1分解质因数法

合集下载

小学数学解题方法解题技巧之分解质因数法

小学数学解题方法解题技巧之分解质因数法

第一章小学数学解题方法解题技巧之分解质因数法通过把一个合数分解为两个或两个以上质因数,来解答应用题的解题方法叫做分解质因数法;分解质因数的方法在求最大公约数和最小公倍数时有用,在学习有理数的运算、因式分解、解方程等方面也有广泛的应用;分解质因数的方法还可为一些数学问题提供新颖的解法,有益于开辟解题思路,启迪创造性思维;例1 一块正方体木块,体积是1331立方厘米;这块正方体木块的棱长是多少厘米适于六年级程度解:把1331分解质因数:1331=11×11×11答:这块正方体木块的棱长是11厘米;例2 一个数的平方等于324,求这个数;适于六年级程度解:把324分解质因数:324= 2×2×3×3×3×3=2×3×3×2×3×3=18×18答:这个数是18;例3 相邻两个自然数的最小公倍数是462,求这两个数;适于六年级程度解:把462分解质因数:462=2×3×7×11=3×7×2×11=21×22答:这两个数是21和22;例4 ABC×D=1673,在这个乘法算式中,A、B、C、D代表不同的数字,ABC是一个三位数;求ABC代表什么数适于六年级程度解:因为ABC×D=1673,ABC是一个三位数,所以可把1673分解质因数,然后把质因数组合成一个三位数与另一个数相乘的形式,这个三位数就是ABC所代表的数;1673=239×7答:ABC代表239;例5 一块正方形田地,面积是2304平方米,这块田地的周长是多少米适于六年级程度解:先把2304分解质因数,并把分解后所得的质因数分成积相同的两组质因数,每组质因数的积就是正方形的边长;2304=2×2×2×2×2×2×2×2×3×3=2×2×2×2×3×2×2×2×2×3=48×48正方形的边长是48米;这块田地的周长是:48×4=192米例6 有3250个桔子,平均分给一个幼儿园的小朋友,剩下10个;已知每一名小朋友分得的桔子数接近40个;求这个幼儿园有多少名小朋友适于六年级程度解:3250-10=3240个把3240分解质因数:3240=23×34×5接近40的数有36、37、38、39这些数中36=22×32,所以只有36是3240的约数;23×34×5÷22×32=2×32×5=90答:这个幼儿园有90名小朋友;例7 105的约数共有几个适于六年级程度解:求一个给定的自然数的约数的个数,可先将这个数分解质因数,然后按一个质数、两个质数、三个质数的乘积……逐一由小到大写出,再求出它的个数即可;因为,105=3×5×7,所以,含有一个质数的约数有1、3、5、7共4个;含有两个质数的乘积的约数有3×5、3×7、5×7共3个;含有三个质数的乘积的约数有3×5×7共1个;所以,105的约数共有4+3+1=8个;答略;例8 把15、22、30、35、39、44、52、77、91这九个数平均分成三组,使每组三个数的乘积都相等;这三组数分别是多少适于六年级程度解:将这九个数分别分解质因数:15=3×522=2×1130=2×3×535=5×739=3×1344=2×2×1152=2×2×1377=7×1191=7×13观察上面九个数的质因数,不难看出,九个数的质因数中共有六个2,三个3,三个5,三个7,三个11,三个13,这样每组中三个数应包括的质因数有两个2,一个3,一个5,一个7,一个11和一个13;由以上观察分析可得这三组数分别是:15、52和77;22、30和91;35、39和44;例9 有四个学生,他们的年龄恰好一个比一个大一岁,他们的年龄数相乘的积是5040;四个学生的年龄分别是几岁适于六年级程度解:把5040分解质因数:5040=2×2×2×2×3×3×5×7由于四个学生的年龄一个比一个大1岁,所以他们的年龄数就是四个连续自然数;用八个质因数表示四个连续自然数是:7,2×2×2,3×3,2×5即四个学生的年龄分别是7岁、8岁、9岁、10岁;答略;例10 在等式35× ×81×27=7×18× ×162的两个括号中,填上适当的最小的数;适于六年级程度解:将已知等式的两边分解质因数,得:5×37×7× =22×36×7×把上面的等式化简,得:15× =4×所以,在左边的括号内填4,在右边的括号内填15;15×4=4×15例11 把84名学生分成人数相等的小组每组最少2人,一共有几种分法适于六年级程度解:把84分解质因数:84=2×2×3×7除了1和84外,84的约数有:2,3,7,2×2=4,2×3=6,2×7=14,3×7=21,2×2×3=12,2×2×7=28,2×3×7=42;下面可根据不同的约数进行分组;84÷2=42组,84÷3=28组,84÷4=21组,84÷6=14组,84÷7=12组,84÷12=7组,84÷14=6组,84÷21=4组,84÷28=3组,84÷42=2组;因此每组2人分42组;每组3人分28组;每组4人分21组;每组6人分14组;每组7人分12组;每组12人分7组;每组14人分6组;每组21人分4组;每组28人分3组;每组42人分2组;一共有10种分法;例12 把14、30、33、75、143、169、4445、4953这八个数分成两组,每组四个数,要使各组数中四个数的乘积相等;求这两组数;适于六年级程度解:要使两组数的乘积相等,这两组乘积中的每个因数不必相同,但这些因数经分解质因数,它们所含有的质因数一定相同;因此,首先应把八个数分解质因数;14=2×7 143=11×1330=2×3×5 169=13×1333=3×11 4445=5×7×12775=3×5×5 4953=3×13×127在上面的质因式中,质因数2、7、11、127各有2个,质因数3、5、13各有4个;在把题中的八个数分为两组时,应使每一组中的质因数2、7、11、127各有1个,质因数3、5、13各有2个;按这个要求每一组四个数的积应是:2×7×11×127×3×3×5×5×13×13因为,2×7×3×5×5×11×13×3×13×127=14×75×143×4953,根据接下来为“14、75、143、4953”正符合题意,因此,要求的一组数是14、75、143、4953,另一组的四个数是:30、33、169、4445;答略;例13 一个长方形的面积是315平方厘米,长比宽多6厘米;求这个长方形的长和宽;适于五年级程度解:设长方形的宽为x厘米,则长为x+6厘米;根据题意列方程,得:xx+6= 315xx+6=3×3×5×7=3×5×3×7xx+6=15×21xx+6=15×15+6x=15x+6=21答:这个长方形的长是21厘米,宽是15厘米;例14 已知三个连续自然数的积为210,求这三个自然数各是多少适于五年级程度解:设这三个连续自然数分别是x-1,x,x+1,根据题意列方程,得:x-1×x×x+1=210=21×10=3×7×2×5=5×6×7比较方程两边的因数,得:x=6,x-1=5,x+1=7;答:这三个连续自然数分别是5、6、7;例15 将37分为甲、乙、丙三个数,使甲、乙、丙三个数的乘积为1440,并且甲、乙两数的积比丙数的3倍多12,求甲、乙、丙各是几适于六年级程度解:把1440分解质因数:1440= 12×12×10=2×2×3×2×2×3×2×5=2×2×2×3×3×2×2×5=8×9×20如果甲、乙二数分别是8、9,丙数是20,则:8×9=72,20×3+12=72正符合题中条件;答:甲、乙、丙三个数分别是8、9、20;例16 一个星期天的早晨,母亲对孩子们说:“你们是否发现在你们中间,大哥的年龄等于两个弟弟年龄之和”儿子们齐声回答说:“是的,我们的年龄和您年龄的乘积,等于您儿子人数的立方乘以1000加上您儿子人数的平方乘以10;”从这次谈话中,你能否确定母亲在多大时,才生下第二个儿子适于六年级程度解:由题意可知,母亲有三个儿子;母亲的年龄与三个儿子年龄的乘积等于:33×1000+32×10=27090把27090分解质因数:27090=43×7×5×32×2根据“大哥的年龄等于两个弟弟年龄之和”,重新组合上面的质因式得:43×14×9×5这个质因式中14就是9与5之和;所以母亲43岁,大儿子14岁,二儿子9岁,小儿子5岁;43-9=34岁答:母亲在34岁时生下第二个儿子;。

1~100分解质因数

1~100分解质因数

1~100分解质因数
首先,我们可以列出1~100的所有数字,并对它们进行质因数分解。

这将需要一些时间,但是可以通过编程来实现。

质因数分解是将一个数分解成几个质数相乘的形式。

例如,将60分解质因数,可以得到60=2235,因此60的质因数分解是2^2 3 5。

其次,我们可以观察1~100之间的数字,然后找出它们的质因数。

一些常见的质数包括2、3、5、7、11、13、17、19、23、29、31等。

通过观察这些质数的倍数,我们可以找到1~100之间的数字的质因数。

另外,我们还可以利用数论中的一些定理和方法来分解1~100之间的数字的质因数。

例如,可以利用欧拉筛法、试除法等数论方法来找出1~100之间的数字的质因数。

总之,分解1~100之间的数字的质因数是一个复杂的任务,需要耗费一定的时间和精力。

但通过合适的方法和工具,我们可以找出1~100之间的数字的质因数分解。

分解质因数(终极完整版)

分解质因数(终极完整版)

专题一分解质因数专题简析:1.什么叫分解质因数?把一个合数,用质因数相乘的形式表示出来,叫做分解质因数。

例如:24=2×2×2×3,75=3×5×5。

2.怎样分解质因数?把一个数分解质因数,要从最小的质数除起,一直除到结果为质数为止(短除法)。

3.分解质因数的目的:一是为了研究已知数与未知数之间的关系,从而使某些问题得到解决;二是为求最大公约数、最小公倍数服务。

【例题1】有4名同学参加夏令营,他们的年龄恰好一个比一个大1岁。

且知他们年龄的乘积是17160,你知道他们分别是多少岁呢?解析:17160=2×2×2×3×5×11×13=10×11×12×13【练习1】三个连续奇数的乘积是1287,则这三个数的和是多少?解析:1287=3×3×11×13=9×11×139+11+13=33【例题2】三个质数的和是38,求这三个质数的乘积最大值是多少?解析:奇+奇+偶=偶必有质数2,剩余两数和为36,则各自为17和19【练习2】两个质数的和是2001,这两个质数的乘积是多少?解析:同理【例题3】把7、14、20、21、28、30这六个数分成两组,每组三个数相乘,使他们的积相等应该如何分?解析:将每个数分解质因数,然后将质因数个数均分。

【练习3】将21,30,65,126,143,169,275分成两组,使两组数的积相等。

解析:同理【例题4】在1×2×3×4×5×…×200的末尾,连续有多少个零?解析:一个质因数2和一个质因数5相乘会使末尾产生一个0,质因数2的个数显然比质因数5的个数多,质因数的5的个数的确定:200÷5=40 200÷25=8 200÷125=1...75 所以有40+8+1=49个5,因此有49个0末尾。

常见的质因数分解-概述说明以及解释

常见的质因数分解-概述说明以及解释

常见的质因数分解-概述说明以及解释1.引言1.1 概述概述部分旨在对质因数分解进行简要介绍,向读者展示本文的主题和重要性。

质因数分解是数学中的一项基本概念,用于将一个数分解为若干个质数的乘积。

它在数论、代数、密码学等领域起着至关重要的作用。

质因数分解不仅是数学的基础知识,也是其他数学问题的关键步骤。

本文将重点介绍质因数的定义和性质,质因数分解的基本概念,以及常见的质因数分解方法。

它将帮助读者深入理解质因数分解的原理和应用,为解决相应的数学问题提供有力支持。

通过学习质因数分解,读者将能够更好地理解数的性质,掌握求解问题的方法,拓宽数学思维和解决问题的能力。

在正文部分,我们将详细介绍质因数的定义和性质,包括质数的概念以及如何判断一个数是否为质数。

随后,我们将解释质因数分解的基本概念,说明为什么我们可以将一个数分解为质数的乘积。

最后,我们将介绍一些常见的质因数分解方法,包括试除法、分解素因子法等。

本文的结论部分将对常见的质因数分解方法进行总结,并探讨质因数分解在实际应用中的价值。

我们将讨论质因数分解的应用领域,例如在密码学中的应用,以及对质因数分解未来发展的展望。

通过阅读本文,读者将获得对质因数分解的全面了解,了解其在数学中的重要性和广泛应用。

希望本文能为读者带来启发,激发对质因数分解以及相关数学问题的兴趣,并为进一步学习和研究提供基础知识。

文章结构部分的内容如下:1.2 文章结构本文按照以下结构进行组织和撰写:1. 引言:介绍质因数分解的背景和重要性,概括质因数分解在数学中的应用领域。

同时,说明本文的目的和重点。

2. 正文:主要包括三个部分。

2.1 质因数的定义和性质:介绍质因数的基本概念和性质,包括质因数的定义、质因数与合数的区别、质因数的唯一性等。

2.2 质因数分解的基本概念:详细解释质因数分解的概念和原理,讲解如何将一个数分解为若干个质数的乘积,以及质因数分解的唯一性。

2.3 常见的质因数分解方法:介绍常用的质因数分解方法,包括试除法、分解定理、辗转相除法等。

求因数的方法

求因数的方法

求因数的方法求因数是数学中的一项基本技能,它在数论、代数、初等数学等领域都有着重要的应用。

因数是指能够整除给定的数的数,求因数的方法有多种,可以通过分解质因数、列举法、试除法等方式来实现。

下面将分别介绍这些方法,希望能够帮助大家更好地理解和掌握求因数的技巧。

一、分解质因数法。

分解质因数是求因数的一种常用方法,它适用于任意正整数。

具体步骤是先将给定的数进行分解,然后将分解后的质因数写成乘积的形式。

例如,对于正整数60来说,可以先将其分解为2235,然后写成2^2 3 5的形式,这样就得到了60的质因数分解式。

二、列举法。

列举法是求因数的一种直观方法,适用于较小的数。

具体步骤是将给定的数进行因数分解,然后列举所有可能的因数。

例如,对于正整数24来说,可以列举出它的所有因数为1、2、3、4、6、8、12、24。

通过列举法可以快速找到一个数的所有因数。

三、试除法。

试除法是求因数的一种简便方法,适用于较大的数。

具体步骤是从最小的质数开始,依次对给定的数进行试除,直到不能再整除为止。

例如,对于正整数56来说,可以先用2试除,得到28,然后再用2试除,得到14,再用2试除,得到7,最终得到56的因数为2、2、2、7。

四、其他方法。

除了上述的方法外,还有一些其他的方法可以用来求因数,如辗转相除法、平方根法等。

这些方法在不同的情况下都有其独特的优势,可以根据具体的问题选择合适的方法来求因数。

总结。

求因数是数学中的一项基本技能,掌握好求因数的方法对于学习数学和解决实际问题都有着重要的意义。

分解质因数法、列举法、试除法等是常用的求因数方法,它们各有特点,可以根据具体情况灵活运用。

在实际应用中,还可以结合其他方法来求因数,以便更快更准确地得到结果。

希望通过本文的介绍,读者能够更好地理解和掌握求因数的方法,从而在数学学习和实际问题中更加游刃有余。

同时也希望大家能够在实际问题中灵活运用所学的知识,不断提高自己的数学素养。

小学数学解题方法解题技巧之分解质因数法

小学数学解题方法解题技巧之分解质因数法

第一章小学数学解题方法解题技巧之分解质因数法通过把一个合数分解为两个或两个以上质因数,来解答应用题的解题方法叫做分解质因数法。

分解质因数的方法在求最大公约数和最小公倍数时有用,在学习有理数的运算、因式分解、解方程等方面也有广泛的应用。

分解质因数的方法还可为一些数学问题提供新颖的解法,有益于开辟解题思路,启迪创造性思维。

例1 一块正方体木块,体积是1331立方厘米。

这块正方体木块的棱长是多少厘米?(适于六年级程度)解:把1331分解质因数:1331=11×11×11答:这块正方体木块的棱长是11厘米。

例2 一个数的平方等于324,求这个数。

(适于六年级程度)解:把324分解质因数:324= 2×2×3×3×3×3=(2×3×3)×(2×3×3)=18×18答:这个数是18。

例3 相邻两个自然数的最小公倍数是462,求这两个数。

(适于六年级程度)解:把462分解质因数:462=2×3×7×11=(3×7)×(2×11)=21×22答:这两个数是21和22。

*例4 ABC×D=1673,在这个乘法算式中,A、B、C、D代表不同的数字,ABC是一个三位数。

求ABC代表什么数?(适于六年级程度)解:因为ABC×D=1673,ABC是一个三位数,所以可把1673分解质因数,然后把质因数组合成一个三位数与另一个数相乘的形式,这个三位数就是ABC所代表的数。

1673=239×7答:ABC代表239。

例5 一块正方形田地,面积是2304平方米,这块田地的周长是多少米?(适于六年级程度)解:先把2304分解质因数,并把分解后所得的质因数分成积相同的两组质因数,每组质因数的积就是正方形的边长。

四种方法巧求最小公倍数

四种方法巧求最小公倍数

四种方法巧求最小公倍数在学习求两个数的最小公倍数时,我们学习小组通过认真思考,总结出了求最小公倍数的巧方法,我们愿介绍给大家:一、特殊情况特殊处理首先观察题目中两个数的关系,特殊情况有两种。

1、大数是小数的倍数,那么大数就是它们的最小公倍数。

如:求12和48的最小公倍数,因为48是12的倍数,所以12和48的最小公倍数是48。

2、两数是互质数,那么它们的乘积就是它们的最小公倍数。

如:求5和9的最小公倍数,因为5和9互质,5×9=45就是它们的最小公倍数。

二、一般情况下,有四种方法1、排列倍数法:将两个数的倍数从小到大依次排列,直到出现相同的倍数。

如:求12和18的最小公倍数。

12的倍数有:12243648……18的倍数有:183654……那么12和18的最小公倍数就是36.2、分解质因数法:将两个数分别写成质因数相乘的形式,找出公有因数和独有因数,求出它们的积,就是这两个数的最小公倍数。

如:求12和18的最小公倍数。

12=2×2×318=2×3×3其中2、3为公有因数,另一个2、3为独有因数,它们的最小公倍数为2×3×2×3=36。

3、短除法:就是用短除法将两个数分解质因数,然后再求它们的最小公倍数,如:求30和45的最小公倍数:30= 2×3×5 45=3×3×5 30和45有共同的质因素3、5 ,所以30和45的最小公倍数为:2×3×3×5=904、大数扩大法:如果两数不是互质,也没有倍数关系时,就是将较大的数依次扩大2倍,3倍,4倍……等,直到出现第一个为较小数的倍数的数,就是它们的最小公倍数。

如:求12和20的最小公倍数。

先用20×2=4040不是12的倍数。

再用20×3=6060是12的倍数,那么60就是12和20的最小公倍数。

分解质因数的两种方法

分解质因数的两种方法

分解质因数的两种方法分解质因数是将一个正整数表示为若干个质数的乘积,质因数的个数是有限的。

这个过程可以通过两种主要方法进行,分别是试除法和分解方法。

1. 试除法:试除法是一种简单有效的分解质因数的方法,主要包括以下几个步骤:1)首先,我们可以观察给定数是否能被较小的质数整除,如2、3、5、7等。

如果能整除,那么这个质数就是一个质因数,我们可以将这个质因数找到并记录下来。

2)接下来,我们用找到的质因数去除给定数,得到一个商和一个余数。

如果商为1,表示已经找到了所有的质因数,分解结束;如果商不为1,表示还有质因数待找,我们需要继续执行试除的操作。

3)继续对商进行试除,重复上述步骤,直到商为1为止,得到所有的质因数。

例如,我们来分解质因数120:由于120能被2整除,所以2是120的一个质因数。

将120除以2得到的商为60。

继续对60进行试除,发现能被2整除,所以2是60的一个质因数。

将60除以2得到的商为30。

继续对30进行试除,发现能被2整除,所以2是30的一个质因数。

将30除以2得到的商为15。

继续对15进行试除,发现不能被2整除,再试除3,能够整除。

所以3是15的一个质因数。

将15除以3得到的商为5。

对5进行试除,发现5本身是一个质数,所以5是5的一个质因数。

经过上述步骤,我们得到了120的全部质因数,即2、2、2、3、5。

将它们相乘,可以得到原始给定数120。

2. 分解方法:另一种常用的分解质因数的方法是分解法。

这个方法主要基于数的因式分解的性质,通过找到一个质因数后,将给定数除以该质因数,然后对商进行继续分解的操作。

具体步骤如下:1)首先,我们可以观察给定数是否能被较小的质数整除,如2、3、5、7等。

如果能整除,那么这个质数就是一个质因数,我们可以将这个质因数找到并记录下来。

2)将给定数除以找到的质因数,得到一个商和一个余数。

如果商为1,表示已经找到了所有的质因数,分解结束;如果商不为1,表示还有质因数待找,我们需要继续执行分解的操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分解质因数法通过把一个合数分解为两个或两个以上质因数,来解答应用题的解题方法叫做分解质因数法。

分解质因数的方法在求最大公约数和最小公倍数时有用,在学习有理数的运算、因式分解、解方程等方面也有广泛的应用。

分解质因数的方法还可为一些数学问题提供新颖的解法,有益于开辟解题思路,启迪创造性思维。

例1 一块正方体木块,体积是1331立方厘米。

这块正方体木块的棱长是多少厘米?解:把1331分解质因数:1331=11×11×11答:这块正方体木块的棱长是11厘米。

例2 一个数的平方等于324,求这个数。

解:把324分解质因数:324= 2×2×3×3×3×3=(2×3×3)×(2×3×3)=18×18答:这个数是18。

例3 相邻两个自然数的最小公倍数是462,求这两个数。

解:把462分解质因数:462=2×3×7×11=(3×7)×(2×11)=21×22答:这两个数是21和22。

*例4 ABC×D=1673,在这个乘法算式中,A、B、C、D代表不同的数字,ABC是一个三位数。

求ABC代表什么数?解:因为ABC×D=1673,ABC是一个三位数,所以可把1673分解质因数,然后把质因数组合成一个三位数与另一个数相乘的形式,这个三位数就是ABC所代表的数。

1673=239×7答:ABC代表239。

例5 一块正方形田地,面积是2304平方米,这块田地的周长是多少米?*例6 有3250个桔子,平均分给一个幼儿园的小朋友,剩下10个。

已知每一名小朋友分得的桔子数接近40个。

求这个幼儿园有多少名小朋友?解:3250-10=3240(个)把3240分解质因数:3240=23×34×5接近40的数有36、37、38、39这些数中36=22×32,所以只有36是3240的约数。

23×34×5÷(22×32)=2×32×5=90答:这个幼儿园有90名小朋友。

*例7 105的约数共有几个?解:求一个给定的自然数的约数的个数,可先将这个数分解质因数,然后按一个质数、两个质数、三个质数的乘积……逐一由小到大写出,再求出它的个数即可。

因为,105=3×5×7,所以,含有一个质数的约数有1、3、5、7共4个;含有两个质数的乘积的约数有3×5、3×7、5×7共3个;含有三个质数的乘积的约数有3×5×7共1个。

所以,105的约数共有4+3+1=8个。

答略。

*例8 把15、22、30、35、39、44、52、77、91这九个数平均分成三组,使每组三个数的乘积都相等。

这三组数分别是多少?解:将这九个数分别分解质因数:15=3×522=2×1130=2×3×535=5×739=3×1344=2×2×1152=2×2×1377=7×1191=7×13观察上面九个数的质因数,不难看出,九个数的质因数中共有六个2,三个3,三个5,三个7,三个11,三个13,这样每组中三个数应包括的质因数有两个2,一个3,一个5,一个7,一个11和一个13。

由以上观察分析可得这三组数分别是:15、52和77;22、30和91;35、39和44。

答略。

*例9 有四个学生,他们的年龄恰好一个比一个大一岁,他们的年龄数相乘的积是5040。

四个学生的年龄分别是几岁?解:把5040分解质因数:5040=2×2×2×2×3×3×5×7由于四个学生的年龄一个比一个大1岁,所以他们的年龄数就是四个连续自然数。

用八个质因数表示四个连续自然数是:7,2×2×2,3×3,2×5即四个学生的年龄分别是7岁、8岁、9岁、10岁。

答略。

*例10 在等式35×()×81×27=7×18×()×162的两个括号中,填上适当的最小的数。

解:将已知等式的两边分解质因数,得:5×37×7×()=22×36×7×()把上面的等式化简,得:15×()=4×()所以,在左边的括号内填4,在右边的括号内填15。

15×(4)=4×(15)答略。

*例11 把84名学生分成人数相等的小组(每组最少2人),一共有几种分法?解:把84分解质因数:84=2×2×3×7除了1和84外,84的约数有:2,3,7,2×2=4,2×3=6,2×7=14,3×7=21,2×2×3=12,2×2×7=28,2×3×7=42。

下面可根据不同的约数进行分组。

84÷2=42(组),84÷3=28(组),84÷4=21(组),84÷6=14(组),84÷7=12(组),84÷12=7(组),84÷14=6(组),84÷21=4(组),84÷28=3(组),84÷42=2(组)。

因此每组2人分42组;每组3人分28组;每组4人分21组;每组6人分14组;每组7人分12组;每组12人分7组;每组14人分6组;每组21人分4组;每组28人分3组;每组42人分2组。

一共有10种分法。

答略。

*例12 把14、30、33、75、143、169、4445、4953这八个数分成两组,每组四个数,要使各组数中四个数的乘积相等。

求这两组数。

解:要使两组数的乘积相等,这两组乘积中的每个因数不必相同,但这些因数经分解质因数,它们所含有的质因数一定相同。

因此,首先应把八个数分解质因数。

14=2×7 143=11×1330=2×3×5 169=13×1333=3×11 4445=5×7×12775=3×5×5 4953=3×13×127在上面的质因式中,质因数2、7、11、127各有2个,质因数3、5、13各有4个。

在把题中的八个数分为两组时,应使每一组中的质因数2、7、11、127各有1个,质因数3、5、13各有2个。

按这个要求每一组四个数的积应是:2×7×11×127×3×3×5×5×13×13因为,(2×7)×(3×5×5)×(11×13)×(3×13×127)=14×75×143×4953,根据接下来为“14、75、143、4953”正符合题意,因此,要求的一组数是14、75、143、4953,另一组的四个数是:30、33、169、4445。

答略。

*例13 一个长方形的面积是315平方厘米,长比宽多6厘米。

求这个长方形的长和宽。

(适于五年级程度)解:设长方形的宽为x厘米,则长为(x+6)厘米。

根据题意列方程,得:x(x+6)= 315x(x+6)=3×3×5×7=(3×5)×(3×7)x(x+6)=15×21x(x+6)=15×(15+6)x=15x+6=21答:这个长方形的长是21厘米,宽是15厘米。

*例14 已知三个连续自然数的积为210,求这三个自然数各是多少?(适于五年级程度)解:设这三个连续自然数分别是x-1,x,x+1,根据题意列方程,得:(x-1)×x×(x+1)=210=21×10=3×7×2×5=5×6×7比较方程两边的因数,得:x=6,x-1=5,x+1=7。

答:这三个连续自然数分别是5、6、7。

*例15 将37分为甲、乙、丙三个数,使甲、乙、丙三个数的乘积为1440,并且甲、乙两数的积比丙数的3倍多12,求甲、乙、丙各是几?解:把1440分解质因数:1440= 12×12×10=2×2×3×2×2×3×2×5=(2×2×2)×(3×3)×(2×2×5)=8×9×20如果甲、乙二数分别是8、9,丙数是20,则:8×9=72,20×3+12=72正符合题中条件。

答:甲、乙、丙三个数分别是8、9、20。

*例16 一个星期天的早晨,母亲对孩子们说:“你们是否发现在你们中间,大哥的年龄等于两个弟弟年龄之和?”儿子们齐声回答说:“是的,我们的年龄和您年龄的乘积,等于您儿子人数的立方乘以1000加上您儿子人数的平方乘以10。

”从这次谈话中,你能否确定母亲在多大时,才生下第二个儿子?解:由题意可知,母亲有三个儿子。

母亲的年龄与三个儿子年龄的乘积等于:33×1000+32×10=27090把27090分解质因数:27090=43×7×5×32×2根据“大哥的年龄等于两个弟弟年龄之和”,重新组合上面的质因式得:43×14×9×5这个质因式中14就是9与5之和。

所以母亲43岁,大儿子14岁,二儿子9岁,小儿子5岁。

43-9=34(岁)答:母亲在34岁时生下第二个儿子。

相关文档
最新文档