ≡-b a P .故b a i -也是()0=z P 之根.注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点.1.7 证明:2222121212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 1.8 若 (1)(1)n n i i +=-,试求n 的值.【解】 因为222244444444(1)2(cos sin )2(cos sin )(1)2(cos sin )2(cos sin )n nnnn n n n n n n n i i i i i i ππππππππ+=+=+-=-=- 所以 44sin sin n n ππ=- 即为4sin 0n π=所以4,4,(0,1,2,)n k n k k ππ===±±1.9将下列复数表为sin ,cos θθ的幂的形式 (1) cos5θ; (2)sin5θ答案 53244235(1) cos 10cos sin 5cos sin (2) 5cos sin 10cos sin sin θθθθθθθθθθ-+-+1.10 证明:如果 w 是1的n 次方根中的一个复数根,但是1≠w 即不是主根,则必有1.11 对于复数,k k αβ,证明复数形式的柯西(Cauchy)不等式:22221111||(||||)||||n n nnk k k k k kk k k k αβαβαβ====≤≤∑∑∑∑ 成立。
复变函数课后习题答案(全)

复变函数课后习题答案(全)习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数: (3) 13i(4).8 21 .i 4i ii 1 i13 2i 解: (1) z3 2i 131 3i .3 3i 3 5i(3) z -ii 1 i2 2 因此, Rez 35 Im z532(4).8 z i 4i 21 i1 4i i1 3i因此, Rez 1, Im z 3,2.将下列复数化为二角表达式和指数表达式:(1)i (2) 1 Vi (3)r(si ni cos )(4) r(cosisin )( 5) 1 cos i sin(02 )解: (1) i cosi sin - —i-e 22 22一i(2) 1 2(cosi..2 isin32e 3 (3) r(sin icos ) r[cos (-i sin(-)](1)13~2\(2) \ (\ 1)(\ 2)因此:Rez3 13 Im z2 13(2)zi (i 1)(i 2)i 1 3i 3 i 10因此,Rez3 10Im z 1 10(4) r(cos isin ) r[cos( ) i sin( )] re(5) 1 cos isin 2sin 2i sin — cos-2 23.求下列各式的值:(1) (\3 i)5(2)(1 100i) (1 100i)(3) (1 \3i)(cos(1 i)(cos isin )i sin ) 2(cos5 isin5 )3(cos3 isin 3(5) (6) d i解: (1) (七i)5[2(cos(舌)isin( -))]5 6(2) (1 100i) (1 100 50i) (2i) (2i)502(2)50251(3) (1 i sin ) (1 i)(cos isin )(4)2 (cos5 isin5 )(cos3 isin3 )3(5) cos— isin —2 2\ 2(cos —isin )44.设z-ii,试用三角形式表示z1z2与-ZZ2解:z1 cos i sin , z24 42[cos( ) i sin()],所以6 6弓勺2[cosq g is"(4 6)]5.解下列方程:(1) (z i)5 1 (2) z4 a40 (a 0) 解:(1)z i 51,由此从而z由此,左端=右端,即原式成立。
复变函数经典习题及答案

于是 z 2i 9i
3
cos
π 2
2kπ
π i sin 2
2kπ
,
2
2
k 0,1
故z132来自223
2
2
i
,
z2
3 2
2 2 3 2 i. 2
3
例5 满足下列条件的点组成何种图形?是不是区 域?若是区域请指出是单连通区域还是多连通区域.
(1) Im (z) 0;
解 Im (z) 0是实数轴,不是区域.
使C1和C2也在C内,且C1与C2互不相交,互不包含,
据复合闭路定理有
y
ez
C z(1 z)3 dz
C1
ez z(1
z)3dz
ez C2 z(1 z)3 dz
C1
C
•
O 1x C2
30
而积分
C1
ez z(1
z)3dz即为2)的结果2i,
而积分
C2
ez z(1
z)3dz
即为3)的结果
x
y
x
y
由于 f (z) 解析,所以 u v , u v x y y x
即 2bxy 2cxy b c,
3ay2 bx2 3x2 cy2 3a c,b 3 故 a 1, b 3, c 3.
11
例5 研究 f (z) z Re z 的可导性.
解 设 z0 x0 iy0 为 z 平面上任意一定点,
1( x iy), 9
于是 w u iv 1 x 1 iy u 1 x, v 1 y
99
9
9
u2 v2 1 ( x2 y2) 1 表示 w 平面上的圆.
81
9
6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从几何上看,
两复数对应的向量分别为
z1 ,
z2 ,
先把
z1
按逆时针方向
•z
y
旋转一个角2 ,
r • z1
再把它的模扩大到 r2 倍, 所得向量 z 就表示积 z1 z2 .
o
2 1
r1
•
r2
z2
x
复数相乘就是把模相乘, 辐角相加.
13
两个复数的商的模等于它们的模的商; 两个 复数的商的辐角等于被除数与除数的辐角之差.
2
x2
10
(3)三角表示法
利用直角坐标与极坐标的关系
x y
r r
cos , sin ,
复数可以表示成 z r(cos i sin )
(4)指数表示法
利用欧拉公式 ei cos i sin ,
复数可以表示成 z rei 称为复数 z 的指数表示式.
11
4.复数的乘幂与方根
1) 乘积与商
两个复数乘积的模等于它们的模的乘积; 两个复数乘积的辐角等于它们的辐角的和.
若 z1 r1(cos1 i sin1),
则有
z2 r2(cos2 i sin2),
z1 z2 r1 r2[cos(1 2 ) i sin(1 2 )]
Arg(z1z2 ) Argz1 Argz2.
12
几何意义
叫虚轴或 y 轴. 这种用来表示复数的平面叫复平
面. 复数 z x iy 可以用复平
y z x iy
y
(x, y)
面上的点( x, y) 表示.
o
x
x
7
(2)向量表示法
在复平面上,复数 z 与从原点指向点z x iy 的
平面向量成一一对应,因此,复数z也可用向量OP
来表示.
y z x iy
一、重点与难点
重点:1. 复数运算和各种表示法
2. 复变函数以及映射的概念
难点:1. 复数方程表示曲线以及不等式表示区域
2. 映射的概念
2
二、内容提要
复 球 面
扩 充
复 平 面
曲线 与区域
极限 的计算
复数
代 数 运 算
乘 幂 与 方 根
复 数 表 示 法
复变函数
几何表示法 向量表示法
极限 连续性
5.复球面与扩充复平面
(1) 复球面
南极、北极的定义
取一个与复平面切于原点 z 0的球面,
球面上一点S 与原点重合,
N
通过 S 作垂直于复平面的
P
直线与球面相交于另一点 N , 我们称 N 为北极, S 为南极.
SO
y
x
17
复球面的定义
球面上的点, 除去北极 N 外, 与复平面内 的点之间存在着一一对应的关系. 我们可以用 球面上的点来表示复数. 我们规定: 复数中有一个唯一的“无穷大”与 复平面上的无穷远点相对应, 记作. 因而球面上 的北极 N 就是复数无穷大的几何表示.
在 z 0的情况下, 以正实轴为始边, 以表示
z 的向量OP 为终边的角的弧度数 称为 z 的辐角, 记作 Argz . 当 z 0时, z 0, 而辐角不确定. 任何一个复数z 0有无穷多个辐角. 如果1 是其中一个辐角, 那么z 的全部辐角为
Arg z 1 2kπ (k为任意整数).
4
2. 复数的代数运算
设两复数 z1 x1 iy1, z2 x2 iy2 , 1) 两复数的和
z1 z2 ( x1 x2 ) i( y1 y2 ). 2) 两复数的积
z1 z2 ( x1 x2 y1 y2 ) i( x2 y1 x1 y2 ).
3)两复数的商
z1 z2
x1 x2 x22
2) 幂与根 (a) n次幂:
n 个相同复数 z 的乘积称为z 的 n 次幂,
记作 zn , zn z z z .
n个
对于任何正整数n, 有 zn rn(cosn i sin n ).
n 为负整数时,
有z n
1 zn
.
因而有 zn z n , Arg zn n Arg z.
15
(b)棣莫佛公式
(cos i sin )n cosn i sin n .
(c) 计算方程 wn z 的根 w, 其中 z 为已知复数.
w
n
z
Байду номын сангаас
r
1 n
cos
2kπ
i sin
2kπ
n
n
(k 0,1,2,,n 1)
在几何上, n z的n个值就是以原点为中心, n r为半径 的圆的内接正n边形的n个顶点.
16
y
P(x, y)
z r
o
x
x
复数的模(或绝对值)
向量的长度称为z 的模或绝对值,
记为 z r x2 y2 .
8
模的性质 x z, y z, z x y, z z z 2 z2 .
三角不等式 (1) z1 z2 z1 z2 ; (2) z1 z2 z1 z2 . 复数的辐角
y1 y2 y22
i
x2 y1 x22
x1 y2 y22
.
5
4)共轭复数
实部相同而虚部绝对值相等符号相反的两 个复数称为共轭复数.
与 z 共轭的复数记为z, 若 z x iy, 则 z x iy.
共轭复数的性质
(1) z1 z2 z1 z2 ; z1 z2 z1 z2 ;
z1 z1 ; z2 z2
判别定理
三角及指数表示法
3
1.复数的概念
对于任意两实数 x, y, 我们称 z x yi 或 z x iy 为复数. 其中 x, y 分别称为z 的实部和虚部, 记作 x Re(z), y Im( z). 当 x 0, y 0 时, z iy 称为纯虚数; 当 y 0 时, z x 0i, 我们把它看作实数x. 当 x 0, y 0时, z 0.
若 则有
z1 r1(cos1 i sin1), z2 r2(cos2 i sin2),
z2 z2 , z1 z1
Arg
z2 z1
Argz2
Argz1 .
设复数z1和z2的指数形式分别为 z1 r1ei1 , z2 r2ei2 ,
则 z2 r2 e . i(2 1 ) z1 r1
14
9
辐角的主值
在 z( 0)的辐角中, 把满足 π 0 π 的0
称为 Argz 的主值, 记作0 arg z.
arctan
y x
,
z0 辐角的主值arg
z
2
,
x 0, x 0, y 0,
arctan
y x
,
x 0, y 0,
,
x 0, y 0.
(其中 arctan y )
(2) z z; (3) z z Re(z)2 Im( z)2;
(4) z z 2Re(z), z z 2i Im(z).
6
3.复数的其它表示法
(1)几何表示法
复数 z x iy 与有序实数对( x, y) 成一一
对应. 因此, 一个建立了直角坐标系的平面可以
用来表示复数, 通常把横轴叫实轴或x 轴, 纵轴