第4讲 函数y=Asin(ωx+φ)的图象及应用

合集下载

函数y=Asin(ωx+φ)图像变换优质课课件

函数y=Asin(ωx+φ)图像变换优质课课件
振动控制
在振动控制领域,函数y=asin(ωx+φ)可以用于设计振动控制器。通过调整控制器的参数, 可以实现振动的有效抑制或放大,提高机械设备的稳定性和可靠性。
振动信号处理
在振动信号处理中,函数y=asin(ωx+φ)可以用于信号的调制和解调。通过对信号进行变换, 可以实现信号的增强、降噪和特征提取,为故障诊断和状态监测提供依据。
控制系统稳定性分析
利用函数y=asin(ωx+φ)可以分析控制系统的稳定性。通过分析系统的极点和零点分布,可以判断系统的稳定性和动态性 能,为控制系统校正和优化提供指导。
控制系统校正与优化
在控制系统设计中,函数y=asin(ωx+φ)可以用于控制系统校正与优化。通过调整控制器的参数,可以提 高系统的性能指标,如响应速度、超调和稳态误差等,使系统更好地适应实际应用需求。
ω<0的周期变换
无界周期
当ω<0时,函数y=asin(ωx+φ)的周 期是无界的,这意味着函数在x轴上的 移动是无限循环的。
波形变化
随着ω的减小,函数的波形会变得更加 平缓或尖锐,这取决于绝对值的大小。
04 振幅变换
A>1的振幅变换
总结词
当振幅系数A大于1时,函数y=asin(ωx+φ)的图像将呈现放大 的效果。
φ=0的相位变换
总结词
当相位φ等于0时,函数图像不发生平移。
详细描述
当相位φ的值等于0时,函数y=asin(ωx+φ)就变成了标准正弦函数y=asin(ωx),图 像没有发生平移。这是因为此时函数的周期性没有改变,所以图像在x轴方向上没有 移动。
03 周期变换
ω>1的周期变换
周期缩短

2020版高考数学一轮复习 函数y=Asin(ωx+φ)的图象及应用讲义理(含解析)

2020版高考数学一轮复习 函数y=Asin(ωx+φ)的图象及应用讲义理(含解析)

第4讲函数y=A sin(ωx+φ)的图象及应用1.“五点法”作函数y=A sin(ωx+φ)(A>0,ω>0)的简图“五点法”作图的五点是在一个周期内的最高点、最低点及与x轴相交的三个点,作图时的一般步骤为:(1)定点:如下表所示.(2)作图:在坐标系中描出这五个关键点,用平滑的曲线顺次连接得到y=A sin(ωx+φ)在一个周期内的图象.(3)扩展:将所得图象,按周期向两侧扩展可得y=A sin(ωx+φ)在R上的图象.2.函数y=sin x的图象经变换得到y=A sin(ωx+φ)(A>0,ω>0)的图象的步骤1.概念辨析(1)将函数y =3sin2x 的图象左移π4个单位长度后所得图象的解析式是y =3sin ⎝⎛⎭⎪⎫2x +π4.( ) (2)利用图象变换作图时,“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( )(3)将函数y =2sin x 的图象上所有点的横坐标缩短为原来的12,纵坐标不变,得函数y=2sin x2的图象.( )(4)由图象求解析式时,振幅A 的大小是由一个周期内图象中最高点的值与最低点的值确定的.( )答案 (1)× (2)× (3)× (4)√ 2.小题热身(1)函数y =2sin ⎝ ⎛⎭⎪⎫2x +π4的振幅、频率和初相分别为( ) A .2,1π,π4B .2,12π,π4 C .2,1π,π8D .2,12π,-π8答案 A解析 函数y =2sin ⎝⎛⎭⎪⎫2x +π4的振幅是2,周期T =2π2=π,频率f =1T =1π,初相是π4,故选A.(2)用五点法作函数y =sin ⎝⎛⎭⎪⎫x -π6在一个周期内的图象时,主要确定的五个点是________、________、__________、________、________.答案 ⎝⎛⎭⎪⎫π6,0⎝ ⎛⎭⎪⎫2π3,1⎝ ⎛⎭⎪⎫7π6,0⎝ ⎛⎭⎪⎫5π3,-1⎝ ⎛⎭⎪⎫13π6,0解析 列表:五个点依次是⎝ ⎛⎭⎪⎫π6,0、⎝ ⎛⎭⎪⎫2π3,1、⎝ ⎛⎭⎪⎫7π6,0、⎝ ⎛⎭⎪⎫5π3,-1、⎝ ⎛⎭⎪⎫13π6,0.(3)将函数f (x )=-12cos2x 的图象向右平移π6个单位长度后,再将图象上各点的纵坐标伸长到原来的2倍,得到函数y =g (x )的图象,则g ⎝⎛⎭⎪⎫3π4=________.答案32解析 函数f (x )=-12cos2x 的图象向右平移π6个单位长度后得函数y =-12cos2⎝ ⎛⎭⎪⎫x -π6=-12cos ⎝ ⎛⎭⎪⎫2x -π3,再将图象上各点的纵坐标伸长到原来的2倍,得到函数g (x )=-cos ⎝ ⎛⎭⎪⎫2x -π3,所以g ⎝ ⎛⎭⎪⎫3π4=-cos ⎝ ⎛⎭⎪⎫3π2-π3=sin π3=32.(4)(2018·长春模拟)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为________.答案 f (x )=2sin ⎝⎛⎭⎪⎫2x +π3 解析 由图象可知A =2,T 4=7π12-π3=π4,所以2πω=π,ω=2,所以f (x )=2sin(2x+φ),又f ⎝⎛⎭⎪⎫7π12=-2,所以2×7π12+φ=2k π+3π2,k ∈Z ,φ=2k π+π3,k ∈Z ,又|φ|<π,所以φ=π3,所以f (x )=2sin ⎝⎛⎭⎪⎫2x +π3.题型 一 函数y =A sin(ωx +φ)的图象及变换1.(2017·全国卷Ⅰ)已知曲线C 1:y =cos x ,C 2:y =sin ⎝ ⎛⎭⎪⎫2x +2π3,则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2答案 D解析 由C 2:y =sin ⎝ ⎛⎭⎪⎫2x +2π3=sin ⎝ ⎛⎭⎪⎫2x +π6+π2=cos ( 2x +π6 )=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12. 根据三角函数图象变换的规律,可得D 正确.2.(2018·蚌埠一模)已知ω>0,顺次连接函数y =sin ωx 与y =cos ωx 的任意三个相邻的交点都构成一个等边三角形,则ω=( )A .π B.6π2 C.4π3D.3π 答案 B解析 当正弦值等于余弦值时,函数值为±22,故等边三角形的高为2,由此得到边长为2×33×2=263,边长即为函数的周期,故2πω=263,ω=6π2.3.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上单调递增,求ω的最大值.解 函数f (x )=2sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤-π2ω,π2ω上单调递增,所以⎣⎢⎡⎦⎥⎤-π3,π4⊆⎣⎢⎡⎦⎥⎤-π2ω,π2ω,所以⎩⎪⎨⎪⎧-π2ω≤-π3,π2ω≥π4.解得0<ω≤32,所以ω的最大值为32.4.已知函数y =cos ⎝ ⎛⎭⎪⎫2x -π3.(1)求它的振幅、周期、初相;(2)用“五点法”作出它在区间[0,π]内的图象;(3)说明y =cos ⎝⎛⎭⎪⎫2x -π3的图象可由y =cos x 的图象经过怎样的变换而得到.解 (1)函数y =cos ⎝ ⎛⎭⎪⎫2x -π3的振幅为1,周期T =2π2=π,初相是-π3. (2)列表:描点,连线.(3)解法一:把y =cos x 的图象上所有的点向右平移π3个单位长度,得到y =cos ⎝ ⎛⎭⎪⎫x -π3的图象;再把y =cos ⎝ ⎛⎭⎪⎫x -π3的图象上所有点的横坐标缩短到原来的12(纵坐标不变),得到y =cos ⎝⎛⎭⎪⎫2x -π3的图象.解法二:将y =cos x 的图象上所有点的横坐标缩短为原来的12(纵坐标不变),得到y =cos2x 的图象;再将y =cos2x 的图象向右平移π6个单位长度,得到y =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6=cos ⎝ ⎛⎭⎪⎫2x -π3的图象.作函数y =A sin(ωx +φ)(A >0,ω>0)的图象常用的两种方法(1)五点法作图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,3π2,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象的变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.1.要想得到函数y =sin2x +1的图象,只需将函数y =cos2x 的图象( ) A.向左平移π4个单位长度,再向上平移1个单位长度B.向右平移π4个单位长度,再向上平移1个单位长度C.向左平移π2个单位长度,再向下平移1个单位长度D.向右平移π2个单位长度,再向下平移1个单位长度答案 B解析 先将函数y =cos2x 的图象向右平移π4个单位长度,得到y =sin2x 的图象,再向上平移1个单位长度,即得y =sin2x +1的图象,故选B.2.(2018·青岛模拟)将函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图象向左平移π12个单位得到函数g (x )的图象,在g (x )图象的所有对称轴中,离原点最近的对称轴方程为( )A.x =-π24B .x =π4C.x =5π24D .x =π12答案 A解析 当函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3图象上的每个点的横坐标缩短为原来的一半,纵坐标不变时,此时函数解析式可表示为f 1(x )=2sin ⎝ ⎛⎭⎪⎫4x +π3,再将所得图象向左平移π12个单位得到函数g (x )的图象,则g (x )可以表示为g (x )=2sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x +π12+π3=2sin ⎝ ⎛⎭⎪⎫4x +2π3.则函数g (x )的图象的对称轴可表示为4x +2π3=π2+k π,k ∈Z ,即x =-π24+k π4,k∈Z .则g (x )的图象离原点最近的对称轴,即g (x )的图象离y 轴最近的对称轴为x =-π24.题型 二 由图象确定y =A sin(ωx +φ)的解析式1.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π),其导函数f ′(x )的图象如图所示,则f ⎝ ⎛⎭⎪⎫π2的值为( )A .2 2 B. 2 C .-22 D .-24答案 D解析 依题意得f ′(x )=Aωcos(ωx +φ),结合函数y =f ′(x )的图象,则T =2πω=4⎝⎛⎭⎪⎫3π8-π8=π,ω=2.又Aω=1,因此A =12.因为0<φ<π,3π4<3π4+φ<7π4,且f ′⎝ ⎛⎭⎪⎫3π8=cos ⎝ ⎛⎭⎪⎫3π4+φ=-1,所以3π4+φ=π,即φ=π4,所以f (x )=12sin ⎝ ⎛⎭⎪⎫2x +π4,f ⎝ ⎛⎭⎪⎫π2=12sin ⎝⎛⎭⎪⎫π+π4=-12×22=-24. 2.设f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π),其图象上最高点M 的坐标是(2,2),曲线上的点P 由点M 运动到相邻的最低点N 时,在点Q (6,0)处越过x 轴.(1)求A ,ω,φ的值;(2)函数f (x )的图象能否通过平移变换得到一个奇函数的图象?若能,写出变换方法;若不能,说明理由.解 (1)由题意知A =2,T =(6-2)×4=16,所以ω=2πT =π8.又因为Q (6,0)是零值点,且|φ|<π,所以π8×6+φ=π,所以φ=π4,经验证,符合题意.所以A =2,ω=π8,φ=π4.(2)f (x )的图象经过平移变换能得到一个奇函数的图象.由(1)知f (x )=2sin ⎝ ⎛⎭⎪⎫π8x +π4,当f (x )的图象向右平移2个单位长度后,所得图象的函数解析式为g (x )=2sin π8x ,是奇函数.确定y =A sin(ωx +φ)+b (A >0,ω>0)中参数的方法(1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m2,b =M +m2;(2)求ω:确定函数的周期T ,则可得ω=2πT;(3)求φ:常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下:1.(2018·四川绵阳诊断)如图是函数f (x )=cos(πx +φ)⎝⎛⎭⎪⎫0<φ<π2的部分图象,则f (3x 0)=( )A.12 B .-12C.32D .-32答案 D解析 ∵f (x )=cos(πx +φ)的图象过点⎝ ⎛⎭⎪⎫0,32, ∴32=cos φ,结合0<φ<π2,可得φ=π6.∴由图象可得cos ⎝⎛⎭⎪⎫πx 0+π6=32,πx 0+π6=2π-π6,解得x 0=53. ∴f (3x 0)=f (5)=cos ⎝⎛⎭⎪⎫5π+π6=-32.2.已知函数f (x )=A tan(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2,y =f (x )的部分图象如图所示,则f ⎝ ⎛⎭⎪⎫π24等于________.答案3解析 观察图象可知T 2=3π8-π8,所以π2ω=π4,ω=2,所以f (x )=A tan(2x +φ).又因为函数图象过点⎝⎛⎭⎪⎫3π8,0,所以0=A tan ⎝ ⎛⎭⎪⎫2×3π8+φ,所以3π4+φ=k π(k ∈Z ),所以φ=k π-3π4(k ∈Z ).又因为|φ|<π2,所以φ=π4.又图象过点(0,1),所以A =1.综上知,f (x )=tan ⎝⎛⎭⎪⎫2x +π4,故f ⎝ ⎛⎭⎪⎫π24=tan ⎝ ⎛⎭⎪⎫2×π24+π4= 3.题型 三 三角函数图象性质的应用角度1 三角函数模型的应用1.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为( )A.5 B .6 C .8 D .10答案 C解析 由图象可知,y min =2,因为y min =-3+k ,所以-3+k =2,解得k =5,所以这段时间水深的最大值是y max =3+k =3+5=8.角度2 函数零点(方程根)问题2.已知关于x 的方程2sin ⎝ ⎛⎭⎪⎫x +π6+1-a =0在区间⎣⎢⎡⎦⎥⎤0,2π3上存在两个根,则实数a的取值范围是________.答案 [2,3)解析 2sin ⎝ ⎛⎭⎪⎫x +π6+1-a =0化为sin ⎝ ⎛⎭⎪⎫x +π6=a -12,令t =x +π6,由x ∈⎣⎢⎡⎦⎥⎤0,2π3得,t =x +π6∈⎣⎢⎡⎦⎥⎤π6,5π6,画出函数y =sin t ,t ∈⎣⎢⎡⎦⎥⎤π6,5π6的图象和直线y =a -12,当12≤a -12<1,即2≤a <3时,函数y =sin t ,t ∈⎣⎢⎡⎦⎥⎤π6,5π6的图象和直线y =a -12有两个公共点,原方程有两个根.角度3 三角函数图象性质的综合3.函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图,则( )A .函数f (x )的对称轴方程为x =4k π+π4(k ∈Z )B.函数f (x )的递减区间为⎣⎢⎡⎦⎥⎤8k π+π4,8k π+5π4(k ∈Z )C.函数f (x )的递增区间为[8k +1,8k +5](k ∈Z )D.f (x )≥1的解集为⎣⎢⎡⎦⎥⎤8k -13,8k +73(k ∈Z )答案 D解析 由题图知,A =2,函数f (x )的最小正周期T =4×(3-1)=8,故ω=2π8=π4,所以f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +φ,因为点(1,2)在图象上,所以2sin ⎝ ⎛⎭⎪⎫π4+φ=2,因为|φ|<π2,所以φ=π4,即f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +π4,由π4x +π4=k π+π2(k ∈Z )得x =4k +1,即函数f (x )的对称轴方程为x =4k +1(k ∈Z ),所以A 项错误;由2k π+π2≤π4x +π4≤2k π+3π2(k ∈Z )得8k +1≤x ≤8k +5,即函数f (x )的单调减区间为[8k +1,8k +5](k ∈Z ),所以B ,C两项错误;由2sin ⎝ ⎛⎭⎪⎫π4x +π4≥1,得sin ⎝ ⎛⎭⎪⎫π4x +π4≥12,所以2k π+π6≤π4x +π4≤2k π+5π6(k ∈Z ),解得8k -13≤x ≤8k +73(k ∈Z ),即不等式f (x )≥1的解集为⎣⎢⎡⎦⎥⎤8k -13,8k +73(k ∈Z ),故选D.(1)三角函数模型在实际应用中体现的两个方面①已知三角函数模型,利用三角函数的有关性质解决问题,其关键是准确理解自变量的意义及自变量与函数之间的对应法则;②把实际问题抽象转化成数学问题,建立三角函数模型,再利用三角函数的有关知识解决问题,其关键是建模.(2)三角函数的零点、不等式问题的求解思路①把函数表达式转化为正弦型函数形式y =A sin(ωx +φ)+B (A >0,ω>0); ②画出一个周期上的函数图象;③利用图象解决有关三角函数的方程、不等式问题.(3)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想解题.1.设函数f (x )=⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫x +π3(x ∈R ),则f (x )( )A.在区间⎣⎢⎡⎦⎥⎤2π3,7π6上是增函数B.在区间⎣⎢⎡⎦⎥⎤-π,-π2上是减函数 C.在区间⎣⎢⎡⎦⎥⎤-π3,π4上是增函数D.在区间⎣⎢⎡⎦⎥⎤π3,5π6上是减函数答案 A解析 函数f (x )=⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π3(x ∈R )的图象如图所示,由图象可知函数f (x )=⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π3(x ∈R )在区间⎣⎢⎡⎦⎥⎤2π3,7π6上是增函数.故选A.2.一个大风车的半径为8 m,12 min 旋转一周,它的最低点P 0离地面2 m ,风车翼片的一个端点P 从P 0开始按逆时针方向旋转,则点P 离地面距离h (m)与时间t (min)之间的函数关系式是( )A .h (t )=-8sin π6t +10B.h (t )=-cos π6t +10C.h (t )=-8sin π6t +8D.h (t )=-8cos π6t +10答案 D解析 设h (t )=A cos ωt +B ,因为12 min 旋转一周, 所以2πω=12,所以ω=π6,由于最大值与最小值分别为18,2.所以⎩⎪⎨⎪⎧-A +B =18,A +B =2,解得A =-8,B =10.所以h (t )=-8cos π6t +10.3.若函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)满足f (0)=f ⎝ ⎛⎭⎪⎫π3,且函数在⎣⎢⎡⎦⎥⎤0,π2上有且只有一个零点,则f (x )的最小正周期为( )A.π2 B .π C.3π2D .2π 答案 B解析 依题意,函数f (x )图象的一条对称轴为x =0+π32=π6,又因为函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上有且只有一个零点,所以π6-0≤T 4≤π2-π6,所以2π3≤T ≤4π3.根据选项可得,f (x )的最小正周期为π.。

2019高考数学复习:函数y=Asin(ωx+φ)的图象及应用

2019高考数学复习:函数y=Asin(ωx+φ)的图象及应用

第4节函数y=A sin(ωx+φ)的图象及应用最新考纲 1.了解函数y=A sin(ωx+φ)的物理意义;能画出y=A sin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响;2.会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型.知识梳理1.“五点法”作函数y=A sin(ωx+φ)(A>0,ω>0)的简图“五点法”作图的五点是在一个周期内的最高点、最低点及与x轴相交的三个点,作图时的一般步骤为:(1)定点:如下表所示.(2)作图:在坐标系中描出这五个关键点,用平滑的曲线顺次连接得到y=A sin(ωx +φ)在一个周期内的图象.(3)扩展:将所得图象,按周期向两侧扩展可得y=A sin(ωx+φ)在R上的图象.2.函数y=A sin(ωx+φ)中各量的物理意义当函数y=A sin(ωx+φ)(A>0,ω>0),x∈[0,+∞)表示简谐振动时,几个相关的概念如下表:3.函数y=sin x的图象经变换得到y=A sin(ωx+φ)的图象的两种途径[常用结论与微点提醒]1.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移ϕω个单位长度而非φ个单位长度.2.函数y =A sin(ωx +φ)的对称轴由ωx +φ=k π+π2,k ∈Z 确定;对称中心由ωx +φ=k π,k ∈Z 确定其横坐标.诊 断 自 测1.思考辨析(在括号内打“√”或“×”)(1)将函数y =3sin 2x 的图象左移π4个单位长度后所得图象的解析式是y =3sin ⎝ ⎛⎭⎪⎫2x +π4.( )(2)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( )(3)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2.( )(4)由图象求解析式时,振幅A 的大小是由一个周期内图象中最高点的值与最低点的值确定的.( )解析 (1)将函数y =3sin 2x 的图象向左平移π4个单位长度后所得图象的解析式是y =3cos 2x .(2)“先平移,后伸缩”的平移单位长度为|φ|,而“先伸缩,后平移”的平移单位长度为⎪⎪⎪⎪⎪⎪φω.故当ω≠1时平移的长度不相等.答案 (1)× (2)× (3)√ (4)√2.(必修4P56T3改编)y =2sin ⎝ ⎛⎭⎪⎫12x -π3的振幅、频率和初相分别为( )A.2,4π,π3B.2,14π,π3 C.2,14π,-π3D.2,4π,-π3解析 由题意知A =2,f =1T =ω2π=14π,初相为-π3.答案 C3.(2016·全国Ⅰ卷)若将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期后,所得图象对应的函数为( )A.y =2sin ⎝ ⎛⎭⎪⎫2x +π4 B.y =2sin ⎝⎛⎭⎪⎫2x +π3C.y =2sin ⎝ ⎛⎭⎪⎫2x -π4D.y =2sin ⎝⎛⎭⎪⎫2x -π3解析 函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的周期为π,将函数y =2sin ⎝⎛⎭⎪⎫2x +π6的图象向右平移14个周期即π4个单位,所得函数为y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4+π6=2sin ⎝ ⎛⎭⎪⎫2x -π3,故选D. 答案 D4.(2018·长沙模拟改编)y =cos(x +1)图象上相邻的最高点和最低点之间的距离是________.解析 相邻最高点与最低点的纵坐标之差为2,横坐标之差恰为半个周期π,故它们之间的距离为π2+4. 答案π2+45.(2018·沈阳质检)函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,则f ⎝ ⎛⎭⎪⎫π4的值为________.解析 由图象可知A =2,34T =11π12-π6=3π4,∴T =π, ∴ω=2.∵当x =π6时,函数f (x )取得最大值,∴2×π6+φ=π2+2k π(k ∈Z ),∴φ=π6+2k π(k ∈Z ),∵0<φ<π,∴φ=π6,∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π6,则f ⎝ ⎛⎭⎪⎫π4=2sin ⎝ ⎛⎭⎪⎫π2+π6=2cos π6= 3.答案3考点一 函数y =A sin(ωx +φ)的图象及变换【例1】 某同学用“五点法”画函数f (x )=A sin(ωx +φ) ⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝ ⎛⎭⎪⎫5π12,0,求θ的最小值. 解 (1)根据表中已知数据,解得A =5,ω=2,φ=-π.数据补全如下表:且函数解析式为f (x )=5sin ⎝ ⎛⎭⎪⎫2x -6.(2)由(1)知f (x )=5sin ⎝⎛⎭⎪⎫2x -π6,得g (x )=5sin ⎝⎛⎭⎪⎫2x +2θ-π6.因为函数y =sin x 图象的对称中心为(k π,0),k ∈Z .令2x +2θ-π6=k π,k ∈Z ,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝ ⎛⎭⎪⎫5π12,0成中心对称,所以令k π2+π12-θ=5π12,k ∈Z ,解得θ=k π2-π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6.规律方法 作函数y =A sin(ωx +φ)(A >0,ω>0)的图象常用如下两种方法: (1)五点法作图,用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象;(2)图象的变换法,由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.【训练1】 (2017·全国Ⅰ卷)已知曲线C 1:y =cos x ,C 2:y =sin ⎝ ⎛⎭⎪⎫2x +2π3,则下面结论正确的是( )A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2解析 易知C 1:y =cos x =sin ⎝⎛⎭⎪⎫x +π2,把曲线C 1上的各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y =sin ⎝⎛⎭⎪⎫2x +π2的图象,再把所得函数的图象向左平移π12个单位长度,可得函数y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+π2=sin ⎝ ⎛⎭⎪⎫2x +2π3的图象,即曲线C 2,因此D 项正确. 答案 D考点二 求函数y =A sin(ωx +φ)的解析式【例2】 (1)(一题多解)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为________.(2)(2018·西安质检)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,-π2≤φ≤π2的图象上的一个最高点和它相邻的一个最低点的距离为22,且过点⎝ ⎛⎭⎪⎫2,-12,则函数f (x )=________.解析 (1)由题图可知A =2, 法一 T 4=7π12-π3=π4, 所以T =π,故ω=2, 因此f (x )=2sin(2x +φ),又⎝ ⎛⎭⎪⎫π3,0对应五点法作图中的第三个点, 因此2×π3+φ=π,所以φ=π3,故f (x )=2sin ⎝⎛⎭⎪⎫2x +π3.法二 以⎝ ⎛⎭⎪⎫π3,0为第二个“零点”,⎝ ⎛⎭⎪⎫7π12,-2为最小值点, 列方程组⎩⎪⎨⎪⎧ω·π3+φ=π,ω·7π12+φ=3π2,解得⎩⎪⎨⎪⎧ω=2, φ=π3,故f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3.(2)依题意得22+⎝ ⎛⎭⎪⎫πω2=22,则πω=2,即ω=π2,所以f (x )=sin ⎝ ⎛⎭⎪⎫π2x +φ,由于该函数图象过点⎝ ⎛⎭⎪⎫2,-12,因此sin(π+φ)=-12,即sin φ=12,而-π2≤φ≤π2,故φ=π6,所以f (x )=sin ⎝ ⎛⎭⎪⎫π2x +π6.答案 (1)f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3 (2)sin ⎝ ⎛⎭⎪⎫π2x +π6规律方法 已知f (x )=A sin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)五点法,由ω=2πT 即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ;(2)代入法,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.【训练2】 (2018·茂名一模)如图所示,函数f (x )=A sin(2x +φ)⎝⎛⎭⎪⎫A >0,|φ|<π2的图象过点(0,3),则f (x )的图象的一个对称中心是( ) A.⎝ ⎛⎭⎪⎫-π3,0 B.⎝ ⎛⎭⎪⎫-π6,0 C.⎝ ⎛⎭⎪⎫π6,0D.⎝ ⎛⎭⎪⎫π4,0 解析 由题中函数图象可知:A =2, 由于函数图象过点(0,3),所以2sin φ=3,即sin φ =32,由于|φ|<π2,所以φ=π3,则有f (x )=2sin ⎝⎛⎭⎪⎫2x +π3.由2x +π3=k π,k ∈Z 可解得x =k π2-π6,k ∈Z ,故f (x )的图象的对称中心是⎝ ⎛⎭⎪⎫k π2-π6,0,k ∈Z ,则f (x )的图象的一个对称中心是⎝ ⎛⎭⎪⎫-π6,0,故选B. 答案 B考点三 三角函数模型及其应用【例3】 如图,某大风车的半径为2 m ,每12 s 旋转一周,它的最低点O 离地面0.5 m.风车圆周上一点A 从最低点O 开始,运动t (s)后与地面的距离为h (m).(1)求函数h =f (t )的关系式;(2)画出函数h =f (t )(0≤t ≤12)的大致图象.解 (1)如图,以O 为原点,过点O 的圆的切线为x 轴,建立直角坐标系.设点A 的坐标为(x ,y ),则h =y +0.5. 设∠OO 1A =θ,则cos θ=2-y2, y =-2cos θ+2.又θ=2π12×t ,即θ=π6t ,所以y =-2cos π6t +2,h =f (t )=-2cos π6t +2.5(t ≥0).(2)函数h =-2cos π6t +2.5(0≤t ≤12)的大致图象如下.规律方法 三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题,二是把实际问题抽象转化成数学问题,建立数学模型,再利用三角函数的有关知识解决问题.【训练3】 某城市一年中12个月的平均气温与月份的关系可近似地用函数y =a +A cos ⎣⎢⎡⎦⎥⎤π6(x -6)(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高为28 ℃,12月份的月平均气温最低为18 ℃,则10月份的平均气温为________℃.解析 因为当x =6时,y =a +A =28;当x =12时,y =a -A =18,所以a =23,A =5, 所以y =f (x )=23+5cos ⎣⎢⎡⎦⎥⎤π6(x -6),所以当x =10时,f (10)=23+5cos ⎝ ⎛⎭⎪⎫π6×4=23-5×12=20.5. 答案 20.5考点四 y =A sin(ωx +φ)图象与性质的综合应用【例4】 (2018·昆明诊断)已知函数f (x )=4cos ωx ·sin ⎝ ⎛⎭⎪⎫ωx +π6+a (ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π. (1)求a 和ω的值;(2)求函数f (x )在[0,π]上的单调递减区间. 解 (1)f (x )=4cos ωx · sin ⎝⎛⎭⎪⎫ωx +π6+a=4cos ωx ·⎝ ⎛⎭⎪⎫32sin ωx +12cos ωx +a=23sin ωx cos ωx +2cos 2ωx -1+1+a =3sin 2ωx +cos 2ωx +1+a=2sin ⎝⎛⎭⎪⎫2ωx +π6+1+a .当sin ⎝ ⎛⎭⎪⎫2ωx +π6=1时,f (x )取得最大值2+1+a =3+a .又f (x )最高点的纵坐标为2,∴3+a =2,即a =-1. 又f (x )图象上相邻两个最高点的距离为π, ∴f (x )的最小正周期为T =π, ∴2ω=2πT =2,ω=1.(2)由(1)得f (x )=2sin ⎝⎛⎭⎪⎫2x +π6,由π2+2k π≤2x +π6≤3π2+2k π,k ∈Z , 得π6+k π≤x ≤2π3+k π,k ∈Z .令k =0,得π6≤x ≤2π3.∴函数f (x )在[0,π]上的单调递减区间为⎣⎢⎡⎦⎥⎤π6,2π3.规律方法 函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间和对称性的确定,基本思想是把ωx +φ看做一个整体.(1)在单调性应用方面,比较大小是一类常见的题目,依据是同一区间内函数的单调性.(2)对称性是三角函数图象的一个重要性质,因此要抓住其轴对称、中心对称的本质,同时还要会综合利用这些性质解决问题,解题时可利用数形结合思想.【训练4】 (2018·桂林调研)已知x =π12是函数f (x )=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图象的一条对称轴,将函数f (x )的图象向右平移3π4个单位长度后得到函数g (x )的图象,则函数g (x )在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为( )A.-2B.-1C.- 2D.- 3解析 ∵x =π12是f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ图象的一条对称轴,∴π3+φ=k π+π2(k ∈Z ),即φ=k π+π6(k ∈Z ).∵0<φ<π,∴φ=π6,则f (x )=2sin ⎝⎛⎭⎪⎫2x +π3,∴g (x )=-2sin ⎝ ⎛⎭⎪⎫2x -π6在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为g ⎝ ⎛⎭⎪⎫π6=-1.答案 B基础巩固题组 (建议用时:40分钟)一、选择题1.(2018·华中师大高考联盟质检)要得到函数y =sin ⎝⎛⎭⎪⎫2x +π4的图象,只需将函数y=sin 2x 的图象( ) A.向左平移π8个单位 B.向右平移π4个单位 C.向左平移π4个单位D.向右平移π8个单位解析 由y =sin 2x 的图象得到y =sin ⎝ ⎛⎭⎪⎫2x +π4的图象只需向左平移π8个单位,故选A. 答案 A2.(2016·全国Ⅱ卷)函数y =A sin(ωx +φ)的部分图象如图所示,则( )A.y =2sin ⎝⎛⎭⎪⎫2x -π6B.y =2sin ⎝⎛⎭⎪⎫2x -π3C.y =2sin ⎝⎛⎭⎪⎫x +π6D.y =2sin ⎝⎛⎭⎪⎫x +π3解析 由题图可知,A =2,T =2⎣⎢⎡⎦⎥⎤π3-⎝ ⎛⎭⎪⎫-π6=π,所以ω=2,由五点作图法知2×π3+φ=π2,所以φ=-π6,所以函数的解析式为y =2sin ⎝ ⎛⎭⎪⎫2x -π6.答案 A3.(2018·合肥二模)函数f (x )=cos ⎝⎛⎭⎪⎫ωx +π6(ω>0)的最小正周期是π,则其图象向右平移π3个单位后对应函数的单调递减区间是( )A.⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π(k ∈Z )B.⎣⎢⎡⎦⎥⎤π4+k π,3π4+k π(k ∈Z ) C.⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π(k ∈Z ) D.⎣⎢⎡⎦⎥⎤-5π12+k π,π12+k π(k ∈Z ) 解析 由函数f (x )=cos ⎝⎛⎭⎪⎫ωx +π6(ω>0)的最小正周期是π,得2πω=π,解得ω=2,则f (x )=cos ⎝ ⎛⎭⎪⎫2x +π6.将其图象向右平移π3个单位后,对应函数的解析式为y =cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π3+π6=cos ⎝ ⎛⎭⎪⎫2x -π2=sin 2x ,由π2+2k π≤2x ≤3π2+2k π(k ∈Z ),解得所求单调递减区间为⎣⎢⎡⎦⎥⎤π4+k π,3π4+k π(k ∈Z ). 答案 B4.(2018·西安质检)将函数f (x )=sin(2x +φ)⎝⎛⎭⎪⎫|φ|<π2的图象向左平移π6个单位长度后关于原点对称,则函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最小值为( )A.-32B.-12C.12D.32解析 依题设,平移后得y =sin ⎝ ⎛⎭⎪⎫2x +π3+φ的图象,又该图象关于原点对称,则π3+φ=k π,k ∈Z ,由|φ|<π2,得φ=-π3,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,所以当2x -π3=-π3时,f (x )取最小值-32.答案 A5.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π),其导函数f ′(x )的图象如图所示,则f ⎝ ⎛⎭⎪⎫π2的值为( )A.2 2B. 2C.-22D.-24解析 依题意得f ′(x )=Aωcos(ωx +φ),结合函数y =f ′(x )的图象,则T =2πω=4⎝ ⎛⎭⎪⎫3π8-π8=π,ω=2. 又Aω=1,因此A =12.因为0<φ<π,3π4<3π4+φ<7π4,且f ′⎝ ⎛⎭⎪⎫3π8=cos ⎝ ⎛⎭⎪⎫3π4+φ=-1,所以3π4+φ=π,即φ=π4,f (x )=12sin ⎝ ⎛⎭⎪⎫2x +π4,所以f ⎝ ⎛⎭⎪⎫π2=12sin ⎝ ⎛⎭⎪⎫π+π4=-12×22=-24.答案 D 二、填空题6.(必修4P60例1改编)如图,某地一天,从6~14时的温度变化曲线近似满足函数y =A sin(ωx +φ)+b (A >0,ω>0,0<φ<π),则这段曲线的函数解析式为________.解析 从题图中可以看出,从6~14时是函数y =A sin(ωx +φ)+b 的半个周期, 又12×2πω=14-6,所以ω=π8.由图可得A =12(30-10)=10,b =12(30+10)=20. 又π8×10+φ=2π,解得φ=3π4,∴y =10sin ⎝ ⎛⎭⎪⎫π8x +3π4+20,x ∈[6,14].答案 y =10sin ⎝ ⎛⎭⎪⎫π8x +3π4+20,x ∈[6,14]7.(2018·大连双基测试)函数f (x )=sin x +cos x 的图象向右平移t (t >0)个单位长度后所得函数为偶函数,则t 的最小值为________.解析 函数f (x )=sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4,其图象向右平移t (t >0)个单位长度后所得函数y =2sin ⎝⎛⎭⎪⎫x -t +π4为偶函数,则-t +π4=π2+k π(k ∈Z ),即t =-π4-k π(k ∈Z ),又t >0,∴当k =-1时,t min =3π4.答案 3π48.已知f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0),f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π3,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π3上有最小值,无最大值,则ω=______________________________________________________. 解析 依题意,x =π6+π32=π4时,y 有最小值,∴sin ⎝ ⎛⎭⎪⎫π4·ω+π3=-1,∴π4ω+π3=2k π+3π2 (k ∈Z ).∴ω=8k +143 (k ∈Z ),因为f (x )在区间⎝ ⎛⎭⎪⎫π6,π3上有最小值,无最大值,所以π3-π4≤πω,即ω≤12,令k =0,得ω=143. 答案 143 三、解答题9.设函数f (x )=cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝ ⎛⎭⎪⎫π4=32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象. 解 (1)∵T =2πω=π,ω=2, 又f ⎝ ⎛⎭⎪⎫π4=cos ⎝ ⎛⎭⎪⎫2×π4+φ=32,∴sin φ=-32,又-π2<φ<0,∴φ=-π3.(2)由(1)得f (x )=cos⎛⎪⎫2x -π,列表:描点画出图象(如图).10.已知函数f (x )=3sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ<π2的图象关于直线x =π3对称,且图象上相邻最高点的距离为π. (1)求f ⎝ ⎛⎭⎪⎫π4的值;(2)将函数y =f (x )的图象向右平移π12个单位后,得到y =g (x )的图象,求g (x )的单调递减区间.解 (1)因为f (x )的图象上相邻最高点的距离为π, 所以f (x )的最小正周期T =π,从而ω=2πT =2.又f (x )的图象关于直线x =π3对称,所以2×π3+φ=k π+π2(k ∈Z ),因为-π2≤φ<π2,所以k =0,所以φ=π2-2π3=-π6,所以f (x )=3sin ⎝⎛⎭⎪⎫2x -π6,则f ⎝ ⎛⎭⎪⎫π4=3sin ⎝⎛⎭⎪⎫2×π4-π6=3sin π3=32.(2)将f (x )的图象向右平移π12个单位后,得到 f ⎝ ⎛⎭⎪⎫x -π12的图象, 所以g (x )=f ⎝ ⎛⎭⎪⎫x -π12=3sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12-π6 =3sin ⎝ ⎛⎭⎪⎫2x -π3.当2k π+π2≤2x -π3≤2k π+3π2(k ∈Z ),即k π+5π12≤x ≤k π+11π12(k ∈Z )时,g (x )单调递减.因此g (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12(k ∈Z ). 能力提升题组(建议用时:20分钟)11.(2018·惠州调研)已知函数f (x )=sin x +λcos x (λ∈R )的图象关于直线x =-π4对称,把函数f (x )的图象上每个点的横坐标扩大到原来的2倍,纵坐标不变,再向右平移π3个单位长度,得到函数g (x )的图象,则函数g (x )图象的一条对称轴方程为( ) A.x =π6B.x =π4C.x =π3D.x =11π6解析 由f (0)=f ⎝ ⎛⎭⎪⎫-π2,可得λ=-1,所以f (x )=sin x -cos x =2sin ⎝⎛⎭⎪⎫x -π4,横坐标扩大到原来的2倍,纵坐标不变,再向右平移π3个单位长度,得到函数g (x )的图象,g (x )=2·sin ⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫x -π3-π4=2sin ⎝ ⎛⎭⎪⎫12x -5π12,令12x -5π12=k π+π2(k ∈Z ),得x =2k π+11π6,k ∈Z .当k =0时,对称轴的方程为x =11π6. 答案 D12.(2018·湖北七市联考)将函数f (x )=sin 2x 的图象向左平移π6个单位,再向上平移2个单位,得到g (x )的图象,若g (x 1)·g (x 2)=9,且x 1,x 2∈[-2π,2π],则|x 1-x 2|的最大值为________.解析 由题意,得g (x )=f ⎝ ⎛⎭⎪⎫x +π6+2=sin ⎝⎛⎭⎪⎫2x +π3+2,所以g (x )max =3.又g (x 1)·g (x 2)=9,所以g (x 1)=g (x 2)=3,即sin ⎝⎛⎭⎪⎫2x +π3=1,所以2x +π3=π2+2kπ(k ∈Z )⇒x =π12+k π(k ∈Z ).又因为x 1,x 2∈[-2π,2π],所以x 1,2=π12+π,π12,π12-π,π12-2π,从而|x 1-x 2|max =⎝ ⎛⎭⎪⎫π12+π-⎝ ⎛⎭⎪⎫π12-2π=3π. 答案 3π13.某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温? 解 (1)因为f (t )=10-2⎝ ⎛⎭⎪⎫32cos π12t +12sin π12t=10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,当t =2时,sin ⎝ ⎛⎭⎪⎫π12t +π3=1;当t =14时,sin ⎝ ⎛⎭⎪⎫π12t +π3=-1.于是f (t )在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. (2)依题意,当f (t )>11时实验室需要降温, 由(1)得f (t )=10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,故有10-2sin ⎝ ⎛⎭⎪⎫π12t +π3>11,即sin ⎝ ⎛⎭⎪⎫π12t +π3<-12.又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18. 在10时至18时实验室需要降温.。

高中 函数y=Asin(ωx+φ)的图象及性质 知识点+例题 全面

高中 函数y=Asin(ωx+φ)的图象及性质 知识点+例题 全面

辅导讲义――函数y =Asin(ωx +φ)的图象及性质教学内容1.y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0),x ∈[0,+∞)振幅 周期 频率 相位 初相 AT =2πωf =1T =ω2πωx +φφ2.用五点法画y =A sin(ωx +φ)一个周期内的简图 五个特征点的取法:设X =ωx +φ,由X 取0,2π,π,23π,π2来求出相应的x 的值,及对应的y 值,再描点作图.如下表所示.x0-φω π2-φω π-φω 3π2-φω 2π-φω ωx +φ 0 π2 π 3π2 2π y =A sin(ωx +φ)A-A3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的步骤如下:[例1] 函数)421sin(2π+=x y 的周期,振幅,初相分别是______________.[巩固1] 函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则ω=______;ϕ=______知识模块1 y =A sin(ωx +φ)精典例题透析[巩固] 若关于x 的方程01sin sin 2=+-+m x x 有解,则实数m 的取值范围为_____________.[例5] 要得到)21sin(x y -=的图象,只需将)621sin(π--=x y 的图象_______________.[巩固1] 为得到函数)3cos(π+=x y 的图象,只需将函数x y sin =的图象_____________________.[巩固2] 为得到函数)62sin(π-=x y 的图象,只需将函数x y 2cos =的图象_____________________.[例6] 已知函数x x f πsin )(=的图象的一部分如左图,则右图的函数图象所对的函数解析式为_____________.[巩固1] 函数)0,0,0)(sin()(πϕωϕω<<>>+=A x A x f 的部分图象如图所示,则)(x f 的解析式为____________.[巩固2] 已知函数),0,)(sin()(πϕπωϕω<<->∈+=R x x A x f 的部分图象如图所示,则函数)(x f 的解析式 是_______________.[例7] 设函数f (x )=3sin(ωx +φ)(ω>0,-π2<φ<π2)的图象关于直线x =2π3对称,它的周期是π,则下列说法正确的是________.(填序号)[例](1)已知函数f (x )=2sin(ωx +φ)(其中ω>0,|φ|<π2)的最小正周期是π,且f (0)=3,则ω=_____,φ=_______.(2)已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图象的一部分如图所示,则该函数的解析式为____________.[巩固] 如图为y =A sin(ωx +φ)的图象的一段.(1)求其解析式;(2)若将y =A sin(ωx +φ)的图象向左平移π6个单位长度后得y =f (x ),求f (x )的对称轴方程.题型三:函数y =A sin(ωx +φ)的性质[例] (2014·重庆改编)已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)当x ∈[0,π2]时,求函数y =f (x )的最大值和最小值.[巩固] 已知函数f (x )=A sin(ωx +φ)(x ∈R ,ω,A >0,0<φ<π2)的最大值为2,最小正周期为π,直线x =π6是其图象的一条对称轴.(1)求函数f (x )的解析式;(2)求函数g (x )=f (x -π12)-f (x +π12)的单调递增区间.1.(2013·山东)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( )A .3π4B .π4C .0D .-π42.(2013·浙江)函数f (x )=sin x cos x +32cos 2x 的最小正周期和振幅分别是__________.3.已知函数f (x )=2sin(ωx +φ)(ω>0,且|φ|<π2)的部分图象如图所示,则函数f (x )的一个单调递增区间是______________.4.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图象如右图所示,则当t =1100秒时,电流强度是_____________.5.已知函数f (x )=2sin ωx 在区间[-π3,π4]上的最小值为-2,则ω的取值范围是_________________.6.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°, KL =1,则f (16)的值为________.,7.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6) (x =1,2,3,…,12,A >0)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温值 为________℃.夯实基础训练。

第三章 第四节 函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用

第三章  第四节  函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用

)
返回
2π 解析:最小正周期为 = 解析:最小正周期为T= π =6; ; 3 1 π 由2sin φ=1,得sin φ=2,φ=6. = , = =
答案: 答案: A
返回
3.将函数y=sin x的图象向左平移 ≤φ<2π)个单位后,得到函 .将函数 = 的图象向左平移φ(0≤ < 个单位后 个单位后, 的图象向左平移 π - 的图象, 数y=sin x-6的图象,则φ等于 = 等于 ( ) 11π π B. 6 A.6 7π 5π C. 6 D. 6
返回
2.平移变换中的平移量 . |φ| 从y=sin ωx(ω>0)到y=sin(ωx+φ)(ω>0)的变换中平移量为 ω = 到 = + 的变换中平移量为 (φ>0时,向左;φ<0时,向右 而不是 平移的距离是针对 的 时 向左; 而不是|φ|.平移的距离是针对 时 向右)而不是 平移的距离是针对x的 变化量而言的. 变化量而言的.
解析: = 解析:y=cos
π 2x+ =cos +6
π 2x+ 的图象,只需将函数 + 6 的图象,
( π B.向右平移12个单位 . π D.向左平移12个单位 .
π + 2x+12.
)
答案: 答案: D
返回
2.(2011·北京西城区期末 函数 f(x)=sin xcos . 北京西城区期末)函数 北京西城区期末 =
返回
返回
一、y=Asin(ωx+φ)的有关概念 = + 的有关概念 y=Asin(ωx = +φ)(A>0, , ω>0), , x∈[0,+ ∈ ,+ ,+∞) 表示一个振 动量时 A
2π T= ω =
ω 1 f= T = 2π ωx+φ =

第三章 第四节 函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用

第三章  第四节  函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用
π 将最高点坐标4 ,5代入 2 + y=5sin3x+φ, =

π 5sin6+φ=5, ,
π π π ∴ +φ=2kπ+ ,∴φ=2kπ+ (k∈Z). = + = + ∈ . 6 2 3 π 又|φ|<π,∴φ= . , = 3
法三:(起始点法 法三: 起始点法) 起始点法 的图象一般由“ 函数 y=Asin(ωx+φ)的图象一般由“五点法”作出,而起 = + 的图象一般由 五点法”作出, 始点的横坐标 x 正是由 ωx+φ=0 解得的.故只要找出起 + = 解得的. π 始点横坐标 x0,就可以迅速求得角 φ.由图象易得 x0=- , 由图象易得 2 2 π π =-ωx ∴φ=- 0=- ×-2 = . =- 3 3
3 3 + 2 sin4πcosx+cos4πsinx =
2
3 y= 2sinx 的图象向左平移 π 个长度单位. 个长度单位. = 4
答案: 答案:B
3.将函数 y=sinx 的图象向左平移 φ(0≤φ<2π)个单位后,得 . 个单位后, = ≤ 个单位后 π 的图象, 到函数 y=sin(x- )的图象,则 φ 等于 = - 的图象 6 π A. 6 7π C. 6 5π B. 6 11π D. 6 ( )
答案: 答案:B
2.函数 y=cosx-sinx 的图象可由函数 y= 2sinx 的图象 . = - = ( π A.向左平移 个长度单位 . 4 π C.向右平移 个长度单位 . 4
解 析 : y = cosx - sinx =
3 + sinx+4π,可由
)
3π B.向左平移 个长度单位 . 4 3π D.向右平移 个长度单位 . 4

函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用 精讲附配套练习

函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用 精讲附配套练习

第四节函数y=A sin(ωx+φ)的图象及三角函数模型的简单应用[考纲传真] 1.了解函数y=A sin(ωx+φ)的物理意义;能画出函数的图象,了解参数A,ω,φ对函数图象变化的影响.2.会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型.1.y=A sin (ωx+φ)的有关概念2.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个关键点,如下表所示3.由y=sin x的图象变换得到y=A sin(ωx+φ)(其中A>0,ω>0)的图象先平移后伸缩先伸缩后平移⇓⇓1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的单位长度一致.( )(2)将y =3sin 2x 的图象左移π4个单位后所得图象的解析式是y =3sin ⎝ ⎛⎭⎪⎫2x +π4.( )(3)函数f (x )=A sin(ωx +φ)的图象的两个相邻对称轴间的距离为一个周期.( )(4)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2.( )[答案] (1)× (2)× (3)× (4)√2.(2016·四川高考)为了得到函数y =sin ⎝ ⎛⎭⎪⎫x +π3的图象,只需把函数y =sin x的图象上所有的点( )A .向左平行移动π3个单位长度 B .向右平行移动π3个单位长度 C .向上平行移动π3个单位长度 D .向下平行移动π3个单位长度A [把函数y =sin x 的图象上所有的点向左平行移动π3个单位长度就得到函数y =sin ⎝ ⎛⎭⎪⎫x +π3的图象.]3.若函数y =sin(ωx +φ)(ω>0)的部分图象如图3-4-1,则ω=( )图3-4-1A .5 B.4 C.3D.2B [由图象可知,T 2=x 0+π4-x 0=π4, 所以T =π2=2πω,所以ω=4.]4.将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( )A.3π4 B.π4 C.0D.-π4B [把函数y =sin(2x +φ)沿x 轴向左平移π8个单位后得到函数y =sin 2⎝ ⎛⎭⎪⎫x +φ2+π8=sin ⎝ ⎛⎭⎪⎫2x +φ+π4为偶函数,则φ的一个可能取值是π4.] 5.(教材改编)电流I (单位:A)随时间t (单位:s)变化的函数关系式是I =5sin ⎝ ⎛⎭⎪⎫100πt +π3,t ∈[0,+∞),则电流I 变化的初相、周期分别是________.π3,150 [由初相和周期的定义,得电流I 变化的初相是π3,周期T =2π100π=150.]已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫12x -π4,x ∈R .(1)画出函数f (x )在一个周期的闭区间上的简图;(2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象? [解] (1)列表取值:(2)先把y =sin x 的图象向右平移π4个单位,然后把所有点的横坐标扩大为原来的2倍,再把所有点的纵坐标扩大为原来的3倍,得到f (x )的图象.12分[规律方法] 1.变换法作图象的关键是看x 轴上是先平移后伸缩还是先伸缩后平移,对于后者可利用ωx +φ=ω⎝ ⎛⎭⎪⎫x +φω确定平移单位.2.用“五点法”作图,关键是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,描点得出图象.如果在限定的区间内作图象,还应注意端点的确定.[变式训练1] (1)(2016·全国卷Ⅰ)将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期后,所得图象对应的函数为( )A .y =2sin ⎝ ⎛⎭⎪⎫2x +π4 B.y =2sin ⎝ ⎛⎭⎪⎫2x +π3 C .y =2sin ⎝ ⎛⎭⎪⎫2x -π4D.y =2sin ⎝ ⎛⎭⎪⎫2x -π3(2)(2016·全国卷Ⅲ)函数y =sin x -3cos x 的图象可由函数y =sin x +3cos x 的图象至少向右平移________个单位长度得到.(1)D (2)2π3 [(1)函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的周期为π,将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期即π4个单位长度,所得图象对应的函数为y =2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π4+π6=2sin ⎝ ⎛⎭⎪⎫2x -π3,故选D. (2)因为y =sin x +3cos x =2sin ⎝ ⎛⎭⎪⎫x +π3,y =sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,所以把y =2sin ⎝ ⎛⎭⎪⎫x +π3的图象至少向右平移2π3个单位长度可得y =2sin ⎝ ⎛⎭⎪⎫x -π3的图象.]图3-4-2如图3-4-2所示,则( ) A .y =2sin ⎝ ⎛⎭⎪⎫2x -π6B .y =2sin ⎝ ⎛⎭⎪⎫2x -π3C .y =2sin ⎝ ⎛⎭⎪⎫x +π6D .y =2sin ⎝ ⎛⎭⎪⎫x +π3(2)已知函数y =A sin(ωx +φ)+b (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则下面各式中符合条件的解析式为( )A .y =4sin ⎝ ⎛⎭⎪⎫4x +π6B .y =2sin ⎝ ⎛⎭⎪⎫2x +π3+2C .y =2sin ⎝ ⎛⎭⎪⎫4x +π3+2D .y =2sin ⎝ ⎛⎭⎪⎫4x +π6+2(1)A (2)D [(1)由图象知T 2=π3-⎝ ⎛⎭⎪⎫-π6=π2,故T =π,因此ω=2ππ=2.又图象的一个最高点坐标为⎝ ⎛⎭⎪⎫π3,2,所以A =2,且2×π3+φ=2k π+π2(k ∈Z ),故φ=2k π-π6(k ∈Z ),结合选项可知y =2sin ⎝ ⎛⎭⎪⎫2x -π6.故选A.(2)由函数y =A sin(ωx +φ)+b 的最大值为4,最小值为0,可知b =2,A =2.由函数的最小正周期为π2,可知2πω=π2,得ω=4.由直线x =π3是其图象的一条对称轴,可知4×π3+φ=k π+π2,k ∈Z ,从而φ=k π-5π6,k ∈Z ,故满足题意的是y =2sin ⎝ ⎛⎭⎪⎫4x +π6+2.][规律方法] 确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法 (1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m 2,b =M +m2; (2)求ω:确定函数的周期T ,则可得ω=2πT ; (3)求φ:常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.“第一点”(即图象上升时与x 轴的交点)时ωx +φ=0;“第二点”(即图象的“峰点”)时ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)时ωx +φ=π;“第四点”(即图象的“谷点”)时ωx +φ=3π2;“第五点”时ωx +φ=2π.[变式训练2] (2017·石家庄一模)函数f (x )=A sin(ωx +φ)(A >0,ω>0)的部分图象如图3-4-3所示,则f ⎝ ⎛⎭⎪⎫11π24的值为( )图3-4-3A .-62 B.-32 C.-22D.-1D [由图象可得A =2,最小正周期T =4⎝ ⎛⎭⎪⎫7π12-π3=π,则ω=2πT =2.又f ⎝ ⎛⎭⎪⎫7π12=2sin ⎝ ⎛⎭⎪⎫7π6+φ=-2,解得φ=-5π3+2k π(k ∈Z ),即k =1,φ=π3,则f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3,f ⎝ ⎛⎭⎪⎫11π24=2sin ⎝ ⎛⎭⎪⎫11π12+π3=2sin 5π4=-1,故选D.](2016·天津高考)已知函数f (x )=4tan x sin ⎝ ⎛⎭⎪π2-x ·cos ⎝ ⎭⎪⎫x -π3- 3. (1)求f (x )的定义域与最小正周期; (2)讨论f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性.[解](1)f (x )的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π2+k π,k ∈Z.2分f (x )=4tan x cos x cos ⎝ ⎛⎭⎪⎫x -π3- 3=4sin x cos ⎝ ⎛⎭⎪⎫x -π3- 3=4sin x ⎝ ⎛⎭⎪⎫12cos x +32sin x - 3=2sin x cos x +23sin 2x - 3 =sin 2x +3(1-cos 2x )- 3 =sin 2x -3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3.所以f (x )的最小正周期T =2π2=π.6分(2)令z =2x -π3,则函数y =2sin z 的单调递增区间是⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k∈Z .由-π2+2k π≤2x -π3≤π2+2k π, 得-π12+k π≤x ≤5π12+k π,k ∈Z .8分设A =⎣⎢⎡⎦⎥⎤-π4,π4,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-π12+k π≤x ≤5π12+k π,k ∈Z ,易知A ∩B =⎣⎢⎡⎦⎥⎤-π12,π4. 所以当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π4上单调递增,在区间⎣⎢⎡⎦⎥⎤-π4,-π12上单调递减.12分[规律方法] 讨论函数的单调性,研究函数的周期性、奇偶性与对称性,都必须首先利用辅助角公式,将函数化成一个角的一种三角函数.[变式训练3] 设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )图象的一个对称中心到最近的对称轴的距离为π4.【导学号:01772119】(1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值.[解] (1)f (x )=32-3sin 2ωx -sin ωx cos ωx =32-3·1-cos 2ωx 2-12sin 2ωx=32cos 2ωx -12sin 2ωx =-sin ⎝ ⎛⎭⎪⎫2ωx -π3.3分因为图象的一个对称中心到最近的对称轴的距离为π4,又ω>0,所以2π2ω=4×π4,因此ω=1.5分(2)由(1)知f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.6分当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32≤sin ⎝ ⎛⎭⎪⎫2x -π3≤1,则-1≤f (x )≤32.10分故f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1.12分数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温? [解] (1)因为f (t )=10-2⎝ ⎛⎭⎪⎫32cos π12t +12sin π12t=10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,2分又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝ ⎛⎭⎪⎫π12t +π3≤1.4分当t =2时,sin ⎝ ⎛⎭⎪⎫π12t +π3=1;当t =14时,sin ⎝ ⎛⎭⎪⎫π12t +π3=-1.于是f (t )在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.6分 (2)依题意,当f (t )>11时实验室需要降温. 由(1)得f (t )=10-2sin ⎝ ⎛⎭⎪⎫π12t +π3, 故有10-2sin ⎝ ⎛⎭⎪⎫π12t +π3>11,即sin ⎝ ⎛⎭⎪⎫π12t +π3<-12.9分又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18. 故在10时至18时实验室需要降温.12分[规律方法] 1.三角函数模型在实际中的应用体现在两个方面:一是用已知的模型去分析解决实际问题,二是把实际问题抽象转化成数学问题,建立三角函数模型解决问题,其关键是合理建模.2.建模的方法是认真审题,把问题提供的“条件”逐条地“翻译”成“数学语言”,这个过程就是数学建模的过程.[变式训练4] (2015·陕西高考)如图3-4-4,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k .据此函数可知,这段时间水深(单位:m)的最大值为( )图3-4-4A .5 B.6 C.8D.10C [根据图象得函数的最小值为2,有-3+k =2,k =5,最大值为3+k =8.][思想与方法]1.由图象确定函数解析式由图象确定y =A sin(ωx +φ)时,φ的确定是关键,尽量选择图象的最值点代入;若选零点代入,应根据图象升降找“五点法”作图中第一个零点.2.对称问题函数y =A sin(ωx +φ)的图象与x 轴的每一个交点均为其对称中心,经过该图象上坐标为(x ,±A )的点与x 轴垂直的每一条直线均为其图象的对称轴,这样的最近两点间横坐标的差的绝对值是半个周期(或两个相邻对称中心的距离).[易错与防范]1.要弄清楚是平移哪个函数的图象,得到哪个函数的图象.2.要注意平移前后两个函数的名称是否一致,若不一致,应先利用诱导公式化为同名函数.3.由y =sin x 的图象变换到y =A sin(ωx +φ)的图象,先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位.原因是相位变换和周期变换都是针对x 而言的.4.函数y =A sin(ωx +φ)在x ∈[m ,n ]上的最值可先求t =ωx +φ的范围,再结合图象得出y =A sin t 的值域.课时分层训练(七) 二次函数与幂函数A 组 基础达标 (建议用时:30分钟)一、选择题1.已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( )【导学号:01772040】A.12 B.1 C.32D.2C [由幂函数的定义知k =1.又f ⎝ ⎛⎭⎪⎫12=22,所以⎝ ⎛⎭⎪⎫12α=22,解得α=12,从而k +α=32.]2.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )是增函数,当x ∈(-∞,-2]时,f (x )是减函数,则f (1)的值为( )A .-3 B.13 C.7D.5B [函数f (x )=2x 2-mx +3图象的对称轴为直线x =m4,由函数f (x )的增减区间可知m4=-2,∴m =-8,即f (x )=2x 2+8x +3,∴f (1)=2+8+3=13.]3.若幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2 B.m =1或m =2 C .m =2D.m =1B [由幂函数性质可知m 2-3m +3=1,∴m =2或m =1.又幂函数图象不过原点,∴m 2-m -2≤0,即-1≤m ≤2,∴m =2或m =1.]4.已知函数y =ax 2+bx +c ,如果a >b >c 且a +b +c =0,则它的图象可能是( )【导学号:01772041】A B C DD [由a +b +c =0,a >b >c 知a >0,c <0,则ca <0,排除B ,C.又f (0)=c <0,所以也排除A.]5.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于( ) A .-1 B.1 C.2D.-2B [∵函数f (x )=x 2-ax -a 的图象为开口向上的抛物线,∴函数的最大值在区间的端点取得. ∵f (0)=-a ,f (2)=4-3a ,∴⎩⎨⎧ -a ≥4-3a ,-a =1,或⎩⎨⎧-a ≤4-3a ,4-3a =1,解得a =1.] 二、填空题6.(2017·上海八校联合测试改编)已知函数f (x )=ax 2-2ax +1+b (a >0).若f (x )在[2,3]上的最大值为4,最小值为1,则a =________,b =________.1 0 [因为函数f (x )的对称轴为x =1,又a >0, 所以f (x )在[2,3]上单调递增,所以⎩⎨⎧f (2)=1,f (3)=4,即⎩⎨⎧a ·22-2a ·2+1+b =1,a ·32-2a ·3+1+b =4,解方程得a =1,b =0.] 7.已知P =2,Q =⎝ ⎛⎭⎪⎫253,R =⎝ ⎛⎭⎪⎫123,则P ,Q ,R 的大小关系是________.【导学号:01772042】P >R >Q [P =2=⎝ ⎛⎭⎪⎫223,根据函数y =x 3是R 上的增函数且22>12>25,得⎝ ⎛⎭⎪⎫223>⎝ ⎛⎭⎪⎫123>⎝ ⎛⎭⎪⎫253,即P >R >Q .] 8.已知函数f (x )=x 2-2ax +5在(-∞,2]上是减函数,且对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,则实数a 的取值范围是________.[2,3] [f (x )=(x -a )2+5-a 2,根据f (x )在区间(-∞,2]上是减函数知,a ≥2,则f (1)≥f (a +1),从而|f (x 1)-f (x 2)|max =f (1)-f (a )=a 2-2a +1, 由a 2-2a +1≤4,解得-1≤a ≤3, 又a ≥2,所以2≤a ≤3.] 三、解答题9.已知幂函数f (x )=x (m 2+m )-1(m ∈N *)经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.[解] 幂函数f (x )经过点(2,2), ∴2=2(m 2+m )-1,即2=2(m 2+m )-1,∴m 2+m =2,解得m =1或m =-2.4分 又∵m ∈N *,∴m =1.∴f (x )=x ,则函数的定义域为[0,+∞), 并且在定义域上为增函数.由f (2-a )>f (a -1),得⎩⎨⎧2-a ≥0,a -1≥0,2-a >a -1,10分解得1≤a <32.∴a 的取值范围为⎣⎢⎡⎭⎪⎫1,32.12分10.已知函数f (x )=x 2+(2a -1)x -3,(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值. [解] (1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3], 对称轴x =-32∈[-2,3],2分 ∴f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214,f (x )max =f (3)=15, ∴值域为⎣⎢⎡⎦⎥⎤-214,15.5分(2)对称轴为x =-2a -12. ①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13满足题意;8分 ②当-2a -12>1,即a <-12时, f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1满足题意.综上可知a =-13或-1. 12分B 组 能力提升 (建议用时:15分钟)1.(2017·江西九江一中期中)函数f (x )=(m 2-m -1)x 4m 9-m 5-1是幂函数,对任意的x 1,x 2∈(0,+∞),且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0,若a ,b ∈R ,且a+b >0,ab <0,则f (a )+f (b )的值( )【导学号:01772043】A .恒大于0 B.恒小于0 C .等于0D.无法判断A [∵f (x )=(m 2-m -1)x 4m 9-m 5-1是幂函数, ∴m 2-m -1=1,解得m =2或m =-1.当m =2时,指数4×29-25-1=2 015>0,满足题意.当m =-1时,指数4×(-1)9-(-1)5-1=-4<0,不满足题意, ∴f (x )=x 2 015.∴幂函数f (x )=x 2 015是定义域R 上的奇函数,且是增函数. 又∵a ,b ∈R ,且a +b >0,∴a >-b , 又ab <0,不妨设b <0,则a >-b >0,∴f (a )>f (-b )>0, 又f (-b )=-f (b ),∴f (a )>-f (b ),∴f (a )+f (b )>0.故选A.]2.设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.⎝ ⎛⎦⎥⎤-94,-2 [由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象如图所示,结合图象可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎢⎡⎦⎥⎤-94,-2,故当m ∈⎝ ⎛⎦⎥⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象有两个交点.]3.已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ),x ∈R .(1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间; (2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的范围. [解] (1)由题意知 ⎩⎪⎨⎪⎧-b 2a =-1,f (-1)=a -b +1=0,解得⎩⎨⎧a =1,b =2.2分所以f (x )=x 2+2x +1,由f (x )=(x +1)2知,函数f (x )的单调递增区间为[-1,+∞),单调递减区间为(-∞,-1].6分(2)由题意知,x 2+2x +1>x +k 在区间[-3,-1]上恒成立,即k <x 2+x +1在区间[-3,-1]上恒成立,8分令g (x )=x 2+x +1,x ∈[-3,-1],由g (x )=⎝ ⎛⎭⎪⎫x +122+34知g (x )在区间[-3,-1]上是减函数,则g (x )min =g (-1)=1,所以k <1,即k 的取值范围是(-∞,1).12分第三节 基本不等式[考纲传真] 1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +ab ≥2(a ,b 同号且不为零); (3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ); (4)⎝⎛⎭⎪⎫a +b 22≤a 2+b22(a ,b ∈R ). 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)函数y =x +1x 的最小值是2.( )(2)函数f (x )=cos x +4cos x ,x ∈⎝ ⎛⎭⎪⎫0,π2的最小值等于4.( )(3)x >0,y >0是x y +yx ≥2的充要条件.( ) (4)若a >0,则a 3+1a 2的最小值为2a .( ) [答案] (1)× (2)× (3)× (4)×2.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2abD.b a +a b ≥2D [∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误;对于B ,C ,当a <0,b <0时,明显错误.对于D ,∵ab >0,∴b a +ab ≥2b a ·a b =2.]3.(2016·安徽合肥二模)若a ,b 都是正数,则⎝ ⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b 的最小值为( )A .7 B.8 C .9D.10C [∵a ,b 都是正数,∴⎝ ⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b =5+b a +4a b ≥5+2b a ·4ab =9,当且仅当b =2a >0时取等号,故选C.]4.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( ) 【导学号:01772209】A .1+ 2 B.1+ 3 C .3D.4C [当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3,选C.]5.(教材改编)若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是__________m 2.25 [设矩形的一边为x m ,矩形场地的面积为y , 则另一边为12×(20-2x )=(10-x )m , 则y =x (10-x )≤⎣⎢⎡⎦⎥⎤x +(10-x )22=25, 当且仅当x =10-x ,即x =5时,y max =25.](1)(2015·湖南高考)若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A.2B.2 C .2 2D.4(2)(2017·郑州二次质量预测)已知正数x ,y 满足x 2+2xy -3=0,则2x +y 的最小值是__________.(1)C (2)3 [(1)由1a +2b =ab 知a >0,b >0,所以ab =1a +2b ≥22ab ,即ab ≥22,当且仅当⎩⎪⎨⎪⎧1a =2b ,1a +2b =ab ,即a =42,b =242时取“=”,所以ab 的最小值为2 2.(2)由x 2+2xy -3=0得y =3-x 22x =32x -12x ,则2x +y =2x +32x -12x =3x 2+32x≥23x 2·32x =3,当且仅当x =1时,等号成立,所以2x +y 的最小值为3.] [规律方法] 1.利用基本不等式求函数最值时,注意“一正、二定、三相等,和定积最大,积定和最小”.2.在求最值过程中若不能直接使用基本不等式,可以考虑利用拆项、配凑、常数代换、平方等技巧进行变形,使之能够使用基本不等式.[变式训练1] (1)(2016·湖北七市4月联考)已知a >0,b >0,且2a +b =1,若不等式2a +1b ≥m 恒成立,则m 的最大值等于( )A .10 B.9 C .8D.7(2)(2016·湖南雅礼中学一模)已知实数m ,n 满足m ·n >0,m +n =-1,则1m +1n 的最大值为__________.(1)B (2)-4 [(1)∵2a +1b =2(2a +b )a +2a +b b =4+2b a +2a b +1=5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+2×2b a ×a b =9,当且仅当a =b =13时取等号.又2a +1b ≥m ,∴m ≤9,即m的最大值等于9,故选B.(2)∵m ·n >0,m +n =-1,∴m <0,n <0, ∴1m +1n =-(m +n )⎝ ⎛⎭⎪⎫1m +1n=-⎝ ⎛⎭⎪⎫2+n m +m n ≤-2-2n m ·mn =-4,当且仅当m =n =-12时,1m +1n 取得最大值-4.]已知a >0,b >0,a +b =1,求证: (1)1a +1b +1ab ≥8; (2)⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9. [证明] (1)1a +1b +1ab =2⎝ ⎛⎭⎪⎫1a +1b ,∵a +b =1,a >0,b >0,∴1a +1b =a +b a +a +b b =2+a b +b a ≥2+2=4,3分∴1a +1b +1ab ≥8(当且仅当a =b =12时等号成立).5分(2)法一:∵a >0,b >0,a +b =1,∴1+1a =1+a +b a =2+b a ,同理1+1b =2+a b ,∴⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =⎝ ⎛⎭⎪⎫2+b a ⎝ ⎛⎭⎪⎫2+a b =5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+4=9,10分 ∴⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9(当且仅当a =b =12时等号成立).12分 法二:⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =1+1a +1b +1ab , 由(1)知,1a +1b +1ab ≥8,10分故⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =1+1a +1b +1ab ≥9.12分 [规律方法] 1.“1”的代换是解决问题的关键,代换变形后能使用基本不等式是代换的前提,不能盲目变形.2.利用基本不等式证明不等式,关键是所证不等式必须是有“和”式或“积”式,通过将“和”式转化为“积”式或将“积”式转化为“和”式,达到放缩的效果,必要时,也需要运用“拆、拼、凑”的技巧,同时应注意多次运用基本不等式时等号能否取到.[变式训练2] 设a ,b 均为正实数,求证:1a 2+1b 2+ab ≥2 2.【导学号:01772210】[证明] 由于a ,b 均为正实数,所以1a 2+1b 2≥21a 2·1b 2=2ab ,3分 当且仅当1a 2=1b 2,即a =b 时等号成立,又因为2ab +ab ≥22ab ·ab =22,当且仅当2ab =ab 时等号成立,所以1a 2+1b 2+ab ≥2ab +ab ≥22,8分当且仅当⎩⎪⎨⎪⎧ 1a 2=1b 2,2ab =ab ,即a =b =42时取等号.12分制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元. (1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.[解] (1)设所用时间为t =130x (h), y =130x ×2×⎝ ⎛⎭⎪⎫2+x 2360+14×130x ,x ∈[50,100].2分 所以这次行车总费用y 关于x 的表达式是y =130×18x+2×130360x ,x ∈[]50,100. (或y =2 340x +1318x ,x ∈[]50,100).5分(2)y =130×18x +2×130360x ≥26 10, 当且仅当130×18x=2×130360x , 即x =1810,等号成立.8分故当x =1810千米/时,这次行车的总费用最低,最低费用的值为2610元.12分[规律方法] 1.设变量时一般要把求最大值或最小值的变量定义为函数.2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.[变式训练3]某化工企业2016年年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.设该企业使用该设备x年的年平均污水处理费用为y(单位:万元).(1)用x表示y;(2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备.则该企业几年后需要重新更换新的污水处理设备.[解](1)由题意得,y=100+0.5x+(2+4+6+ (2x)x,即y=x+100x+1.5(x∈N*).5分(2)由基本不等式得:y=x+100x+1.5≥2x·100x+1.5=21.5,8分当且仅当x=100x,即x=10时取等号.故该企业10年后需要重新更换新的污水处理设备.12分[思想与方法]1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.2.基本不等式的两个变形:(1)a2+b22≥⎝⎛⎭⎪⎫a+b22≥ab(a,b∈R,当且仅当a=b时取等号).(2)a2+b22≥a+b2≥ab≥21a+1b(a>0,b>0,当且仅当a=b时取等号).[易错与防范]1.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.2.“当且仅当a =b 时等号成立”的含义是“a =b ”是等号成立的充要条件,这一点至关重要,忽视它往往会导致解题错误.3.连续使用基本不等式求最值要求每次等号成立的条件一致.课时分层训练(七) 二次函数与幂函数A 组 基础达标(建议用时:30分钟)一、选择题1.已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( ) 【导学号:01772040】A.12B.1C.32D.2C [由幂函数的定义知k =1.又f ⎝ ⎛⎭⎪⎫12=22,所以⎝ ⎛⎭⎪⎫12α=22,解得α=12,从而k +α=32.]2.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )是增函数,当x ∈(-∞,-2]时,f (x )是减函数,则f (1)的值为( )A .-3B.13C.7D.5B [函数f (x )=2x 2-mx +3图象的对称轴为直线x =m 4,由函数f (x )的增减区间可知m 4=-2,∴m =-8,即f (x )=2x 2+8x +3,∴f (1)=2+8+3=13.]3.若幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2B.m =1或m =2 C .m =2 D.m =1B [由幂函数性质可知m 2-3m +3=1,∴m =2或m =1.又幂函数图象不过原点,∴m 2-m -2≤0,即-1≤m ≤2,∴m =2或m =1.]4.已知函数y =ax 2+bx +c ,如果a >b >c 且a +b +c =0,则它的图象可能是( )【导学号:01772041】A B C DD [由a +b +c =0,a >b >c 知a >0,c <0,则c a <0,排除B ,C.又f (0)=c <0,所以也排除A.]5.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于( )A .-1B.1C.2D.-2B [∵函数f (x )=x 2-ax -a 的图象为开口向上的抛物线,∴函数的最大值在区间的端点取得.∵f (0)=-a ,f (2)=4-3a ,∴⎩⎨⎧ -a ≥4-3a ,-a =1,或⎩⎨⎧ -a ≤4-3a ,4-3a =1,解得a =1.] 二、填空题6.(2017·上海八校联合测试改编)已知函数f (x )=ax 2-2ax +1+b (a >0).若f (x )在[2,3]上的最大值为4,最小值为1,则a =________,b =________.1 0 [因为函数f (x )的对称轴为x =1,又a >0,所以f (x )在[2,3]上单调递增,所以⎩⎨⎧f (2)=1,f (3)=4,即⎩⎨⎧a ·22-2a ·2+1+b =1,a ·32-2a ·3+1+b =4,解方程得a =1,b =0.] 7.已知P =2,Q =⎝ ⎛⎭⎪⎫253,R =⎝ ⎛⎭⎪⎫123,则P ,Q ,R 的大小关系是________. 【导学号:01772042】P >R >Q [P =2=⎝ ⎛⎭⎪⎫223,根据函数y =x 3是R 上的增函数且22>12>25, 得⎝ ⎛⎭⎪⎫223>⎝ ⎛⎭⎪⎫123>⎝ ⎛⎭⎪⎫253,即P >R >Q .] 8.已知函数f (x )=x 2-2ax +5在(-∞,2]上是减函数,且对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,则实数a 的取值范围是________.[2,3] [f (x )=(x -a )2+5-a 2,根据f (x )在区间(-∞,2]上是减函数知,a ≥2,则f (1)≥f (a +1),从而|f (x 1)-f (x 2)|max =f (1)-f (a )=a 2-2a +1,由a 2-2a +1≤4,解得-1≤a ≤3,又a ≥2,所以2≤a ≤3.]三、解答题9.已知幂函数f (x )=x (m 2+m )-1(m ∈N *)经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.[解] 幂函数f (x )经过点(2,2),∴2=2(m 2+m )-1,即2=2(m 2+m )-1,∴m 2+m =2,解得m =1或m =-2.4分又∵m ∈N *,∴m =1.∴f (x )=x ,则函数的定义域为[0,+∞),并且在定义域上为增函数. 由f (2-a )>f (a -1),得⎩⎨⎧ 2-a ≥0,a -1≥0,2-a >a -1,10分解得1≤a <32.∴a 的取值范围为⎣⎢⎡⎭⎪⎫1,32.12分 10.已知函数f (x )=x 2+(2a -1)x -3,(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值.[解] (1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3],对称轴x =-32∈[-2,3],2分∴f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214, f (x )max =f (3)=15,∴值域为⎣⎢⎡⎦⎥⎤-214,15.5分 (2)对称轴为x =-2a -12.①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13满足题意;8分②当-2a -12>1,即a <-12时,f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1满足题意.综上可知a =-13或-1. 12分B 组 能力提升(建议用时:15分钟)1.(2017·江西九江一中期中)函数f (x )=(m 2-m -1)x 4m 9-m 5-1是幂函数,对任意的x 1,x 2∈(0,+∞),且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0,若a ,b ∈R ,且a +b >0,ab <0,则f (a )+f (b )的值( )【导学号:01772043】A .恒大于0B.恒小于0C .等于0 D.无法判断A [∵f (x )=(m 2-m -1)x 4m 9-m 5-1是幂函数,∴m 2-m -1=1,解得m =2或m =-1.当m =2时,指数4×29-25-1=2 015>0,满足题意.当m =-1时,指数4×(-1)9-(-1)5-1=-4<0,不满足题意,∴f (x )=x 2 015.∴幂函数f (x )=x 2 015是定义域R 上的奇函数,且是增函数.又∵a ,b ∈R ,且a +b >0,∴a >-b ,又ab <0,不妨设b <0,则a >-b >0,∴f (a )>f (-b )>0,又f (-b )=-f (b ),∴f (a )>-f (b ),∴f (a )+f (b )>0.故选A.]2.设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.⎝ ⎛⎦⎥⎤-94,-2 [由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象如图所示,结合图象可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎢⎡⎦⎥⎤-94,-2, 故当m ∈⎝ ⎛⎦⎥⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象有两个交点.]。

函数y=Asin(ωx φ)的图象

函数y=Asin(ωx φ)的图象

列表
x 0
π
2
π
3π 2

sinx 0 1 0 -1 0
y
1
y=sinx (x∈[0,2π])
O -1 π/2 π 3π/2 2π
例1 作函数y = sin( x + )及y = sin( x − ) 在一个周期 4 3 内的图象。
π
π
x
x+

π
3
π
6
π 2
1 y
π
6
π
3 π
3
0
2π 3
π
0
分析:画函数的图像,经常采用“五点 法”。并且这两个函数都是周期函数,且 周期均为2π。所以我们先画出它们在[0,2π] 上的简图。 即列表、描点、连线。
1 例2、作函数 作函数y=sin2x及y=sin x 作函数 及 2
(x∈R)的简图 ∈ 的简图 的简图.
2π 分析:函数y=sin2x的周期T= =π, 2 故作x∈[0, π]时的简图. 1 函数y=sin x的周期T=4 π,故 2 作x ∈[0, 4π]时的简图.
π
7π 6
3π 2
-1
5π 3

0
sin( x +
)
0 1
π O
y = sin( x + ) 3 5π 7π
π 2π
2 3
π6

−1
3
3π 2
3
2π x
例1 作函数y = sin( x + )及y = sin( x − ) 在一个周期 4 3 内的图象。
π
π
x
x−
π
0
π
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A 级 课时对点练(时间:40分钟 满分:60分)一、选择题(本题共5小题,每小题5分,共25分)1.函数y =xsin x,x ∈(-π,0)∪(0,π)的图象可能是下列图象中的()解析:∵y =xsin x 是偶函数,排除A ,当x =2时,y =2sin 2>2,排除D ,当x =π6时,y =π6sin π6=π3>1,排除B.答案:C2.如果若干个函数的图象经过平移后能够重合,则这些函数为“互为生成”函数.下列函 数与f (x )=2sin x 不是“互为生成”函数的是( )A .f 1(x )=sin x +cos xB .f 2(x )=2sin x + 2C .f 3(x )=2(sin x +cos x )D .f 4(x )=2cos x2⎝⎛⎭⎫sin x 2+cos x 2答案:C3.(2010·临沂二模)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫x ∈R ,A >0,ω>0,|φ|<π2的图象(部分) 如图,则f (x )的解析式是( )A .f (x )=2sin ⎝⎛⎭⎫πx +π6(x ∈R)B .f (x )=2sin ⎝⎛⎭⎫2πx +π6(x ∈R ) C .f (x )=2sin ⎝⎛⎭⎫πx +π3(x ∈R ) D .f (x )=2sin ⎝⎛⎭⎫2πx +π3(x ∈R ) 解析:由三角函数图象可得A =2,T =4×⎝⎛⎭⎫56-13=2=2πω,则ω=π,将点⎝⎛⎭⎫13,2代入 f (x )=2sin(πx +φ)可得sin ⎝⎛⎭⎫π3+φ=1,解得φ=π6,∴f (x )=2sin ⎝⎛⎭⎫πx +π6.答案:A4.(2010·福建卷)将函数f (x )=sin(ωx +φ)的图象向左平移π2个单位,若所得图象与原图象重合,则ω的值不可能等于( )A .4B .6C .8D .12解析:将f (x )=sin(ωx +φ)的图象向左平移π2个单位得到函数y =sin ⎝⎛⎭⎫ωx +φ+π2ω所得图 象与原图象重合,有ωx +φ+π2ω=ωx +φ+2k π,得ω=4k (k ∈Z ).答案:B5.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23B.32C .2D .3解析:函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2.则ωx 的取值范围是 ⎣⎡⎦⎤-ωπ3,ωπ4,∴-ωπ3≤-π2或ωπ4≥3π2,∴ω的最小值等于32.答案:B二、填空题(本题共3小题,每小题5分,共15分)6.已知函数f (x )=2sin(ωx +φ)的图象如图所示,则f ⎝⎛⎭⎫7π12=________.解析:从图象可知A =2,32T =π,从而可知T =2πω=2π3,ω=3,得f (x )=2sin(3x +φ),又由f ⎝⎛⎭⎫π4=0可取φ=-3π4,于是f (x )=2sin ⎝⎛⎭⎫3x -3π4,则f ⎝⎛⎭⎫7π12=2sin ⎝⎛⎭⎫7π4-3π4=0.答案:07.(2010·济南二模)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最 高点和最低点的距离为22,且过点⎝⎛⎭⎫2,-12,则函数f (x )=________. 解析:据已知两个相邻最高及最低点距离为22,可得⎝⎛⎭⎫T 22+(1+1)2=22,解得T=4,故ω=2πT =π2,即f (x )=sin ⎝⎛⎭⎫πx 2+φ,又函数图象过点⎝⎛⎭⎫2,-12,故f (2)=sin(π+φ) =-sin φ=-12,又-π2≤φ≤π2,解得φ=π6,故f (x )=sin ⎝⎛⎭⎫πx 2+π6.答案:sin ⎝⎛⎭⎫πx 2+π68.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图象分别交于M 、N 两点,则|MN |的最 大值为________.解析:设x =a 与f (x )=sin x 的交点为M (a ,y 1), x =a 与g (x )=cos x 的交点为N (a ,y 2), 则|MN |=|y 1-y 2|=|sin a -cos a |=2⎪⎪⎪⎪sin ⎝⎛⎭⎫a -π4≤ 2.答案: 2三、解答题(本题共2小题,每小题10分,共20分) 9.已知函数y =3 sin ⎝⎛⎭⎫12x -π4 (1)用五点法作出函数的图象;(2)说明此图象是由y =sin x 的图象径过怎么样的变化得到的; (3)求此函数的振幅、周期和初相; (4)求此函数图象的对称轴方程、对称中心.解:(1)列表:描点、连线,如图所示:(2)“先平移,后伸缩”.先把y =sin x 的图象上所有点向右平移π4个单位,得到y =sin ⎝⎛⎭⎫x -π4的图象;再把y = sin ⎝⎛⎭⎫x -π4的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到 y =sin ⎝⎛⎭⎫12x -π4的图象,最后将y =sin ⎝⎛⎫12x -π4的图象上所有点的纵坐标伸长到原来的3倍(横坐标不变),就得到y =3sin(12x -π4)的图象.(3)周期T =2πω=2π12=4π,振幅A =3,初相是-π4.(4)令12x -π4=π2+k π(k ∈Z ),得x =2k π+32π(k ∈Z ),此为对称轴方程.令12x -π4=k π(k ∈Z )得x =π2+2k π(k ∈Z ).对称中心为⎝⎛⎭⎫2k π+π2,0(k ∈Z ). 10.已知函数f (x )=3sin(ωx +φ)-cos(ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f (x )的 图象的两相邻对称轴间的距离为π2.(1)求f ⎝⎛⎭⎫π8的值;(2)将函数y =f (x )的图象向右平移π6个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的单调递减区间. 解:(1)f (x )=3sin(ωx +φ)-cos(ωx +φ) =2⎣⎡⎦⎤32sin (ωx +φ)-12cos (ωx +φ)=2sin ⎝⎛⎭⎫ωx +φ-π6,因为f (x )为偶函数,所以对任意x ∈R ,f (-x )=f (x )恒成立,所以sin ⎝⎛⎭⎫-ωx +φ-π6= sin ⎝⎛⎭⎫ωx +φ-π6, 即-sin ωx cos ⎝⎛⎭⎫φ-π6+cos ωx sin ⎝⎛⎭⎫φ-π6 =sin ωx cos ⎝⎛⎭⎫φ-π6+cos ωx sin ⎝⎛⎭⎫φ-π6, 整理得sin ωx cos ⎝⎛⎭⎫φ-π6=0. 因为ω>0且x ∈R ,所以cos ⎝⎛⎭⎫φ-π6=0. 又因为0<φ<π,故φ-π6=π2.所以f (x )=2sin ⎝⎛⎭⎫ωx +π2=2cos ωx . 由题意得2πω=2·π2,所以ω=2,故f (x )=2cos 2x .因此f ⎝⎛⎭⎫π8=2cos π4= 2. (2)将f (x )的图象向右平移π6个单位后,得到f ⎝⎛⎭⎫x -π6的图象,再将所得图象横坐标伸长到 原来的4倍,纵坐标不变,得到f ⎝⎛⎭⎫x 4-π6的图象. 所以g (x )=f ⎝⎛⎭⎫x 4-π6=2cos ⎣⎡⎦⎤2⎝⎛⎭⎫x 4-π6 =2cos ⎝⎛⎭⎫x 2-π3.当2k π≤x 2-π3≤2k π+π(k ∈Z ),即4k π+2π3≤x ≤4k π+8π3(k ∈Z )时,g (x )单调递减.因此g (x )的单调递减区间为⎣⎡⎦⎤4k π+2π3,4k π+8π3(k ∈Z ). B 级 素能提升练(时间:30分钟 满分:40分)一、选择题(本题共2小题,每小题5分,共10分)1.若函数f (x )=2sin(ωx +φ)对任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,则f ⎝⎛⎭⎫π6等于( )A .2或0B .-2或2C .0D .-2或0解析:由f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x 得f (x )=2sin(ωx +φ)的图象关于直线x =π6对称,故f ⎝⎛⎭⎫π6等于2 或-2.答案:B2.(2010·江西卷)四位同学在同一个坐标系中分别选定了一个适当的区间,各自作出三个函 数y =sin 2x ,y =sin ⎝⎛⎭⎫x +π6,y =sin ⎝⎛⎭⎫x -π3的图象如下,结果发现恰有一位同学作出的图象有错误,那么有错误的图象是( )解析:令f 1(x )=sin 2x ,f 2(x )=sin ⎝⎛⎭⎫x +π6,f 3(x )=sin ⎝⎛⎭⎫x -π3. f 1(x )的周期为T 1=π,f 2(x )与f 3(x )的周期T 2=T 3=2π,在答案C 的图象中容易识别f 1(x ) 的图象,如图所示,以点A 为原点建立平面直角坐标系,当x =0时,f 2(x )=sin π6=12,f 3(x )=sin ⎝⎛⎭⎫-π3=-32,此时,f 2(x )的图象对应点应在y 轴上方,f 3(x )的图象对应点在y轴下方,故C 答案错误.答案:C二、填空题(本题共2小题,每小题5分,共10分)3.把函数y =cos ⎝⎛⎭⎫x +π3的图象向左平移m 个单位(m >0),所得图象关于y 轴对称,则m 的 最小值是________.解析:由y =cos ⎝⎛⎭⎫x +π3+m 的图象关于y 轴对移, 所以π3+m =k π,k ∈Z .即m =k π-π3,k ∈Z ,当k =1时,m 取最小值为2π3.答案:2π34.如图所示函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线 y =k 有且仅有两个不同的交点,则k 的取值范围是________.解析:数形结合法:f (x )=⎩⎪⎨⎪⎧3sin x x ∈[0,π],-sin x x ∈(π,2π].由图象知:1<k <3.答案:1<k <3三、解答题(本题共2小题,每小题10分,共20分)5.已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象过点P ⎝⎛⎭⎫π12,0,图象上与点P 最近的一个 最高点是Q ⎝⎛⎭⎫π3,5. (1)求函数的解析式; (2)指出函数的增区间; (3)求使y ≤0的x 的取值范围.解:(1)依题意得:A =5,周期T =4⎝⎛⎭⎫π3-π12=π ∴ω=2ππ=2,故y =5sin(2x +φ),又图象过点P ⎝⎛⎭⎫π12,0,∴5sin ⎝⎛⎭⎫π6+φ=0, 由已知可得π6+φ=0,φ=-π6,∴y =5sin ⎝⎛⎭⎫2x -π6. (2)函数的增区间为⎣⎡⎦⎤k π-π6,k π+π3,k ∈Z .(3)由5sin ⎝⎛⎭⎫2x -π6≤0得2k π-π≤2x -π6≤2k π ∴k π-5π12≤x ≤k π+π12,k ∈Z .∴使y ≤0的x 的取值范围为⎣⎡⎦⎤k π-5π12,k π+π12,k ∈Z .6.函数y =A sin ⎝⎛⎭⎫ωx +φ)(A >0,ω>0,|φ|<π2的一段图象如图所示.(1)求函数y =f (x )的解析式;(2)将函数y =f (x )的图象向右平移π4个单位,得到y =g (x )的图象,求直线y =6与函数y=f (x )+g (x )的图象在(0,π)内所有交点的坐标. 解:(1)由题图知A =2,T =π,于是ω=2πT =2,将y =2sin 2x 的图象向左平移π12个单位长度,得y =2sin(2x +φ)的图象.于是φ=2×π12=π6,∴f (x )=2sin ⎝⎛⎭⎫2x +π6. (2)依题意得g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π6=-2cos(2x +π6).故y =f (x )+g (x )=2sin ⎝⎛⎭⎫2x +π6-2cos ⎝⎛⎭⎫2x +π6 =22sin ⎝⎛⎭⎫2x -π12. 由22sin ⎝⎛⎭⎫2x -π12=6,得sin ⎝⎛⎭⎫2x -π12=32. ∵0<x <π,∴-π12<2x -π12<2π-π12.∴2x -π12=π3或2x -π12=2π3,∴x =524π或x =38π,∴所求交点坐标为⎝⎛⎭⎫5π24,6或⎝⎛⎭⎫3π8,6.。

相关文档
最新文档