复变函数和解析函数
§5.9复变函数的导数与解析函数

(1) e z e x , Arge z y 2k
(2) (3)
e e z1 z2 e z1 z2 , e z1 e z1 z2 e z2
周期性:e z2ki e z
(4) 处处解析,且有 (e z ) e z
注:(1)y 0 w ex (实指数函数)
x 0 w eiy cos y i sin y (Euler公式)
证:f (z) Re z Im z xy ,
u(x, y) xy , v(x, y) 0
ux (0,0)
lim
x0
u ( x,0)
u(0,0) x
0
vy (0,0)
uy
(0,0)
lim
y0
u(0,
y)
y
u(0,0)
0
vx (0,0)
满足C R条件.
但当z沿 y kx(x 0)趋于零时,有
例1. 求 f z z n (n 为正整数 ) 的导数.
解: f z lim f z z f z
z 0
z
lim z z n z n
z 0
z
lim
z 0
nz n1
C
2 n
z
n2
z
z n1
nz n1
z n nz n1
例2 讨论 f (z) z 的连续性与可导性。 解 f (z) z x iy 在复平面处处连续
如 ln( 1) ln 1 i arg(1) i Ln(1) ln( 1) 2ki (2k 1)i
x0
lim f z z f z lim x iy
z 0
z
(x,y)(0,0) x iy
不存在,因而f z z在复平面上处处不可导
复变函数与解析函数

复变函数与解析函数复变函数是数学中的一个重要概念,它涉及到复数的运算和函数的性质。
解析函数则是复变函数中的一种特殊情况,具有更加丰富的性质和应用。
本文将介绍复变函数和解析函数的概念、性质以及它们在数学和科学领域的应用。
一、复变函数的概念与性质复变函数是将复数集合映射到自身的函数,即函数的自变量和因变量都是复数。
通常用f(z)表示复变函数,其中z为复数。
复变函数可以通过实部和虚部进行表示,即f(z) = u(x, y) + iv(x, y),其中u(x, y)和v(x, y)分别为实部和虚部,而x和y分别为实部和虚部的变量。
复变函数的性质与实数函数类似,包括函数的连续性、可导性、积分等。
然而,复变函数有些独特的性质,比如解析性。
二、解析函数的概念与性质解析函数是复变函数的一种特殊情况,它在其定义域内处处可导,即在定义域内的任意一点,函数都存在导数。
解析函数的导数可以通过常规的求导法则得到,与实数函数类似。
解析函数具有一系列重要的性质,包括解析函数的导数仍然是解析函数,解析函数的导数序列收敛于该函数在某一点的幂级数展开式,以及柯西—黎曼方程等。
这些性质为解析函数的研究和应用提供了坚实的数学基础。
三、复变函数与解析函数的应用复变函数和解析函数在数学和科学领域有广泛的应用。
首先,它们在复数的运算和分析中起着重要的作用,比如复数的加减乘除、复数的共轭和模等运算。
复变函数和解析函数还可以用于解决一些实变函数无法解决的问题,比如研究复变函数的奇点和留数等。
此外,复变函数和解析函数在物理学、工程学和金融学等领域也有广泛的应用。
在物理学中,它们可以用于描述电磁场、量子力学和热力学等现象。
在工程学中,它们可以应用于信号处理、电路分析和控制系统等。
在金融学中,它们可以用于描述金融市场的变动和风险评估等。
总结起来,复变函数和解析函数是数学中的重要概念,具有丰富的性质和应用。
它们不仅仅是理论研究的基础,还在实际问题的解决中发挥着关键作用。
第一章 复变函数和解析函数解析

u x u
v y
v
或
u
1
u
1
v
v
y x
是可导的必要条件.
2020/10/24
第一章 复变函数和解析函数
16
据导数定义,沿实轴和虚轴的比值极限都存在且相等,即
z x, lim f lim u(x x, y) iv(x x, y) u(x, y) iv(x, y)
z0的邻域: z z0 (是任意小的正数)
内点z0:z0及邻域 E 点集 E外点z0:z0及邻域 E
边界点z0:z0的邻域中z有0 E也有 E的点
2020/10/24
第一章 复变函数和解析函数
10
(开)区域Bba))具全有由连内通点性组成— B内任两点都可由内点组 成的折线连起来
闭区域B :区域B连同其境界线构成的点集
单连通:境线只有一线 区域的连通阶数 多连通:境界线在两条 及以上
境界线正向约定:沿正向前进,区域始终在左手一侧
2020/10/24
第一章 复变函数和解析函数
11
2)复变函数: 存在一个点集E,zE有一个或多个w对应,
则称w为z的函数
w=f(z) (zE),z称为宗量.
2020/10/24
第一章 复变函数和解析函数
❖ z的共轭复数z*或
2020/10/24
第一章 复变函数和解析函数
4
❖ 1.2复平面与复矢量 ❖ 复平面——横轴为实轴,纵轴为虚轴的平面
一个复数复平面上的一个点→复矢量
2020/10/24
第一章 复变函数和解析函数
5
1.3三角及指数式
复变函数解析函数例子

复变函数解析函数例子1. 什么是复变函数复变函数,即复数域上的函数,它将一个复数映射到另一个复数。
复变函数是数学中重要的概念,它在物理、工程等领域都有广泛的应用。
复变函数的解析函数是其中一个重要的概念,在本文中将详细介绍解析函数的例子及其应用。
2. 解析函数的定义解析函数,也称为全纯函数或可导函数,是指在某个区域内可导的复变函数。
具体而言,如果一个复变函数在某个区域内处处可导,则称该函数在该区域内是解析的。
解析函数具有一些重要的性质,主要包括:连续性、解析性、无奇点、全局可导等。
这些性质使得解析函数在许多领域都有广泛的应用。
3. 解析函数的例子3.1. 多项式函数多项式函数是最简单的解析函数之一。
对于一个具有形如f(z)=a n z n+a n−1z n−1+...+a1z+a0的多项式函数,它在整个复平面上都是解析的。
多项式函数的导数可以通过逐项求导得到,因此它是解析函数。
多项式函数的例子包括:f(z)=z2+2z+1、f(z)=z3−3iz2+z−i等。
这些函数在整个复平面上都是连续且解析的。
3.2. 指数函数指数函数是另一个常见的解析函数。
对于形如f(z)=e z的指数函数,它在整个复平面上都是解析的。
指数函数具有许多重要的性质,比如e z1+z2=e z1e z2和e iθ= cos(θ)+isin(θ)。
指数函数在数学、物理、工程等领域都有广泛的应用,比如在电路分析、量子力学等方面。
它可以表示增长速度、周期性等问题。
3.3. 三角函数三角函数也是常见的解析函数。
对于形如f(z)=sin(z)和f(z)=cos(z)的三角函数,它们在整个复平面上都是解析的。
三角函数具有许多重要的性质,比如sin(z)=12i (e iz−e−iz)和cos(z)=1 2(e iz+e−iz)。
它们在数学、物理、工程等领域中广泛应用,比如在波动、振动等问题中。
4. 解析函数的应用解析函数的应用非常广泛,下面列举其中一些常见的应用:4.1. 数学领域在数学领域中,解析函数被广泛应用于复分析、调和分析等方面。
复变函数2-1解析函数的概念

n1 ( 2) ( z ) nz , 其中n为正整数.
n
19
( 3) (4)
f ( z ) g( z ) f ( z ) g( z )
f ( z ) g( z ).
f ( z ) g( z ) f ( z ) g( z ).
f ( z ) g( z ) f ( z ) g( z ) f ( z ) ( 5) . ( g ( z ) 0) 2 g (z) g( z )
x 2yi lim z 0 x yi
z
o
y 0
x
设z z沿着平行于 x 轴的直线趋向于z,
x x 2yi lim 1, lim x 0 x z 0 x yi
设z z沿着平行于 y 轴的直线趋向于z,
x 2yi 2yi lim lim 2, z 0 x yi y 0 yi
u v u v , . x y y x
23
证明:必要性
设f ( z )在z x iy处可导,记作 f ( z ) a ib,
'
则由定义有f ( z 源自 ) f ( z ) (a ib)z ( z )
(a ib)(x iy) ( z )
所以f ( z ) x 2 yi的导数 不存在.
o
x 0
y
z
y 0
x
9
二、解析函数的概念与求导法则
1. 解析函数的定义
如果函数 f ( z ) 在 z0 及 z0 的邻域内处处可 导,那末称 f ( z ) 在 z0 解析.
如果函数 f ( z )在 区域 D内每一点解析, 则称 f ( z )在 区域 D内解析. 或称 f ( z )是 区域 D 内的一 个解析函数(全纯函数或正则函数).
复变函数、解析函数

(2) f ( z ) x y ixy
解 f ( z)在 z 1 i 处 可 导 , 在 复 平 面 上 处
处不 解 析.
( 3 ) f ( z ) x 2 iy
1 解 f ( z )在 直 线 x 上可 导 , 在 复 平 面 上 处 处 2 不 解 析.
例5 证明:如果w u ( x, y ) iv( x, y )为解析函数,
1 2 1 2 f ( z ) u iv x y xy i (2 xy y x C ) 2 2 i 2 i 2 2 (令x z , y 0) z z Ci (1 ) z Ci, 2 2 1 i 2 i f (i ) 1 i, c f ( z ) (1 ) z 2 2 2
复变函数、解析函数
复数域与复数的表示法
复数集: C z x iy x, y R x Re z, y Im z , i
复 数 z x iy 有 序 数 组 ( x, y ) 注 意 : 复 数 不 能 比 较 小
1
复数的表示法:
1. z x iy 2. 复平面上的点P ( x, y )或向量OP 3. z r (cos i sin ) (三角表示法) 4. z rei (指数表示法)
一个复变函数 例如:
二个二元实函数
w f ( z ) z 2 ( x iy) 2 x 2 y 2 2ixy, u ( x, y ) x 2 y 2 , v( x, y ) 2 xy
可以利用二元实函数的极限,连续等概念来定义复变 函数的极限,连续。
极限 lim f ( z ) w0 ( w0 u0 iv0 )
21复变函数的导数与解析函数剖析

所以
lim
z0
f
( z0
z)
f (z0),
即f (z)在 z0 连续.
例3 f (z) z在z平面上处处连续但却处处不可导
解 (1) f(z)=z的连续性显然
(2)
f z
=
z
z z
z
=
z z
z
x
i y
x x
1
iy
x 0, y 0 1x 0, y 0
iy
f 1(x 0, y 0) z
lim x 2yi lim 2yi 2, z0 x yi y0 yi
所以f (z) x 2 yi的导数 不存在.
x 0 y
z o
y 0 x
2.可导与连续的关系:
函数 f (z) 在 z0 处可导则在 z0 处一定连续, 但 函数 f(z) 在 z0 处连续不一定在 z0 处可导.
所求 a 2, b 1, c 1, d 2.
例3 如果 f (z) 在区域 D内处处为零 , 则 f (z) 在
区域 D内为一常数 . 证 f (z) u i v v i u 0,
x x y y 故 u v u v 0,
x y y x
所以 u 常数, v 常数, 因此 f (z) 在区域 D内为一常数.
30
lim f lim f (z z) f (z) lim y 0,
z0 z z0
z
x0 x iy
y0
当点沿平行于虚轴的方向(x 0)而使z 0时,
lim f lim f (z z) f (z) lim y 1,
z0 z z0
z
y0 x iy i
x0
当点沿不同的方向使z 0时,极限值不同,
复变函数第二章 解析函数

第 一 节 解 析 函 数 的 概 念
( 5)
f ( z ) ′ g ( z ) f ′ ( z ) − f ( z ) g ′ ( z ) , g (z) ≠ 0 = 2 g ( z) g ( z)
( 6)
{
f g ( z )
}
′
= f ′ ( w ) g ′ ( z ) , 其中w = g ( z )
dw 可见:可导 ⇔ 可微, f ′ ( z0 ) = 且 dz
z = z0
如果f ( z ) 在区域D内每一点可微,
则称f ( z ) 在D内可微.
记作 dw = f ′ ( z ) dz
第 一 节 解 析 函 数 的 概 念
二、解析函数 定义 1o 如果f ( z ) 在z0 及z0的某邻域内处处可导,
设w = f ( z ) 定义于区域D, z0 ∈ D , z0 + ∆ z ∈ D
f ( z0 + ∆ z ) − f ( z0 ) 如果 lim 存在 ∆ z →0 ∆z 则 称 f ( z ) 在 z0点 可 导 , 而 极 限 值 为 f ( z ) 在 z0点 dw 的导数,记作 f ′ ( z0 ) 或 dz z = z0
∴ ∆ u = a ∆ x − b ∆ y + o1 ∆ v = b∆ x + a ∆ y + o2
反之,不成立。
( 2)
( 3)
f ( z ) 在区域D内解析
⇔ f ( z ) 在 区 域 D内 可 导 。
f ( z ) 在 z0 解析 ⇔
f ( z ) 在 z0的某邻域 N δ ( z0 )内解析。
第 一 节 解 析 函 数 的 概 念
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
位.
对虚数单位的规定:
cos x 1 e ix e ix 2
i 1 i2=–1
sin x 1 eix e ix 2i
2020/10/20
定义
i-虚数单位 满足:i2=-1
对于" x, y R, 称 z x iy 为复数
.
实部 记做:Rez=x
虚部 记做:Imz=y
当 x 0, y 0 时, z iy 称为纯虚数;
2020/10/20
5
2020/10/20
6
学习要求与内容提要
目的与要求:掌握复变函数的基本概念和复函数可导 必要条件、掌握解析函数的概念、函数 解析的充要条件、复势的概念。
教学重点: 柯西-黎曼条件、复变函数解析的充要条件;
教学难点: 柯西-黎曼条件与复变函数可导充要条件、 复变函数解析的充要条件
当 y 0 时, z x 0i, 我们把它看作实数 x.
C {z | z x iy, x, y R}称为为复数集
2020/10/20
11
两复数相等当且仅当它们的实部和虚部分 别相等.
设:z1=x1+i·y1 z2=x2+i·y2
z1=z2 x1 x2 , y1 y2
复数 z 等于0当且仅当它的实部和虚部同时 等于0.
2020/10/20
3
复变函数论(theory of complex functions)的目的: 把微积分延伸到复域。使微分和积分获得新的深度和意
义。
2020/10/20
4
主要内容:
1 复变函数和解析函数 2 复变函数积分 柯西定理和柯西公式 3 复变函数级数 泰勒级数和洛朗级数等(自学) 4 解析函数(自学) 5 定积分的计算(自学) 6 δ函数 其余拉普拉斯变换的内容(自学) 7 傅立叶变换和色散 8 线性常微分方程的级数解法和某些特殊函数
显然由复数的复平面表示,有下列各式成立
x z,
2020/10/20
y z,
z x y.
14
y
y
z
P(x,y)
在 z 0的情况下, 以正实轴为始边 , 以o 表示 x x
z 的向量oP 为终边的角的弧度数 称为 z 的幅角,
记作 arg z .
说明 任何一个复数 z 0有无穷多个幅角,
Euler把 1 作为特 2020/10殊/20的数
cos x 1 e 1x e 1x 2
sin x 1 e 1x e 1x 2 1 9
1.1 复数的基本概念
1 复数及其代数运算
(1). 复数的代数形式
考虑解方程: x2 1。 显然,此方程在实数集中是无解的。
为了求出方程的解,引入一个新数i,称为虚数单
2020/10/20
7
2020/10/20
• 莱昂哈德·保罗·欧拉(Leonhard Paul Euler,1707年4月15日- 1783年9月18日)是一位瑞士数 学家和物理学家,近代数学先驱 之一,他一生大部分时间在俄罗 斯帝国和普鲁士度过。
• 欧拉在数学的多个领域,包括 微积分和图论都做出过重大发现。 他引进的许多数学术语和书写格 式,例如函数的记法"f(x)",一直 沿用至今。此外,他还在力学、 光学和天文学等学科有突出的贡 献。
2020/10/20
2
课程讲授计划
• 第一章 复变函数和解析函数(5) • 第二章 复变函数积分 柯西定理和柯西公式(5) • 第六章 点源和瞬时源 函数(2) • 第七章 傅里叶变换和色散关系(6) • 第八章 线性常微分方程的级数解法和某些特殊函数(8) • 第九章 数学物理方程的定解问题(6) • 第十章 行波法和分离变量法 本征值问题(6) • 第十一章 积分变换法(4) • 第十二章 球坐标下的分离变量法(8) • 第十三章 柱坐标下的分离变量法 Bessel函数(8)
(3)复数的指数函数表示
复数的三角函数表示式
z(cosisin)
利用欧拉公式 eicosisin,
如果 是其中一个幅角, 那么 z 的全部幅角为
arg z 2kπ (k为任意整数).
特殊地, 当 z 0时, z 0, 幅角不确定.
2020/10/20
15
幅角主值的定义:
在z(≠0)的幅角中,把位于0< <2π的 称 为arg z 的主值。而复数的辐角与幅角主值间有关系
arg z 2kπ (k为任意整数).
复数的矢量表示法
y
y
P(x,y)
z
o
xx
2020/10/20
13
y
如图:
y
P(x,y)
x cos
x2 y2
z
y
sin
arctan
y x
o
那么复数(复矢量)可以表示为
xx
z= x iy= c o s isin . 复数的三角表示式
复矢量的长度称为复数的模或绝对值
z =ρ= x2 +y2 .
x x
Leibniz :不可能有负数的对数
dx d ln x x
只对正数成立
Euler: 在1747年指出
ln(x), lnx 差一常数
1740年,Euler 给Bernoulli的信中说: y2cosx 和 ye 1x e 1x 是同一个微分方程的解,因此应该相等
1743年,发表了Euler公式
2020/10/20
1
教材及指导书
一、教材: 胡嗣柱等 编著,《数学物理方法》,第二版, 北京
大学出版社,2002年7月
二、主要的参考书: 于涛等 编 《数学物理方法知识要点与习题解析》,
哈尔滨工程大学出版社,2007年6月
成绩测定:作业20%+上课出席参与10% +考试70% 联系方式:zyx@
说明 两个数如果都是实数,可以比较它们的大 小, 如果不全是实数, 就不能比较大小, 也就 是说:
复数不能比较大小!!!
2020/10/20
12
(2)复平面表示与复数三角式
复数z=x+iy可以用平面上的一个点(x,y)或 一个矢量表示,通常把横轴叫实轴,纵轴叫虚 轴,而把这种用来表示复数的平面叫复平面。
• 欧拉是18世纪杰出的数学家, 同时也是有史以来最伟大的数学 家之一。他也是一位多产作者, 其文学著作约有60-80册。法国 数学家皮埃尔-西蒙·拉普拉斯曾 这样评价欧拉对于数学的贡献: “读欧拉的著作吧,在任何意义 上,他都是我们8的大师”
1.0问题的提出
负数有对数吗?
Bernoulli:负数的对数是实数 d(x)dx ln(x)lnx