复变函数泰勒定理
复变函数§4.3 泰勒级数

y
a
z0
x
任何解析函数展开成幂级数的结果就是泰勒级数,
因而是唯一的.
利用泰勒展开式, 我们可以直接通过计算系数:
cn
1 n!
f (n) (z0 )
(n 0,1,2, )
把 f (z)在z0展开成幂级数, 这被称作直接展开法
例如, 求 ez 在 z = 0处的泰勒展开式, 由于(ez)(n) = ez,
[解] ln(1+z)在从-1向左沿负实轴剪开的平面内是解析的,
-1是它的奇点, 所以可在|z|<1展开为z的幂级数.
y
-1 O
x
因为[ln(1 z)]
1
(-1)n zn , 逐项积分得
1 z n0
z
1
d z -
z
d L
z (-1)n n d L ,Fra bibliotek2; f
(z)
z2
1 z
-6
Cn (z
n0
- i)n , 则其收敛半径R
5.
在实变函数中有些不易理解的问题, 一到复变函数中
就成为显然的事情, 例如在实数范围内, 展开式
1 1 x2
1- x2 x4 -L
(-1)n x2n L
的成立必须受|x|<1的限制, 这一点往往使人难以理解, 因
z - z0
r
K含于D, f (z) 在D内解析, 在K上连续, 在K上有界, 因 此在K上存在正实数 M 使| f (z) | M.
| RN (z) |
1 2π
K
nN (z
f (z )
- z0 )n1
复变函数第四章第三节解析函数的泰勒展式

一、问题的引入 二、泰勒定理 三、将函数展开成泰勒级数 四、典型例题
一、问题的引入
问题: 任一个解析函数能否用幂级数来表达?
如图:
.
. K
.
内任意点
2
由柯西积分公式 , 有
其中 K 取正方向.
则
3
由高阶导数公式, 上式又可写成 (1)
其中 给(1)式两端加上极限,可得
4
在K内 令 则在K上连续,
即存在一个正常数M,
5
在 内成立,
从而在K内 在 的泰勒展开式,
泰勒级数
圆周 的半径可以任意增大,只要 在 内成立.
由上讨论得重要定理——泰勒展开定理
6
泰勒(Taylor)定理
定理4.14 (泰勒定理) 设f(z)在区域D内解析,a∈D, 只要K:|z-a|<R含于D,则f(z)在K内能展成如下幂级
例如, 故有
10
仿照上例 ,
11
2. 间接展开法 : 借助于一些已知函数的展开式 , 结合解
析函数的性质, 幂级数运算性质 (逐项求导, 积 分等)和其它数学技巧 (代换等) , 求函数的泰 勒展开式. 间接法的优点:
不需要求各阶导数与收敛半径 , 因而比直 接展开更为简洁 , 使用范围也更为广泛 .
Died: 29 Dec 1731 in Somerset House, London, England
25
22
思考题
奇、偶函数的泰勒级数有什么特点?
23
思考题答案
奇函数的泰勒级数只含 z 的奇次幂项, 偶函数 的泰勒级数只含 z 的偶次幂项.
放映结束,按Esc退出.
24
泰勒资料
复变函数与积分变换泰勒展开式与洛朗展开式

复变函数与积分变换泰勒展开式与洛朗展开式复变函数是指复数域上的函数,其自变量和因变量都是复数。
复变函数理论是数学中的一个重要分支,应用广泛。
在物理、工程、经济学以及计算机科学等领域,复变函数都发挥着重要的作用。
复变函数的泰勒展开式和洛朗展开式是两种常见的展开方法,用于将复变函数表示为幂级数或者简单函数的和。
泰勒展开式适用于函数在某个点附近解析的情况,而洛朗展开式适用于函数在某个环域上解析的情况。
泰勒展开式是将函数在某个点处展开成幂级数的形式。
设函数f(z)在z=a处解析,则f(z)可以表示为:f(z) = f(a) + f'(a)(z-a) + f''(a)(z-a)^2 + ...其中,f'(a)表示f(z)在z=a处的导数,f''(a)表示f'(z)在z=a 处的导数,以此类推。
泰勒展开式表明,在某个点处,函数可以用无穷级数的形式表示,通过计算有限项的幂级数,可以近似得到函数在该点附近的值。
洛朗展开式是将函数在某个环域上展开成幂级数和简单函数的形式。
设函数f(z)在环域R: r<|z-a|<R中解析,则f(z)可以表示为:f(z) = ∑ (A_n / (z-a)^n) + ∑ (B_n (z-a)^n)其中,第一项是负幂次项的幂级数,第二项是正幂次项的幂级数,A_n和B_n是系数。
洛朗展开式表明,在某个环域上,函数可以用无穷级数的形式表示,通过计算有限项的幂级数和简单函数的和,可以近似得到函数的值。
泰勒展开式和洛朗展开式对于研究函数的性质和计算函数的值都有重要的指导意义。
通过泰勒展开式和洛朗展开式,我们可以对复变函数进行近似计算,从而简化问题的求解过程。
此外,这两种展开方法也为我们提供了一种描述函数行为的方式,让我们能够更好地理解函数的性质,从而更好地应用于实际问题中。
总之,复变函数的泰勒展开式和洛朗展开式是复变函数理论中重要的工具。
复变函数泰勒级数展开

理论意义
泰勒级数展开是复分析中的重要工具,它为研究函数的性 质提供了理论基础,有助于深入理解函数的性质和行为。
应用价值
泰勒级数展开在数学、物理、工程等多个领域都有广泛的应用 ,例如在信号处理、控制系统、量子力学等领域,泰勒级数展 开都发挥了关键作用。
指数函数e^z的泰勒级数展开
总结词
指数函数e^z在复平面上的泰勒级数展开 式为无限和的形式,可以表示为幂级数 的和。
VS
详细描述
e^z = 1 + z + z^2/2! + z^3/3! + ... + z^n/n! + ...,其中z为复数,n!表示n的阶 乘。这个级数是无限和的形式,可以用于 近似计算e^z的值。
对数学发展的推动
泰勒级数展开的发现和证明对数学的发展产生了深远的影响, 它不仅推动了复分析的兴起和发展,还为数学的其他分支提供 了新的思路和方法。
对未来研究的展望
深入研究泰勒级数展开的性质和特性
尽管泰勒级数展开已经得到了广泛的研究和应用,但关于其性质和特性的研究仍有许多值得深入探讨的问题,例如高 阶泰勒级数展开、非标准泰勒级数展开等。
值,并帮助理解函数的性质和行为。
04
泰勒级数展开的应用
在微积分中的应用
函数逼近
泰勒级数展开可以用来逼近复杂的函数,通过将复杂的函 数表示为简单的多项式之和,可以更好地理解和分析函数 的性质。
无穷级数求和
泰勒级数展开可以用来求无穷级数的和,这对于解决一些 数学问题非常有用,例如求定积分等。
数值分析
复变函数与积分变换泰勒展开式与洛朗展开式

复变函数与积分变换泰勒展开式与洛朗展开式复变函数与积分变换是数学分析中重要的概念和工具。
泰勒展开式和洛朗展开式是这两个概念的应用,可以用来近似计算复变函数和积分变换。
本文将介绍复变函数和积分变换的基本概念,并探讨泰勒展开式和洛朗展开式的原理和应用。
一、复变函数与积分变换1.复变函数复变函数是指定义域和值域都是复数域的函数。
复变函数可以分为两个独立的实部和虚部,即f(z) = u(x, y) + iv(x, y),其中z = x + iy,u(x, y)和v(x, y)是实函数。
复变函数的基本性质有:(1)全纯性:如果一个复变函数在一些区域内可导,并且导函数连续,则该函数被称为全纯函数。
(2)解析性:如果一个复变函数在一些区域内可导,则该函数称为解析函数。
(3)调和性:如果一个复变函数满足拉普拉斯方程,则该函数称为调和函数。
2.积分变换积分变换是一种数学变换,将函数从一个域变换到另一个域。
积分变换的基本形式为:\[F(s) = \int_{0}^{\infty} f(t)e^{-st} dt\]其中f(t)是定义在正实轴上的函数,F(s)是函数f(t)的积分变换。
常见的积分变换有拉普拉斯变换、傅里叶变换、Z变换等。
这些积分变换在信号处理、控制论、电路分析等领域中得到广泛应用。
1.泰勒展开式泰勒展开式是将一个函数在特定点附近进行无穷阶的展开,近似表达原函数。
泰勒展开式的一般形式为:\[f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 +\frac{f'''(a)}{3!}(x-a)^3 + \cdots\]其中,f(x)是要展开的函数,a是展开点,f'(a)、f''(a)、f'''(a)等表示函数在a点的导数。
对于复变函数f(z),泰勒展开式的形式为:\[f(z) = f(a) + (z-a)f'(a) + \frac{(z-a)^2}{2!}f''(a) +\frac{(z-a)^3}{3!}f'''(a) + \cdots\]洛朗展开式是将一个函数在复平面上的一定区域内展开为幂级数和幂的负次幂的和。
复变函数§3 泰勒级数

2
n
当z沿实轴从单位圆内部趋 近于1时:f (z)
即z 1是一个奇点。
推论4:设函数
f
(
z)在z
解析,且有
0
Taylor展开式:f (
z
)
Cn
(
z
-
z0
)n
,
n0
a是f (z)的距z0最近的一个奇点, 则R a - z0 为其收敛半径。
例如:f
(z)
z2
1 z
-6
f (z) cn (z - z0 )n 成立, 其中 n0
cn
1 n!
f
(n) (z0 ), n
0,1, 2,
.
注: 如果 f (z)在z0解析, 则使 f (z)在z0的泰勒展开式 成立的圆域的半径 R等于从z0到 f (z)的距z0最近一个奇点
a 的距离, 即R=|a-z0|.
y
n1
因此, 只有在R1<|z-z0|<R2的圆环域, 原级数才收敛.
例如级数
n1
an zn
n0
zn bn
(a与b为复常数)
R2 z0 R1
中的负幂项级数
an
zn
n1
n1
a z
n
,当
a z
1,
即| z || a | 时收敛,而正幂项级数
,
0 1
0
0
即 ln(1 z) z - z2 z3 - (-1)n zn1 | z | 1.ຫໍສະໝຸດ 23n 1推论1:
复变函数4-2Taylor级数

f
( n) ( z0
)
,
n 0,1,2,
例如,求 ez 在 z 0的泰勒展开式.
因为(ez )(n) ez ,
(ez )(n) z0 1, (n 0,1, 2,)
故有 ez 1 z z2 zn zn
2!
n!
n0 n!
因为ez 在复平面内处处解析,
[ln(1 z)] 1 1 z z2 1 z
(1)n zn
(1)n zn
( z 1)
n0
设 C 为收敛圆 z 1内从 0 到 z 的曲线,
将展开式两端沿 C 逐项积分, 得
z 1 dz z (1)n zndz
01 z
2! 4!
(2n)!
(R )
2. 间接展开法 :
借助于一些已知函数的展开式 , 结合解析
函数的性质, 幂级数运算性质 (逐项求导, 积分
等)和其它数学技巧 (代换等) , 求函数的Taylor
展开式.
间接法的优点:
不需要求各阶导数与收敛半径 , 因而比直
接展开更为简洁 , 使用范围也更为广泛 .
1 z
n0
z3 z5 4) sin z z
(1)n
z 2n1
( z 1)
3! 5!
(2n 1)!
= (1)n
z 2n1
n0
(2n 1)!
( z )
z2 z4 5) cos z 1
(1)n z2n
2! 4!
(2n)!
0 n0
即 ln(1 z) z z2 z3 (1)n zn1 z 1
复变函数4.3泰勒定理概要

1 2 4 6 1 x x x 2 1 x
4.3.3、将函数展开成泰勒级数
常用方法: 直接法和间接法.
1.直接法:
由泰勒展开定理计算系数
1 ( n) c n f ( z 0 ) , n 0 , 1 , 2 , n!
将函数 f ( z ) 在 z0 展开成幂级数.
我们设法将被积式:
f ( ) z
图4.1
表示为一个含有z-a的正幂次级数.为此改写:
f ( ) f ( ) f ( ) 1 z a ( z a) a 1 z a a
(4.11)
由 时
za | za| 1, a
7) (1 z ) 1 z
( 1)
2! n!
z
2
( 1)( 2)
3! z n ,
z3
( 1)( n 1)
( z 1)
4.3.4 典型例题
1 例3 把函数 2 展开成 z 的幂级数. (1 z )
解
1 由于 在 z 1 上有一奇点z 1, 2 (1 z )
n 0
由定理4.13(3)即知 c'n 故展式是唯一的.
f
(n)
(a) cn (n=0,1,2,…), n!
1 f ( ) f (a ) cn d (4.9 ) n 1 2 i ( a ) n! 定义4.8 (4.8)称为f(z)在点a的泰勒展式, (4.9)称为其泰勒系数,而(4.8)右边的级数,则称 为泰勒级数.
注 (1)纵使幂级数在其收敛圆周上处处收敛,其 和函数在收敛圆周上仍然至少有一个奇点.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
max f ( z )
z a
n
(0 R, n 0,1, 2, ).
4.3.2
幂级数的和函数在其收敛圆周上 的状况
定理4.16 半径R>0,且
n c ( z a ) 如果幂级数 n n 0
的收敛
f ( z ) cn ( z a) n , ( z K :| z a | R)
n
应用公式(4.10),我们有
1 za ( ) , z a n 0 a 1 a
右端的级数在 上(关于 )是一致收敛的.
f ( ) 以在 上的有界函数 相乘,仍然得到 上的 a 一致收敛级数 于是(4.11)表示为 上一致收敛级数
f ( ) f ( ) n ( z a) , n 1 a n 0 ( a)
注 (1)纵使幂级数在其收敛圆周上处处收敛,其 和函数在收敛圆周上仍然至少有一个奇点.
z z2 f ( z ) 1 2 3
z z2 z3 f ( z) 2 2 2 1 2 3
z n 1 n
zn 2 n
(2)这个定理,一方面建立了幂级数的收敛半径与此 幂级数所代表的函数的性质之间的密切关系;同 时还表明幂级数的理论只有在复数域内才弄的 完全明白.
n 0
则f(z)在收敛圆周C:|z-a|=R上至少有一奇点,即 不可能有这样的函数F(z)存在,它在|z-a|<R内与 f (z)恒等,而在C上处处解析. 证 假若这样的F(z)存在, 这时C上的每一点就都 是某圆O的中心,而在圆 O内F(z)是解析的.
z1
a
根据有限覆盖定理,我们就可 以在这些圆O中选取有限个 将圆O覆盖了.这有限个圆将 构成一个区域G,用ρ>0表示C 到G的边界的距离(参看第三 章定理3.3注).于是F(z)在较 圆K大的同心圆
n 0
由定理4.13(3)即知 c'n 故展式是唯一的.
f
(n)
(a) cn (n=0,1,2,…), n!
1 f ( ) f (a ) cn d (4.9 ) n 1 2 i ( a ) n! 定义4.8 (4.8)称为f(z)在点a的泰勒展式, (4.9)称为其泰勒系数,而(4.8)右边的级数,则称 为泰勒级数.
1 将上式沿 积分,并以 乘所得结果 . 2 i 根据逐项积分定理,即得
1 f ( ) f ( z) d 2 i p z 1 f ( ) n ( z a) d , n 1 2 i p a n 0
1 由定理3.13知 2 i
我们设法将被积式:
f ( ) z
图4.1
表示为一个含有z-a的正幂次级数.为此改写:
f ( ) f ( ) f ( ) 1 z a ( z a) a 1 z a a
(4.11)
由 时
za | za| 1, a
1 2 4 6 1 x x x 2 1 x
4.3.3、将函数展开成泰勒级数
常用方法: 直接法和间接法.
1.直接法:
由泰勒展开定理计算系数
1 ( n) c n f ( z 0 ) , n 0 , 1 , 2 , n!
将函数 f ( z ) 在 z0 展开成幂级数.
例1
D
证:证明的关键是利用柯西积分公式及如下 熟知的公式:
z K 总有一个圆周:
1 un (|u|<1). 1 u n 0
(4.10)
使点z含在 的内部 (图4.1中虚线表). 由柯西积分公式得
1 f ( z) 2 i f ( ) p z d
:| a | (0 R),
f ( ) f (a) p ( a)n1 d n! ,
(n)
最后得出
f ( z ) cn ( z a ) n .
n 0
其中的系数由Cn公式(4.9)给出.上面证明对于 任意z∈均成立,故定理的前半部分得证. 下面证明展式是唯一的. 设另有展式
f ( z ) c 'n ( z a )n ( z K :| z a | R).
求 e z 在 z 0 的泰勒展开式 .
因为(e z )( n) e z ,
(e z )( n )
z 0
1 , ( n 0 , 1 , 2 ,)
2 n n z z z 故有 e z 1 z 2! n! n 0 n!
4.3.1.泰勒(Taylor)定理 定理4.14 (泰勒定理) 设f(z)在区域D内解析, a∈D,只要K:|z-a|<R含于D,则f(z)在K内能展成 如下幂级数
f ( z ) cn ( z a) (4.8)
n n 0
其中系数 (n) 1 f ( ) f (a) cn d (4.9) n 1 p 2 i ( a) n! ( :| z | ,0 R; n 0,1, 2, ) 展式是唯一的.
( n)
f ( z ) cn ( z a )
n 0
n
(5.8 )
定理4.15 f(z)在区域D内解析的充要条件为:f(z)在D 内任一点a的邻域内可展成z-a的幂级数,即泰勒级数.
由第三章的柯西不等式知若f(z)在|z-a|<R内解 析,则其泰勒系数cn满足柯西不等式
| cn |
/
z2 z1 z10
z3
z2
z5 z2
a
z8
z6
K :|z-a|<R+ρ内是解析 z9 / 的.于是F(z)在K 可开为 泰勒级数.但因在|z-a|<R中F(z)恒等于f(z),故在z=a 处它们以及各阶导数有相同的值。因此级数
n c ( z a ) n 也是F(z)的泰勒级数 n 0
而它的收敛半径不会小于R+ρ,这与假设矛盾.