函数概念与基本性质练习题(含答案)
高考数学函数的概念与基本初等函数多选题练习题含答案

高考数学函数的概念与基本初等函数多选题练习题含答案一、函数的概念与基本初等函数多选题1.已知()f x 为定义在R 上且周期为5的函数,当[)0,5x ∈时,()243f x x x =-+.则下列说法中正确的是( )A .()f x 的增区间为()()15,2535,55k k k k ++⋃++,k Z ∈B .若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1C .当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4 D .若()20y kx k =->与()y f x =有3个交点,则k 的取值范围为12,23⎛⎫ ⎪⎝⎭【答案】BC 【分析】首先作出()f x 的图象几个周期的图象,由于单调区间不能并,可判断选项A 不正确;利用数形结合可判断选项B 、C ;举反例如1k =时经分析可得()20y kx k =->与()y f x =有3个交点,可判断选项D 不正确,进而可得正确选项. 【详解】对于选项A :单调区间不能用并集,故选项A 不正确;对于选项B :由图知若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1, 故选项B 正确;对于选项C :()10f =,()43f =,由图知当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4,故选项C 正确;对于选项D :当1k =时,直线为2y x =-过点()5,3,()f x 也过点()5,3,当10x =时,1028y =-=,直线过点()10,8,而点()10,8不在()f x 图象上,由图知:当1k =时,直线为2y x =-与()y f x =有3个交点,由排除法可知选项D 不正确,故选:BC 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.2.已知函数222,0()log ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩,若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则下列结论正确的是( ) A .x 1+x 2=-1 B .x 3x 4=1 C .1<x 4<2 D .0<x 1x 2x 3x 4<1【答案】BCD 【分析】由解析式得到函数图象,结合函数各分段的性质有122x x +=-,341x x =,341122x x <<<<,即可知正确选项. 【详解】由()f x 函数解析式可得图象如下:∴由图知:122x x +=-,121x -<<-,而当1y =时,有2|log |1x =,即12x =或2, ∴341122x x <<<<,而34()()f x f x =知2324|log ||log |x x =:2324log log 0x x +=, ∴341x x =,21234121(1)1(0,1)x x x x x x x ==-++∈.故选:BCD 【点睛】关键点点睛:利用分段函数的性质确定函数图象,由二次函数、对数运算性质确定1234,,,x x x x 的范围及关系.3.已知函数21,01()(1)1,1x x f x f x x ⎧-≤<=⎨-+≥⎩,方程()0f x x -=在区间0,2n ⎡⎤⎣⎦(*n N ∈)上的所有根的和为n b ,则( ) A .()20202019f = B .()20202020f = C .21122n n n b --=+D .(1)2n n n b +=【答案】BC 【分析】先推导出()f x 在[)()*,1n n n N+∈上的解析式,然后画出()f x 与y x =的图象,得出()f x x =时,所有交点的横坐标,然后得出n b .【详解】因为当[)0,1x ∈时,()21xf x =-,所以当[)1,2x ∈时,[)10,1x -∈,则()1121x f x --=-,故()()11112112x x f x f x --=-+=-+=,即[)10,1x -∈时,[)10,1x -∈,()12x f x -= 同理当[)2,3x ∈时,[)11,2x -∈,()()21121x f x f x -=-+=+;当[)3,4x ∈时,[)12,3x -∈,则()()31122x f x f x -=-+=+;………故当[),1x n n ∈+时,()()21x nf x n -=+-,当21,2n nx ⎡⎤∈-⎣⎦时,()()()21222nx n f x --=+-.所以()20202020f =,故B 正确;作出()f x 与y x =的图象如图所示,则当()0f x x -=且0,2n⎡⎤⎣⎦时,x 的值分别为:0,1,2,3,4,5,6,,2n则()()121122101222221222n n n n n n n n b ---+=+++++==+=+,故C 正确.故选:BC.【点睛】本题考查函数的零点综合问题,难度较大,推出原函数在每一段上的解析式并找到其规律是关键.4.设函数g (x )=sinωx (ω>0)向左平移5πω个单位长度得到函数f (x ),已知f (x )在[0,2π]上有且只有5个零点,则下列结论正确的是( )A .f (x )的图象关于直线2x π=对称B .f (x )在(0,2π)上有且只有3个极大值点,f (x )在(0,2π)上有且只有2个极小值点C .f (x )在(0,)10π上单调递增 D .ω的取值范围是[1229,510) 【答案】CD 【分析】利用正弦函数的对称轴可知,A 不正确;由图可知()f x 在(0,2)π上还可能有3个极小值点,B 不正确;由2A B x x π≤<解得的结果可知,D 正确;根据()f x 在3(0,)10πω上递增,且31010ππω<,可知C 正确. 【详解】依题意得()()5f x g x πω=+sin[()]5x πωω=+sin()5x πω=+, 2T πω=,如图:对于A ,令52x k ππωπ+=+,k Z ∈,得310k x ππωω=+,k Z ∈,所以()f x 的图象关于直线310k x ππωω=+(k Z ∈)对称,故A 不正确; 对于B ,根据图象可知,2A B x x π≤<,()f x 在(0,2)π有3个极大值点,()f x 在(0,2)π有2个或3个极小值点,故B 不正确, 对于D ,因为5522452525A x T ππππωωωω=-+=-+⨯=,22933555B x T ππππωωωω=-+=-+⨯=,所以2429255πππωω≤<,解得1229510ω≤<,所以D 正确;对于C ,因为1123545410T ππππωωωω-+=-+⨯=,由图可知()f x 在3(0,)10πω上递增,因为29310ω<<,所以33(1)0101010πππωω-=-<,所以()f x 在(0,)10π上单调递增,故C 正确;故选:CD. 【点睛】本题考查了三角函数的相位变换,考查了正弦函数的对称轴和单调性和周期性,考查了极值点的概念,考查了函数的零点,考查了数形结合思想,属于中档题.5.对x ∀∈R ,[]x 表示不超过x 的最大整数.十八世纪,[]y x =被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”,则下列命题中的真命题是( ) A .,[]1x x x ∃∈+RB .,,[][][]x y x y x y ∀∈++RC .函数[]()y x x x =-∈R 的值域为[0,1)D .若t ∃∈R ,使得3451,2,3,,2nt t t t n ⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦同时成立,则正整数n 的最大值是5 【答案】BCD 【分析】由取整函数的定义判断,由定义得[][]1x x x ≤<+,利用不等式性质可得结论. 【详解】[]x 是整数, 若[]1x x ≥+,[]1x +是整数,∴[][]1x x ≥+,矛盾,∴A 错误;,x y ∀∈R ,[],[]x x y y ≤≤,∴[][]x y x y +≤+,∴[][][]x y x y +≤+,B 正确;由定义[]1x x x -<≤,∴0[]1x x ≤-<,∴函数()[]f x x x =-的值域是[0,1),C 正确;若t ∃∈R ,使得3451,2,3,,2n t t t t n ⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦同时成立,则1t ≤<,t ≤<t ≤<t ≤<,,t ≤<=6n ≥,则不存在t 同时满足1t ≤<t <5n ≤时,存在t ∈满足题意, 故选:BCD . 【点睛】本题考查函数新定义,正确理解新定义是解题基础.由新定义把问题转化不等关系是解题关键,本题属于难题.6.定义:若函数()F x 在区间[]a b ,上的值域为[]a b ,,则称区间[]a b ,是函数()F x 的“完美区间”,另外,定义区间()F x 的“复区间长度”为()2b a -,已知函数()21f x x =-,则( )A .[]0,1是()f x 的一个“完美区间”B .⎣⎦是()f x 的一个“完美区间”C .()f x 的所有“完美区间”的“复区间长度”的和为3+D .()f x 的所有“完美区间”的“复区间长度”的和为3+【答案】AC 【分析】根据定义,当[]0,1x ∈时求得()f x 的值域,即可判断A ;对于B ,结合函数值域特点即可判断;对于C 、D ,讨论1b ≤与1b >两种情况,分别结合定义求得“复区间长度”,即可判断选项. 【详解】对于A ,当[]0,1x ∈时,()2211f x x x =-=-,则其值域为[]0,1,满足定义域与值域的范围相同,因而满足“完美区间”定义,所以A 正确;对于B ,因为函数()210f x x =-≥,所以其值域为[)0,+∞,而102-<,所以不存在定义域与值域范围相同情况,所以B 错误;对于C ,由定义域为[]a b ,,可知0a b ≤<, 当1b ≤时,[][]0,1a b ,,此时()2211f x x x =-=-,所以()f x 在[]a b ,内单调递减,则满足()()2211f a a b f b b a⎧=-=⎪⎨=-=⎪⎩,化简可得22a a b b -=-,即221122a b ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,所以1122a b -=-或1122a b -=-,解得a b =(舍)或1a b +=, 由211a b a b +=⎧⎨+=⎩解得1b =或0b =(舍), 所以10a b =-=,经检验满足原方程组,所以此时完美区间为[]0,1,则“复区间长度”为()22b a -=;当1b >时,①若01a ≤<,则[]1a b ∈,,此时()()min 10f x f ==.当()f x 在[]a b ,的值域为[]a b ,,则()0,a f b b ==,因为1b > ,所以()21f b b b =-=,即满足210b b --=,解得12b +=,12b =.所以此时完美区间为⎡⎢⎣⎦,则“复区间长度”为()12212b a +-=⨯=+ ②若1a ≤,则()21f x x =-,[]x a b ∈,,此时()f x 在[]a b ,内单调递增,若()f x 的值域为[]a b ,,则()()2211f a a af b b b⎧=-=⎪⎨=-=⎪⎩,则,a b 为方程210x x --=的两个不等式实数根,解得112x =,212x =,所以a b ⎧=⎪⎪⎨⎪=⎪⎩,与1a ≤矛盾,所以此时不存在完美区间.综上可知,函数()21f x x =-的“复区间长度”的和为213++=C 正确,D 错误; 故选:AC. 【点睛】本题考查了函数新定义的综合应用,由函数单调性判断函数的值域,函数与方程的综合应用,分类讨论思想的综合应用,属于难题.7.下列选项中a 的范围能使得关于x 的不等式220x x a +--<至少有一个负数解的是( ) A .9,04⎛⎫-⎪⎝⎭B .()2,3C .1,2D .0,1【答案】ACD【分析】将不等式变形为22x a x -<-,作出函数2,2y x a y x =-=-的图象,根据恰有一个负数解时判断出临界位置,再通过平移图象得到a 的取值范围. 【详解】因为220x x a +--<,所以22x a x -<-且220x ,在同一坐标系中作出2,2y x a y x =-=-的图象如下图:当y x a =-与22y x =-在y 轴左侧相切时,22x a x -=-仅有一解,所以()1420a ∆=++=,所以94a =-, 将y x a =-向右移动至第二次过点()0,2时,02a -=,此时2a =或2a =-(舍), 结合图象可知:9,24a ⎛⎫∈- ⎪⎝⎭,所以ACD 满足要求. 故选:ACD. 【点睛】本题考查函数与方程的综合应用,着重考查数形结合的思想,难度较难.利用数形结合可解决的常见问题有:函数的零点或方程根的个数问题、求解参数范围或者解不等式、研究函数的性质等.8.下列说法中,正确的有( ) A .若0a b >>,则b a a b> B .若0a >,0b >,1a b +=,则11a b+的最小值为4 C .己知()11212xf x =-+,且()()2110f a f a -+-<,则实数a 的取值范围为()2,1- D .已知函数()()22log 38f x x ax =-+在[)1,-+∞上是增函数,则实数a 的取值范围是(]11,6--【答案】BCD 【分析】利用不等式的基本性质可判断A 选项的正误;将+a b 与11a b+相乘,展开后利用基本不等式可判断B 选项的正误;判断函数()f x 的单调性与奇偶性,解不等式()()2110f a f a -+-<可判断C 选项的正误;利用复合函数法可得出关于实数a 的不等式组,解出a 的取值范围,可判断D 选项的正误. 【详解】对于A 选项,0a b >>,则1a bb a>>,A 选项错误; 对于B 选项,0a >,0b >,1a b +=,()1111224b a a b a b a b a b ⎛⎫∴+=++=++≥+= ⎪⎝⎭, 当且仅当12a b ==时,等号成立,所以,11a b+的最小值为4,B 选项正确; 对于C 选项,函数()f x 的定义域为R , 任取1x 、2x R ∈且12x x <,则21220x x >>, 所以,()()()()211212121211111122021221221212121x x x x x x x x f x f x -⎛⎫⎛⎫-=---=-=> ⎪ ⎪++++++⎝⎭⎝⎭,即()()12f x f x >,所以,函数()f x 为R 上的减函数,()()()()2211112212221212xxx xx f x -+-=-==+++, 则()()()()()()21212212122212221x x x x x x x x f x f x --------====-+⋅++, 所以,函数()f x 为R 上的奇函数,且为减函数, 由()()2110f a f a-+-<可得()()()22111f a f a f a-<--=-,所以,211a a -<-,即220a a +-<,解得21a -<<,C 选项正确; 对于D 选项,对于函数()()22log 38f x x ax =-+,令238u x ax =-+,由于外层函数2log y u =为增函数,则内层函数238u x ax =-+在[)1,-+∞上为增函数,所以min 16380au a ⎧≤-⎪⎨⎪=++>⎩,解得116a -<≤-,D 选项正确.故选:BCD. 【点睛】方法点睛:利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是:(1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别.二、导数及其应用多选题9.对于定义域为R 的函数()f x ,()'f x 为()f x 的导函数,若同时满足:①()00f =;②当x ∈R 且0x ≠时,都有()0xf x '>;③当120x x <<且12x x =时,都有()()12f x f x <,则称()f x 为“偏对称函数”.下列函数是“偏对称函数”的是( )A .21()xx f x ee x =--B .2()1xf x e x =+-C .31,0(),0x e x f x x x ⎧-≥=⎨-<⎩D .42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩【答案】ACD 【分析】结合“偏对称函数”的性质,利用导数的方法,分别讨论四个函数是否满足三个条件,即可得到所求结论. 【详解】条件①()00f =;由选项可得:001(0)00f e e =--=,02(0)010f e =+-=,03(0)10f e =-=,4()ln(10)0f x =-=,即ABCD 都符合;条件②0()0()0x xf x f x >⎧'>⇔⎨'>⎩,或0()0x f x <⎧⎨'<⎩;即条件②等价于函数()f x 在区间(,0)-∞上单调递减,在区间(0,)+∞上单调递增; 对于21()xx f x ee x =--,则()()21()11212x x x xf x e e e e =-+-=-',由0x >可得,()()120(1)1x xf x e e '-=+>,即函数1()f x 单调递增;由0x <可得,()()120(1)1xxf x ee '-=+<,即函数1()f x 单调递减;满足条件②;对于2()1xf x e x =+-,则2()10x f x e =+>'显然恒成立,所以2()1xf x e x =+-在定义域上单调递增,不满足条件②;对于31,0(),0x e x f x x x ⎧-≥=⎨-<⎩,当0x <时,3()f x x =-显然单调递减;当0x ≥时,3()1x f x e =-显然单调递增;满足条件②;对于42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩,当0x ≤时,4()ln(1)f x x =-显然单调递减;当0x >时,4()2f x x =显然单调递增,满足条件②; 因此ACD 满足条件②;条件③当120x x <<且12x x =时,12x x -=,都有()()12f x f x <,即()()()()21220f x f x f x f x -=-->,对于21()xx f x ee x =--,()()212122211211x x x x f x f x e e e e x x -=-+--+()()()()22222222222222x x x x x x x x x e e e e e e e x e ----=----=-+-,因为222x x e e -+≥=,当且仅当22x x e e -=,即20x =时,等号成立, 又20x >,所以222x x e e -+>, 则()()()()2222122211222xx x x f x f x e ee e xx ----=--->令()xxg x e ex -=--,0x >,所以()1110x x e e g x -'=+->=>在0x >上显然恒成立, 因此()xxg x e ex -=--在0x >上单调递增,所以()()00g x g >=,即()()()222121120xx f x f x e ex -->-->,所以()()1211f x f x >满足条件③;对于31,0(),0x e x f x x x ⎧-≥=⎨-<⎩,()()2232311211x xf x f x e x x e -=--=-+,令()1xh x e x =--,0x >,则()10xh x e '=->在0x >上显然恒成立,所以()()00h x h >=,则()()23231210xf x f x e x --=>-,即()()3231f x f x >满足条件③; 对于42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩,()()()()212122442ln 12ln 1f x f x x x x x -=--=-+,令()()2ln 1u x x x =-+,0x >, 则()1221101u x x'=->-=>+在0x >上显然恒成立,所以()()00u x u >=, 则()()()1422422ln 10f x f x x x -=-+>,即()()1442f x f x >满足条件③; 综上,ACD 选项是“偏对称函数”, 故选:ACD. 【点睛】 思路点睛:求解此类函数新定义问题时,需要结合函数新定义的概念及性质,结合函数基本性质,利用导数的方法,通过研究函数单调性,值域等,逐项判断,即可求解.(有时也需要构造新的函数,进行求解.)10.已知实数a ,b ,c ,d 满足2111a a e cb d --==-,其中e 是自然对数的底数,则()()22a cb d -+-的值可能是( ) A .7 B .8C .9D .10【答案】BCD 【分析】由题中所给的等式,分别构造函数()2xf x x e =-和()2g x x =-+,则()()22a cb d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),Ncd 的距离的平方,利用导数的几何意义可知当()01f x '=-时,切点到直线的距离最小,再比较选项.【详解】由212a a a e b a e b-=⇒=-,令()2x f x x e =-,()12xf x e '∴=-由1121cd c d -=⇒=-+-,令()2g x x =-+ 则()()22a cb d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),Ncd 的距离的平方,设()y f x =上与()y g x =平行的切线的切点为()000,M x y 由()0001210xf x e x '=-=-⇒=,∴切点为()00,2M -所以切点为()00,2M -到()y g x =的距离的平方为28=的距离为(),M a b 与(),N c d 的距离的平方的最小值.故选:BCD. 【点睛】本题考查构造函数,利用导数的几何意义求两点间距离的最小值,重点考查转化思想,构造函数,利用几何意义求最值,属于偏难题型.。
福建省福州第三中学函数的概念与基本初等函数多选题试题含答案

福建省福州第三中学函数的概念与基本初等函数多选题试题含答案一、函数的概念与基本初等函数多选题1.一般地,若函数()f x 的定义域为[],a b ,值域为[],ka kb ,则称为的“k 倍跟随区间”;若函数的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”.下列结论正确的是( )A .若[]1,b 为()222f x x x =-+的跟随区间,则2b =B .函数()11f x x=+存在跟随区间 C .若函数()f x m =1,04m ⎛⎤∈- ⎥⎝⎦D .二次函数()212f x x x =-+存在“3倍跟随区间” 【答案】ABCD 【分析】根据“k 倍跟随区间”的定义,分析函数在区间内的最值与取值范围逐个判断即可. 【详解】对A, 若[]1,b 为()222f x x x =-+的跟随区间,因为()222f x x x =-+在区间[]1,b 为增函数,故其值域为21,22b b ⎡⎤-+⎣⎦,根据题意有222b b b -+=,解得1b =或2b =,因为1b >故2b =.故A 正确; 对B,因为函数()11f x x =+在区间(),0-∞与()0,+∞上均为减函数,故若()11f x x=+存在跟随区间[],a b 则有11+11+a b b a ⎧=⎪⎪⎨⎪=⎪⎩,解得:1212a b ⎧-=⎪⎪⎨⎪=⎪⎩. 故存在, B 正确.对C, 若函数()f x m =[],a b ,因为()f x m =,故由跟随区间的定义可知b m a b a m ⎧=-⎪⇒-=⎨=⎪⎩a b < 即()()()11a b a b a b -=+-+=-,因为a b <,1=.易得01≤<.所以(1a m m =-=--,令t =20t t m --=,同理t =20t t m --=,即20t t m --=在区间[]0,1上有两根不相等的实数根.故1400m m +>⎧⎨-≥⎩,解得1,04m ⎛⎤∈- ⎥⎝⎦,故C 正确.对D,若()212f x x x =-+存在“3倍跟随区间”,则可设定义域为[],a b ,值域为[]3,3a b .当1a b <≤时,易得()212f x x x =-+在区间上单调递增,此时易得,a b 为方程2132x x x -+=的两根,求解得0x =或4x =-.故存在定义域[]4,0-,使得值域为[]12,0-. 故D 正确. 故选:ABCD. 【点睛】本题主要考查了函数新定义的问题,需要根据题意结合函数的性质分析函数的单调性与取最大值时的自变量值,并根据函数的解析式列式求解.属于难题.2.已知函数()()()sin 0f x x ωϕω=+>满足()01()12f x f x +=-=0,且()f x 在()00,1x x +上有最小值,无最大值.则下列说法正确的是()A .01()12f x +=- B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在()0,303上的零点个数最少为202个 【答案】AC 【分析】由题意知()00,1x x +在一个波谷的位置且有对称性,有01()12f x +=-且23πω=,进而可判断A 、B 、C 的正误,又[0,303]上共有101个周期,最多有203个零点,最少有202个零点,进而可知()0,303零点个数最少个数,即知D 的正误. 【详解】由()01()12f x f x +=-=0,且()f x 在()00,1x x +上有最小值,无最大值,∴()00,1x x +在一个波谷的位置且有对称性,即01()12f x +=-,002(1)()3x x πωϕωϕω++-+==, ∴()f x 的最小正周期为23T πω==,故A 、C 正确,B 错误;在[0,303]上共有101个周期,若每个周期有两个零点时,共有202个零点,此时区间端点不为零点;若每个周期有三个零点时,共有203个零点,此时区间端点为零点;∴()0,303上零点个数最少为201个,即每个周期有三个零点时,去掉区间的两个端点,故D 错误. 故选:AC. 【点睛】关键点点睛:由条件推出()00,1x x +在一个波谷的位置且有对称性,可确定01()2f x +及最小正周期,再由正弦函数的性质判断()0,303上零点个数,进而确定最少有多少个零点.3.已知函数222,0()log ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩,若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则下列结论正确的是( ) A .x 1+x 2=-1 B .x 3x 4=1 C .1<x 4<2 D .0<x 1x 2x 3x 4<1【答案】BCD 【分析】由解析式得到函数图象,结合函数各分段的性质有122x x +=-,341x x =,341122x x <<<<,即可知正确选项. 【详解】由()f x 函数解析式可得图象如下:∴由图知:122x x +=-,121x -<<-,而当1y =时,有2|log |1x =,即12x =或2, ∴341122x x <<<<,而34()()f x f x =知2324|log ||log |x x =:2324log log 0x x +=, ∴341x x =,21234121(1)1(0,1)x x x x x x x ==-++∈.故选:BCD 【点睛】关键点点睛:利用分段函数的性质确定函数图象,由二次函数、对数运算性质确定1234,,,x x x x 的范围及关系.4.设函数ln(2),2()1,2x x f x x x ->⎧=⎨+≤⎩,g (x )=x 2-(m +1)x +m 2-2,下列选项正确的有( )A .当m >3时,f [f (x )]=m 有5个不相等的实根B .当m =0时,g [g (x )]=m 有4个不相等的实根C .当0<m <1时,f [g (x )]=m 有6个不相等的实根D .当m =2时,g [f (x )]=m 有5个不相等的实根 【答案】BCD 【分析】作出函数()f x 的图象,利用函数()f x 的图象和函数()g x 的图象分析可解得结果.【详解】作出函数()f x 的图象:令()f x t =,得[()]()f f x f t m ==;当3m >时,()f x m =有两个根:31242e t t <->+,,方程1()f x t =有1个根,方程2()f x t =有2个根,所以A 错误;②当0m =时,2 ()2g x x x =--,[()]0g g x =,令()g x t =,由()0g t =,得1221t t ==-,, 由2122t x x ==--12117117x x -+⇒=由2234151512t x x x x -+=-=--⇒==所以B 正确; ③令()g x t =,()f t m =∴,因为01m <<,所以()f t m =有3个实根根123,,t t t ,设123t t t <<,所以12311ln(2)t m t m t m --=+=-=,,, 22()(1)2g x x m x m =-++-221329()24m m m x +--=-+23294m m --≥, 221329329144m m m m t m -----=---23254m m --+=, 因为2325m m --+在(0,1)上递减,所以23253250m m --+>--+=,所以2132504m m t --+->,所以213254m m t --+>, 即方程()f t m =的最小根1t 大于()g x 的最小值,所以1()g x t =、2()g x t =、3()g x t =都有2个不等实根,且这6个实根互不相等, 所以当0<m <1时,f [g (x )]=m 有6个不相等的实根,所以C 正确; ④令()f x t =,则()g t m =,当2m =时,方程()2g t =化为230t t -=,得1230t t ==,;当20()t f x ==,得1213x x =-=,; 当13()t f x ==,得3442x x =-=,,352e x =+符合题意,所以D 正确. 故选:BCD. 【点睛】关键点点睛:作出函数的图象,利用数形结合法求解是解题关键.5.已知()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,2()2f x x x =-+,下列说法正确的是( )A .(0,)x ∈+∞时,函数解析式为2()2f x x x =-B .函数在定义域R 上为增函数C .不等式(32)3f x -<的解集为(,1)-∞D .不等式2()10f x x x -+->恒成立 【答案】BC 【分析】对于A ,利用奇函数定义求(0,)x ∈+∞时,函数解析式为2()2f x x x =+;对于B ,研究当(,0)x ∈-∞时,()f x 的单调性,结合奇函数图像关于原点对称,知()f x 在R 上的单调性;对于C ,求出(1)3f =,不等式(32)3f x -<,转化为(32)(1)f x f -<,利用单调性解不等式;对于D ,分类讨论(0,)x ∈+∞与(,0)x ∈-∞两种情况是否恒成立. 【详解】对于A ,设(0,)x ∈+∞,(,0)x -∈-∞,则2()2f x x x -=--,又()f x 是奇函数,所以2()()2f x f x x x =--=+,即(0,)x ∈+∞时,函数解析式为2()2f x x x =+,故A 错;对于B ,2()2f x x x =-+,对称轴为1x =,所以当(,0)x ∈-∞时,()f x 单调递增,由奇函数图像关于原点对称,所以()f x 在R 上为增函数,故B 对;对于C ,由奇函数在R 上为增函数,则(0,)x ∈+∞时,2()23f x x x =+=,解得11x =,23x =-(舍去),即(1)3f =,所以不等式(32)3f x -<,转化为(32)(1)f x f -<, 又()f x 在R 上为增函数,得321x -<,解得1x <,所以不等式的解集为(,1)-∞,故C 对; 对于D ,当(,0)x ∈-∞时,2()2f x x x =-+2222()121231(21)(1)0f x x x x x x x x x x x -+-=-+-+-=-+-=-+-<,当(0,)x ∈+∞时,2()2f x x x =+222()12131f x x x x x x x x -+-=+-+-=-不恒大于0,故D 错;故选:BC 【点睛】方法点睛:考查了解抽象不等式,要设法把隐性划归为显性的不等式求解,方法是: (1)把不等式转化为[][]()()f g x f h x >的模型;(2)判断函数()f x 的单调性,再根据函数的单调性将不等式的函数符号“f ”脱掉,得到具体的不等式(组)来求解,但要注意奇偶函数的区别. 考查了利用奇偶性求函数解析式,求函数解析式常用的方法: (1)已知函数类型,用待定系数法求解析式; (2)已知函数奇偶性,用奇偶性定义求解析式;(3)已知()f x 求[()]f g x ,或已知[()]f g x 求()f x ,用代入法、换元法或配凑法; (4)若()f x 与1()f x或()f x -满足某个等式,可构造另一个等式,通过解方程组求解;6.已知函数()f x 满足:当-<3≤0x 时,()()1xf x e x =+,下列命题正确的是( )A .若()f x 是偶函数,则当03x <≤时,()()1xf x e x =+B .若()()33f x f x --=-,则()()32g x f x e=+在()6,0x ∈-上有3个零点 C .若()f x 是奇函数,则1x ∀,[]23,3x ∈-,()()122f x f x -<D .若()()3f x f x +=,方程()()20f x kf x -=⎡⎤⎣⎦在[]3,3x ∈-上有6个不同的根,则k 的范围为2312k e e -<<- 【答案】BC 【分析】A 选项,利用函数的奇偶性求出解析式即可判断;B 选项,函数()f x 关于直线3x =-对称,利用导数研究函数的单调性作出函数图像,由函数图像可知当()6,0x ∈-时,函数()f x 与直线32y e =-有3个交点可判断;C 选项,由函数图像关于原点对称求出函数的值域进行判断;D 选项,函数周期为3,作出函数图像知方程()0f x =在[]3,3x ∈-上有两个不同的根,则2312k e e -<≤-时方程()f x k =在[]3,3x ∈-上有4个不同的根. 【详解】A 选项,若03x <≤,则30x -≤-<,()()1xf x e x --=-+,因为函数()f x 是偶函数,所以()()()1xf x f x ex -=-=-+,A 错误;B 选项,若()()33f x f x --=-,则函数()f x 关于直线3x =-对称,当-<3≤0x 时,()()2xf x ex '=+,当()3,2x ∈--时,()0f x '<,函数()f x 单调递减,当()2,0x ∈--时,()0f x '>,函数()f x 单调递增,且()323f e-=-,()2120f e-=-<,()10f -=, 作出函数大致图像如图所示,则当()6,0x ∈-时,函数()f x 与直线32y e=-有3个交点,即函数()()32g x f x e=+在()6,0x ∈-上有3个零点,B 正确;C 选项,由B 知当[3,0)x ∈-时,()2[,1)f x e -∈-,若函数()f x 为奇函数,则当[]3,3x ∈-时()()1,1f x ∈-,所以1x ∀,[]23,3x ∈-,()()122f x f x -<,C 正确;D 选项,若()()3f x f x +=,则函数()f x 的周期为3,作出函数在[]3,3x ∈-上的图像如图所示,若方程()()20f x kf x -=⎡⎤⎣⎦即()()[]0f x f x k -=在[]3,3x ∈-上有6个不同的根,因为方程()0f x =在[]3,3x ∈-上有两个不同的根,所以()f x k =在[]3,3x ∈-上有4个不同的根,又()323f e -=-,()2120f e -=-<,所以2312k e e -<≤-,D 错误. 故选:BC 【点睛】本题考查函数的图像与性质综合应用,涉及函数的单调性、奇偶性、对称性,函数的零点与方程的根,综合性较强,属于较难题.7.已知直线2y x =-+分别与函数x y e =和ln y x =的图象交于点()()1122,,,A x y B x y ,则下列结论正确的是( ) A .122x x +=B .122x x e e e +>C .1221ln ln 0x x x x +<D .12ex x >【答案】ABC 【分析】根据互为反函数的性质可得()()1122,,,A x y B x y 的中点坐标为()1,1,从而可判断A ;利用基本不等式可判断B 、D ;利用零点存在性定理以及对数的运算性质可判断C. 【详解】函数xy e =与ln y x =互为反函数, 则xy e =与ln y x =的图象关于y x =对称,将2y x =-+与y x =联立,则1,1x y ==,由直线2y x =-+分别与函数xy e =和ln y x =的图象交于点()()1122,,,A x y B x y ,作出函数图像:则()()1122,,,A x y B x y 的中点坐标为()1,1, 对于A ,由1212x x +=,解得122x x +=,故A 正确;对于B,122x x e e e ≥=+==, 因为12x x ≠,即等号不成立,所以122x x e e e +>,故B 正确;对于C ,将2y x =-+与xy e =联立可得2x x e -+=,即20x e x +-=,设()2xf x e x =+-,且函数为单调递增函数,()010210f =+-=-<,112211320222f e e ⎛⎫=+-=-> ⎪⎝⎭,故函数的零点在10,2⎛⎫ ⎪⎝⎭上,即1102x <<,由122x x +=,则212x <<, 122112211ln ln ln lnx x x x x x x x +=- ()1222122ln ln ln 0x x x x x x x <-=-<,故C 正确;对于D,由12x x +≥,解得121x x ≤, 由于12x x ≠,则121x x <,故D 错误; 故选:ABC 【点睛】本题考查了互为反函数的性质、基本不等式的应用、零点存在性定理以及对数的运算性质,考查了数形结合的思想,属于难题.8.已知()()()52log 1,122,1x x f x x x ⎧-<⎪=⎨--+≥⎪⎩,则关于x 的方程12f x a x ⎛⎫+-= ⎪⎝⎭()1a <的实根个数可能为( ) A .2 B .3C .4D .5【答案】ABC 【分析】画出()f x 的图像,由1a <,可分类讨论01a <<,0a =,0a <三种情况,令12t x x =+-,并画出图像,结合两个函数图像以及12f x a x ⎛⎫+-= ⎪⎝⎭,判断出实根个数构成的集合. 【详解】画出()f x 的图像如图所示,令12t x x=+-,画出图像如图所示. 由()5log 11t -=,解得:4544,5t t =-=,由()2221t --+=,解得671,3t t ==.. 由()5log 10t -=,解得:80t =,由()()22201t t --+=≥,解得92t =(1)当01a <<时,()f t a =,有3解,且40t -<<或405t <<或322t <<+,结合12t x x =+-的图像可知,40t -<<时没有x 与其对应,405t <<或322t <<+时每个t 都有2个x 与其对应,故此时12f x a x ⎛⎫+-= ⎪⎝⎭有4个实数根. (2)当0a =时,()f t a =,有2解,且0t =或22t =+,0t =有一个1x =与其对应,22t =+有两个x 与其对应,故此时12f x a x ⎛⎫+-= ⎪⎝⎭有3个实数根. (3)当0a <时,()f t a =,有1解,且22t >+,结合12t x x=+-的图像可知,每个t 有两个x 与其对应,故此时12f x a x ⎛⎫+-= ⎪⎝⎭有2个实数根.综上所述,关于x 的方程12f x a x ⎛⎫+-=⎪⎝⎭的实根个数构成的集合为{2,3,4}. 故选:ABC【点睛】方法点睛:本题考查分类讨论参数,求函数零点个数问题,讨论函数零点个数常用方法: (1)直接法:直接求解方程得到方程的根;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解,考查学生的数形结合的数学思想方法,考查分类讨论的数学思想方法,属于难题.二、导数及其应用多选题9.已知函数()3sin f x x x ax =+-,则下列结论正确的是( )A .()f x 是奇函数B .当3a =-时,函数()f x 恰有两个零点C .若()f x 为增函数,则1a ≤D .当3a =时,函数()f x 恰有两个极值点【答案】ACD 【分析】利用函数奇偶性的定义可判断A 选项的正误;利用导数分析函数()f x 的单调性,可判断B 选项的正误;利用导数与函数单调性的关系可判断C 选项的正误;利用导数以及零点存在定理可判断D 选项的正误. 【详解】对于A 选项,函数()3sin f x x x ax =+-的定义域为R ,()()()()33sin sin f x x x ax x x ax f x -=-+-+=--+=-,函数()f x 为奇函数,A 选项正确;对于B 选项,当3a =-时,()3sin 3f x x x x =++,则()2cos 330f x x x '=++>,所以,函数()f x 在R 上为增函数,又()00f =,所以,函数()f x 有且只有一个零点,B 选项错误;对于C 选项,()2cos 3f x x x a '=+-,由于函数()f x 为增函数,则()0f x '≥对任意的x ∈R 恒成立,即23cos a x x ≤+. 令()23cos g x x x =+,则()6sin g x x x '=-,则()6cos 0g x x ''=->,所以,函数()g x '在R 上为增函数,当0x <时,()()00g x g ''<=,此时,函数()g x 为减函数; 当0x >时,()()00g x g ''>=,此时,函数()g x 为增函数. 所以,()()min 01g x g ==,1a ∴≤,C 选项正确;对于D 选项,当3a =时,()3sin 3f x x x x =+-,则()2cos 33f x x x '=+-.由B 选项可知,函数()f x '在(),0-∞上单调递减,在()0,∞+上单调递增,()()11cos10f f ''-==>,()020f '=-<,由零点存在定理可知,函数()f x '在()1,0-和()0,1上都存在一个零点, 因此,当3a =时,函数()f x 有两个极值点,D 选项正确. 故选:ACD. 【点睛】结论点睛:利用函数的单调性求参数,可按照以下原则进行:(1)函数()f x 在区间D 上单调递增()0f x '⇔≥在区间D 上恒成立; (2)函数()f x 在区间D 上单调递减()0f x '⇔≤在区间D 上恒成立; (3)函数()f x 在区间D 上不单调()f x '⇔在区间D 上存在极值点;(4)函数()f x 在区间D 上存在单调递增区间x D ⇔∃∈,使得()0f x '>成立; (5)函数()f x 在区间D 上存在单调递减区间x D ⇔∃∈,使得()0f x '<成立.10.在湖边,我们常看到成排的石柱子之间两两连以铁链,这就是悬链线(Catenary ),其形状因与悬在两端的绳子因均匀引力作用下掉下来之形相似而名.选择适当的坐标系后,悬链线的方程是一个双曲余弦函数()cosh 2xx aax e ef x a a a -+⎛⎫=⋅=⋅ ⎪⎝⎭,其中a 为非零常数,在此坐标平面上,过原点的直线与悬链线相切于点()()00,T x f x ,则0x a ⎡⎤⎢⎥⎣⎦的值可能为( )(注:[]x 表示不大于x 的最大整数)A .2-B .1-C .1D .2【答案】AC 【分析】求出导数,表示出切线,令0x t a=,可得()()110t tt e t e --++=,构造函数()()()11x x h x x e x e -=-++,可得()h x 是偶函数,利用导数求出单调性,结合零点存在性定理可得021x a -<<-或012xa<<,即可求出. 【详解】()2x x aae ef x a -+=⋅,()2xx aae ef x --'∴=,∴切线斜率002x x aae ek --=,()0002x x aae ef x a -+=⋅,则切线方程为()0000022x x x x aaaaee e ey a x x --+--⋅=-,直线过原点,()0000022x x x x aaa ae e e ea x --+-∴-⋅=⋅-令0x t a=,则可得()()110t tt e t e --++=, 令()()()11xxh x x e x e -=-++,则t 是()h x 的零点,()()()()11x x h x x e x e h x --=++-=,()h x ∴是偶函数,()()x x h x x e e -'=-+,当0x >时,()0h x '<,()h x 单调递减,()1120h e -=>,()22230h e e -=-+<,()h x ∴在()1,2存在零点t ,由于偶函数的对称性()h x 在()2,1--也存在零点,且根据单调性可得()h x 仅有这两个零点,021x a ∴-<<-或012xa<<, 02x a ⎡⎤∴=-⎢⎥⎣⎦或1. 故选:AC. 【点睛】本题考查利用导数求切线,利用导数研究函数的零点,解题的关键是将题目转化为令0x t a=,()()110t t t e t e --++=,求()()()11x xh x x e x e -=-++的零点问题.。
高一 函数y=Asin(ωx+φ)的性质知识点+例题+练习 含答案

1.y=A sin(ωx+φ)的有关概念y =A sin(ωx +φ)(A>0,ω>0),x∈R 振幅周期频率相位初相A T=2πωf=1T=ω2πωx+φφ2.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点如下表所示:x 0-φωπ2-φωπ-φω3π2-φω2π-φωωx+φ0π2π3π22πy=A sin(ωx+φ)0 A 0-A 03.函数y=sin x的图象经变换得到y=A sin(ωx+φ)(A>0,ω>0)的图象的步骤如下:【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.(×)(2)y =sin ⎝⎛⎭⎫x -π4的图象是由y =sin ⎝⎛⎭⎫x +π4的图象向右平移π2个单位得到的.( √ ) (3)由图象求解析式时,振幅A 的大小是由一个周期内的图象中的最高点的值与最低点的值确定的.( √ )(4)函数f (x )=A sin(ωx +φ)的图象的两个相邻对称轴间的距离为一个周期.( × )(5)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2.( √ )1.y =2sin ⎝⎛⎭⎫2x -π4的振幅、频率和初相分别为 . 答案 2,1π,-π42.(2015·山东改编)要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,需将函数y =sin 4x 的图象进行的变换为 .①向左平移π12个单位;②向右平移π12个单位;③向左平移π3个单位;④向右平移π3个单位.答案 ②解析 ∵y =sin ⎝⎛⎭⎫4x -π3=sin ⎣⎡⎦⎤4⎝⎛⎭⎫x -π12, ∴要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象向右平移π12个单位. 3.(2015·湖南改编)将函数f (x )=sin 2x 的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位后得到函数g (x )的图象,若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ= .答案 π6解析 因为g (x )=sin [2(x -φ)]=sin(2x -2φ), 所以|f (x 1)-g (x 2)|=|sin 2x 1-sin(2x 2-2φ)|=2. 因为-1≤sin 2x 1≤1,-1≤sin(2x 2-2φ)≤1,所以sin 2x 1和sin(2x 2-2φ)的值中,一个为1,另一个为-1,不妨取sin 2x 1=1,sin(2x 2-2φ)=-1,则2x 1=2k 1π+π2,k 1∈Z,2x 2-2φ=2k 2π-π2,k 2∈Z,2x 1-2x 2+2φ=2(k 1-k 2)π+π,(k 1-k 2)∈Z ,得|x 1-x 2|=⎪⎪⎪⎪(k 1-k 2)π+π2-φ. 因为0<φ<π2,所以0<π2-φ<π2,故当k 1-k 2=0时,|x 1-x 2|min =π2-φ=π3,则φ=π6.4.(教材改编)如图,某地一天从6~14时的温度变化曲线近似满足函数y =A sin(ωx +φ)+b ,则这段曲线的函数解析式为 .答案 y =10sin ⎝⎛⎭⎫π8x +3π4+20,x ∈[6,14] 解析 从图中可以看出,从6~14时的是函数 y =A sin(ωx +φ)+b 的半个周期, 所以A =12×(30-10)=10,b =12×(30+10)=20, 又12×2πω=14-6, 所以ω=π8.又π8×10+φ=2π, 解得φ=3π4,所以y =10sin ⎝⎛⎭⎫π8x +3π4+20,x ∈[6,14].5.(2014·安徽)若将函数f (x )=sin(2x +π4)的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是 . 答案3π8解析 ∵函数f (x )=sin(2x +π4)的图象向右平移φ个单位得到g (x )=sin[2(x -φ)+π4]=sin(2x +π4-2φ),又∵g (x )是偶函数,∴π4-2φ=k π+π2(k ∈Z ).∴φ=-k π2-π8(k ∈Z ).当k =-1时,φ取得最小正值3π8.题型一 函数y =A sin(ωx +φ)的图象及变换例1 已知函数y =2sin ⎝⎛⎭⎫2x +π3. (1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的图象;(3)说明y =2sin ⎝⎛⎭⎫2x +π3的图象可由y =sin x 的图象经过怎样的变换而得到. 解 (1)y =2sin ⎝⎛⎭⎫2x +π3的振幅A =2, 周期T =2π2=π,初相φ=π3.(2)令X =2x +π3,则y =2sin ⎝⎛⎭⎫2x +π3=2sin X . 列表如下:x -π6 π12 π3 7π12 5π6 X 0 π2 π 3π2 2π y =sin X 0 1 0 -1 0 y =2sin ⎝⎛⎭⎫2x +π3 02-2(3)方法一 把y =sin x 的图象上所有的点向左平移π3个单位长度,得到y =sin ⎝⎛⎭⎫x +π3的图象; 再把y =sin ⎝⎛⎭⎫x +π3的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到y =sin ⎝⎛⎭⎫2x +π3的图象; 最后把y =sin ⎝⎛⎭⎫2x +π3上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y =2sin ⎝⎛⎭⎫2x +π3的图象. 方法二 将y =sin x 的图象上所有点的横坐标缩短为原来的12倍(纵坐标不变),得到y =sin 2x的图象;再将y =sin 2x 的图象向左平移π6个单位长度,得到y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6=sin ⎝⎛⎭⎫2x +π3的图象; 再将y =sin ⎝⎛⎭⎫2x +π3的图象上所有点的纵坐标伸长为原来的2倍(横坐标不变),即得到y =2sin ⎝⎛⎭⎫2x +π3的图象. 思维升华 (1)五点法作简图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.(1)把函数y =sin(x +π6)图象上各点的横坐标缩短到原来的12(纵坐标不变),再将图象向右平移π3个单位长度,那么所得图象的一条对称轴方程为 (填正确的序号).①x =-π2;②x =-π4;③x =π8;④x =π4.(2)设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于 . 答案 (1)① (2)6解析 (1)将y =sin(x +π6)图象上各点的横坐标缩短到原来的12(纵坐标不变),得到函数y =sin(2x +π6);再将图象向右平移π3个单位长度,得到函数y =sin[2(x -π3)+π6]=sin(2x -π2),故x=-π2是其图象的一条对称轴方程.(2)由题意可知,nT =π3 (n ∈N *),∴n ·2πω=π3(n ∈N *),∴ω=6n (n ∈N *),∴当n =1时,ω取得最小值6.题型二 由图象确定y =A sin(ωx +φ)的解析式例2 (1)已知函数y =A sin(ωx +φ) (A >0,ω>0,|φ|<π2)的图象上一个最高点的坐标为(2,2),由这个最高点到其右侧相邻最低点间的图象与x 轴交于点(6,0),则此函数的解析式为 .(2)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为 .答案 (1)y =2sin ⎝⎛⎭⎫π8x +π4 (2)f (x )=2sin(2x +π3)解析 (1)由题意得A =2,T 4=6-2,所以T =16,ω=2πT =π8.又sin ⎝⎛⎭⎫π8×2+φ=1,所以π4+φ=π2+2k π (k ∈Z ).又因为|φ|<π2,所以φ=π4. (2)由题图可知A =2,T 4=7π12-π3=π4,所以T =π,故ω=2, 因此f (x )=2sin(2x +φ), 又⎝⎛⎭⎫712π,-2为最小值点,∴2×712π+φ=2k π+3π2,k ∈Z ,∴φ=2k π+π3,k ∈Z ,又|φ|<π,∴φ=π3.故f (x )=2sin(2x +π3).思维升华 确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法: (1)求A ,b ,确定函数的最大值M 和最小值m , 则A =M -m 2,b =M +m 2.(2)求ω,确定函数的最小正周期T ,则可得ω=2πT .(3)求φ,常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体如下:“最大值点”(即图象的“峰点”)时ωx +φ=π2;“最小值点”(即图象的“谷点”)时ωx +φ=3π2. 函数f (x )=2sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<π2的部分图象如图所示,则φ= . 答案 -π3解析 ∵T 2=1112π-512π,∴T =π.又T =2πω(ω>0),∴2πω=π,∴ω=2.由五点作图法可知当x =512π时,ωx +φ=π2,即2×512π+φ=π2,∴φ=-π3.题型三 三角函数图象性质的应用命题点1 三角函数模型的应用例3 如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针尖位置P (x ,y ).若初始位置为P 0⎝⎛⎭⎫32,12,当秒针从P 0(注:此时t =0)正常开始走时,那么点P 的纵坐标y 与时间t 的函数关系式为 .答案 y =sin ⎝⎛⎭⎫-π30t +π6 解析 设点P 的纵坐标y 与时间t 的函数关系式为y =sin(ωt +φ).由题意可得,函数的初相位是π6.又函数周期是60(秒)且秒针按顺时针旋转,即T =⎪⎪⎪⎪2πω=60,所以|ω|=π30,即ω=-π30,所以y =sin ⎝⎛⎭⎫-π30t +π6. 命题点2 方程根(函数零点问题)例4 已知关于x 的方程2sin 2x -3sin 2x +m -1=0在⎝⎛⎭⎫π2,π上有两个不同的实数根,则m 的取值范围是 . 答案 (-2,-1)解析 方程2sin 2x -3sin 2x +m -1=0可转化为 m =1-2sin 2x +3sin 2x =cos 2x +3sin 2x =2sin ⎝⎛⎭⎫2x +π6,x ∈⎝⎛⎭⎫π2,π. 设2x +π6=t ,则t ∈⎝⎛⎭⎫76π,136π, ∴题目条件可转化为m2=sin t ,t ∈⎝⎛⎭⎫76π,136π,有两个不同的实数根. ∴y =m2和y =sin t ,t ∈⎝⎛⎭⎫76π,136π的图象有两个不同交点,如图:由图象观察知,m 2的范围为(-1,-12),故m 的取值范围是(-2,-1). 引申探究例4中,“有两个不同的实数根”改成“有实根”,则m 的取值范围是 . 答案 [-2,1)解析 由例4知,m2的范围是⎣⎡⎭⎫-1,12,∴-2≤m <1, ∴m 的取值范围是[-2,1). 命题点3 图象性质综合应用例5 已知函数f (x )=3sin(ωx +φ)-cos(ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为π2.(1)求f ⎝⎛⎭⎫π8的值;(2)求函数y =f (x )+f ⎝⎛⎭⎫x +π4的最大值及对应的x 的值. 解 (1)f (x )=3sin(ωx +φ)-cos(ωx +φ) =2⎣⎡⎦⎤32sin (ωx +φ)-12cos (ωx +φ) =2sin ⎝⎛⎭⎫ωx +φ-π6. 因为f (x )是偶函数, 则φ-π6=π2+k π(k ∈Z ),所以φ=2π3+k π(k ∈Z ),又因为0<φ<π,所以φ=2π3,所以f (x )=2sin ⎝⎛⎭⎫ωx +π2=2cos ωx . 由题意得2πω=2·π2,所以ω=2.故f (x )=2cos 2x . 因此f ⎝⎛⎭⎫π8=2cos π4= 2. (2)y =2cos 2x +2cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4 =2cos 2x +2cos ⎝⎛⎭⎫2x +π2 =2cos 2x -2sin 2x =22sin ⎝⎛⎭⎫π4-2x =-22sin ⎝⎛⎭⎫2x -π4 令2x -π4=2k π-π2(k ∈Z ),y 有最大值22,所以当x =k π-π8(k ∈Z )时,y 有最大值2 2.思维升华 (1)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,建立数学模型再利用三角函数的有关知识解决问题.(2)方程根的个数可转化为两个函数图象的交点个数.(3)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.设函数f (x )=3sin(ωx +φ)(ω>0,-π2<φ<π2)的图象关于直线x =2π3对称,它的周期是π,则下列说法正确的是 .(填序号) ①f (x )的图象过点(0,32);②f (x )在[π12,2π3]上是减函数;③f (x )的一个对称中心是(5π12,0);④将f (x )的图象向右平移|φ|个单位长度得到函数y =3sin ωx 的图象. 答案 ①③解析 ∵周期为π,∴2πω=π⇒ω=2,∴f (x )=3sin(2x +φ),f (2π3)=3sin(4π3+φ),则sin(4π3+φ)=1或-1.又φ∈(-π2,π2),4π3+φ∈(5π6,116π),∴4π3+φ=3π2⇒φ=π6, ∴f (x )=3sin(2x +π6).①:令x =0⇒f (x )=32,正确.②:令2k π+π2<2x +π6<2k π+3π2,k ∈Z⇒k π+π6<x <k π+2π3,k ∈Z .令k =0⇒π6<x <2π3,即f (x )在(π6,2π3)上单调递减,而在(π12,π6)上单调递增,错误.③:令x =5π12⇒f (x )=3sin π=0,正确.④:应平移π12个单位长度,错误.4.三角函数图象与性质的综合问题典例 (14分)已知函数f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π).(1)求f (x )的最小正周期;(2)若将f (x )的图象向右平移π6个单位长度,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.思维点拨 (1)先将f (x )化成y =A sin(ωx +φ)的形式再求周期;(2)将f (x )解析式中的x 换成x -π6,得g (x ),然后利用整体思想求最值.规范解答解 (1)f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π)=3cos x +sin x [4分]=2sin(x +π3),[6分]于是T =2π1=2π.[7分](2)由已知得g (x )=f (x -π6)=2sin(x +π6),[9分]∵x ∈[0,π], ∴x +π6∈[π6,7π6],∴sin(x +π6)∈[-12,1],[12分]∴g (x )=2sin(x +π6)∈[-1,2].[13分]故函数g (x )在区间[0,π]上的最大值为2,最小值为-1.[14分]解决三角函数图象与性质的综合问题的一般步骤: 第一步:(化简)将f (x )化为a sin x +b cos x 的形式; 第二步:(用辅助角公式)构造f (x )=a 2+b 2· (sin x ·a a 2+b 2+cos x ·ba 2+b 2); 第三步:(求性质)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质; 第四步:(反思)反思回顾,查看关键点、易错点和答题规范. 温馨提醒 (1)在第(1)问的解法中,使用辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ)(其中tan φ=ba ),或a sin α+b cos α=a 2+b 2cos(α-φ)(其中tan φ=ab ),在历年高考中使用频率是相当高的,几乎年年使用到、考查到,应特别加以关注.(2)求g (x )的最值一定要重视定义域,可以结合三角函数图象进行求解.[方法与技巧]1.五点法作图及图象变换问题(1)五点法作简图要取好五个关键点,注意曲线凸凹方向;(2)图象变换时的伸缩、平移总是针对自变量x 而言,而不是看角ωx +φ的变化. 2.由图象确定函数解析式由图象确定y =A sin(ωx +φ)时,φ的确定是关键,尽量选择图象的最值点代入;若选零点代入,应根据图象升降找“五点法”作图中第一个零点. 3.对称问题函数y =A sin(ωx +φ)的图象与x 轴的每一个交点均为其对称中心,经过该图象上坐标为(x ,±A )的点与x 轴垂直的每一条直线均为其图象的对称轴,这样的最近两点间横坐标的差的绝对值是半个周期(或两个相邻对称中心的距离). [失误与防范]1.由函数y =sin x 的图象经过变换得到y =A sin(ωx +φ)的图象,如先伸缩,再平移时,要把x 前面的系数提取出来.2.复合形式的三角函数的单调区间的求法.函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间的确定,基本思想是把ωx +φ看做一个整体.若ω<0,要先根据诱导公式进行转化.3.函数y =A sin(ωx +φ)在x ∈[m ,n ]上的最值可先求t =ωx +φ的范围,再结合图象得出y =A sin t 的值域.A 组 专项基础训练 (时间:40分钟)1.函数y =cos ⎝⎛⎭⎫2x -π3的部分图象可能是 .答案 ④解析 ∵y =cos ⎝⎛⎭⎫2x -π3,∴当2x -π3=0, 即x =π6时,函数取得最大值1,结合图象看,可使函数在x =π6时取得最大值的只有④.2.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的值为 .答案34解析 取K ,L 中点N ,则MN =12,因此A =12.由T =2得ω=π.∵函数为偶函数,0<φ<π,∴φ=π2,∴f (x )=12cos πx ,∴f (16)=12cos π6=34.3.已知函数f (x )=2sin(ωx +φ)(ω>0,且|φ|<π2)的部分图象如图所示,则函数f (x )的单调递增区间是 . 答案 [k π-π12,k π+5π12],k ∈Z解析 由函数的图象可得14T =23π-512π,∴T =π,则ω=2.又图象过点(512π,2),∴2sin(2×512π+φ)=2,∴φ=-π3+2k π,k ∈Z ,∵|φ|<π2,∴取k =0,则φ=-π3,即得f (x )=2sin(2x -π3),∴f (x )的单调增区间为2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,即单调递增区间为[k π-π12,k π+5π12],k ∈Z .4.若f (x )=sin(2x +φ)+b ,对任意实数x 都有f ⎝⎛⎭⎫x +π3=f (-x ),f ⎝⎛⎭⎫2π3=-1,则实数b 的值为 . 答案 -2或0解析 由f ⎝⎛⎭⎫x +π3=f (-x )可得f (x )的图象关于直线x =π6对称,∴2×π6+φ=π2+k π,k ∈Z .当直线x =π6经过最高点时,φ=π6;当直线x =π6经过最低点时,φ=-56π.若f (x )=sin ⎝⎛⎭⎫2x +π6+b ,由f ⎝⎛⎭⎫23π=-1,得b =0;若f (x )=sin ⎝⎛⎭⎫2x -56π+b ,由f ⎝⎛⎭⎫23π=-1,得b =-2.所以b =-2或b =0.5.函数f (x )=sin(2x +φ)⎝⎛⎭⎫|φ|<π2的图象向左平移π6个单位后所得函数图象的解析式是奇函数,则函数f (x )在⎣⎡⎦⎤0,π2上的最小值为 . 答案 -32解析 由函数f (x )的图象向左平移π6个单位得g (x )=sin ⎝⎛⎭⎫2x +φ+π3的图象, 因为是奇函数,所以φ+π3=k π,k ∈Z ,又因为|φ|<π2,所以φ=-π3,所以f (x )=sin ⎝⎛⎭⎫2x -π3. 又x ∈⎣⎡⎦⎤0,π2,所以2x -π3∈⎣⎡⎦⎤-π3,2π3, 所以当x =0时,f (x )取得最小值为-32. 6.设ω>0,函数y =sin(ωx +π3)+2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是 . 答案 32解析 由函数向右平移4π3个单位后与原图象重合,得4π3是此函数周期的整数倍. ∴2πω·k =4π3,∴ω=32k (k ∈Z ), 又ω>0,∴ωmin =32.7.若函数f (x )=sin(ωx +φ) (ω>0且|φ|<π2)在区间⎣⎡⎦⎤π6,2π3上是单调递减函数,且函数从1减小到-1,则f ⎝⎛⎭⎫π4= . 答案32解析 由题意可得,函数的周期为2×⎝⎛⎭⎫2π3-π6=π,即2πω=π,∴ω=2,∴f (x )=sin(2x +φ). 由sin ⎝⎛⎭⎫2×π6+φ=1,|φ|<π2可得φ=π6, ∴f (x )=sin ⎝⎛⎭⎫2x +π6, ∴f ⎝⎛⎭⎫π4=sin ⎝⎛⎭⎫π2+π6=cos π6=32. 8.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示.若方程f (x )=m 在区间[0,π]上有两个不同的实数x 1,x 2,则x 1+x 2的值为 .答案 π3或43π解析 由图象可知y =m 和y =f (x )图象的两个交点关于直线x =π6或x =23π对称,∴x 1+x 2=π3或43π.9.(2015·天津)已知函数f (x )=sin 2x -sin 2⎝⎛⎭⎫x -π6,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值和最小值. 解 (1)由已知,有f (x )=1-cos 2x 2-1-cos ⎝⎛⎭⎫2x -π32=12⎝⎛⎭⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x =12sin ⎝⎛⎭⎫2x -π6. 所以f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间⎣⎡⎦⎤-π3,-π6上是减函数,在区间⎣⎡⎦⎤-π6,π4上是增函数,且f ⎝⎛⎭⎫-π3=-14, f ⎝⎛⎭⎫-π6=-12,f ⎝⎛⎭⎫π4=34,所以f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值为34, 最小值为-12.10.设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎡⎦⎤π,3π2上的最大值和最小值. 解 (1)f (x )=32-3sin 2ωx -sin ωx cos ωx =32-3×1-cos 2ωx 2-12sin 2ωx =32cos 2ωx -12sin 2ωx =-sin ⎝⎛⎭⎫2ωx -π3. 依题意知2π2ω=4×π4,ω>0,所以ω=1.(2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π3. 当π≤x ≤3π2时,5π3≤2x -π3≤8π3.所以-32≤sin ⎝⎛⎭⎫2x -π3≤1. 所以-1≤f (x )≤32. 故f (x )在区间⎣⎡⎦⎤π,3π2上的最大值和最小值分别为32,-1. B 组 专项能力提升 (时间:20分钟)11.已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图象的一部分如图所示,则该函数的解析式为 . 答案 f (x )=2sin ⎝⎛⎭⎫2x +π6 解析 观察图象可知:A =2且点(0,1)在图象上,∴1=2sin(ω·0+φ),即sin φ=12.∵|φ|<π2,∴φ=π6.又∵1112π是函数的一个零点,且是图象递增穿过x 轴形成的零点,∴11π12ω+π6=2π,∴ω=2. ∴f (x )=2sin ⎝⎛⎭⎫2x +π6. 12.(2014·天津改编)已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为 .答案 π解析 f (x )=3sin ωx +cos ωx =2sin(ωx +π6)(ω>0).由2sin(ωx +π6)=1得sin(ωx +π6)=12,∴ωx +π6=2k π+π6或ωx +π6=2k π+56π(k ∈Z ).令k =0,得ωx 1+π6=π6,ωx 2+π6=56π,∴x 1=0,x 2=2π3ω.由|x 1-x 2|=π3,得2π3ω=π3,∴ω=2.故f (x )的最小正周期T =2π2=π.13.已知函数f (x )=cos ⎝⎛⎭⎫3x +π3,其中x ∈⎣⎡⎦⎤π6,m ,若f (x )的值域是⎣⎡⎦⎤-1,-32,则m 的取值范围是 . 答案 ⎣⎡⎦⎤2π9,5π18解析 画出函数的图象.由x ∈⎣⎡⎦⎤π6,m ,可知5π6≤3x +π3≤3m +π3, 因为f ⎝⎛⎭⎫π6=cos 5π6=-32, 且f ⎝⎛⎭⎫2π9=cos π=-1, 要使f (x )的值域是⎣⎡⎦⎤-1,-32, 所以π≤3m +π3≤76π,则2π9≤m ≤5π18,即m ∈⎣⎡⎦⎤2π9,5π18.14.已知f (x )=sin ⎝⎛⎭⎫ωx +π3 (ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω= . 答案143解析 依题意,x =π6+π32=π4时,y 有最小值,∴sin ⎝⎛⎭⎫π4ω+π3=-1, ∴π4ω+π3=2k π+3π2 (k ∈Z ), ∴ω=8k +143(k ∈Z ),∵f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值, ∴π3-π4<πω,即ω<12,令k =0,得ω=143. 15.设函数f (x )=sin ωx +sin ⎝⎛⎭⎫ωx -π2,x ∈R . (1)若ω=12,求f (x )的最大值及相应的x 的取值集合;(2)若x =π8是f (x )的一个零点,且0<ω<10,求ω的值和f (x )的最小正周期.解 (1)f (x )=sin ωx +sin ⎝⎛⎭⎫ωx -π2 =sin ωx -cos ωx =2sin ⎝⎛⎭⎫ωx -π4.当ω=12时,f (x )=2sin ⎝⎛⎭⎫x 2-π4, 而-1≤sin ⎝⎛⎭⎫x 2-π4≤1,所以f (x )的最大值为2,此时x 2-π4=π2+2k π,k ∈Z ,即x =3π2+4k π,k ∈Z ,所以相应的x 的取值集合为⎩⎨⎧⎭⎬⎫x |x =3π2+4k π,k ∈Z .(2)依题意f ⎝⎛⎭⎫π8=2sin ⎝⎛⎭⎫ωπ8-π4=0, 即ωπ8-π4=k π,k ∈Z , 整理得ω=8k +2,k ∈Z .因为0<ω<10,所以0<8k +2<10,-14<k <1.又k ∈Z ,所以k =0,ω=2,所以f (x )=2sin ⎝⎛⎭⎫2x -π4,f (x )的最小正周期为π.。
厦门市必修第一册第三单元《函数概念与性质》测试卷(含答案解析)

一、选择题1.已知函数(1)f x +是偶函数,当121x x <<时,()()()21210f x f x x x ⎡⎤-->⎣⎦恒成立,设1,(2),(3)2af b f c f ⎛⎫=-== ⎪⎝⎭,则,,a b c 的大小关系为( ) A .b a c <<B .c b a <<C .b c a <<D .a b c <<2.意大利著名天文学家伽利略曾错误地猜测链条自然下垂时的形状是抛物线.直到1690年,雅各布·伯努利正式提出该问题为“悬链线”问题并向数学界征求答案.1691年他的弟弟约翰·伯努利和菜布尼兹、惠更斯三人各自都得到了正确答案,给出悬链线的数学表达式——双曲余弦函数:()cosh x f x c a c a =+=2xxa ae e a -++⋅(e 为自然对数的底数).当0c,1a =时,记(1)p f =-,12m f ⎛⎫=⎪⎝⎭,(2)n f =,则p ,m ,n 的大小关系为( ).A .p m n <<B .n m p <<C .m p n <<D .m n p <<3.已知32()2f x x ax ax =++,对任意两个不等实数12,[1,)x x ∈+∞,都有()()2112120x f x x f x x x ->-,则a 的取值范围( )A .2a ≥-B .2a ≤-C .4a ≥-D .4a ≤-4.已知函数()f x 是定义在1,2⎛⎫+∞ ⎪⎝⎭上的单调函数,且11()()2f x f f x x ⎡⎤+=⎢⎥⎣⎦,则(1)f 的值为( ) A .1B .2C .3D .45.已知函数2()2+1,[0,2]f x x x x =-+∈,函数()1,[1,1]g x ax x =-∈-,对于任意1[0,2]x ∈,总存在2[1,1]x ∈-,使得21()()g x f x =成立,则实数a 的取值范围是( )A .(,3]-∞-B .[3,)+∞C .(,3][3,)-∞-+∞D .(,3)(3,)-∞-⋃+∞6.已知()f x 是定义在R 上的奇函数,若12,x x R ∀∈,且12x x ≠,都有()()()()12120x x f x f x -->成立,则不等式()()2120x f x x -->的解集是( )A .()(),11,2-∞B .()()0,11,+∞C .()(),01,2-∞D .()()0,12,⋃+∞7.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4等于( ) A .-6 B .6 C .-8 D .88.定义在R 上的奇函数()f x 满足当0x <时,3(4)f x x =+,则(1),(2),()f f f π的大小关系是( ) A .(1)(2)()f f f π<< B .(1)()(2)f f f π<< C .()(1)(2)f f f π<< D .()(2)(1)f f f π<< 9.设函数()()1xf x x R x=-∈+,区间[,]M a b =,集合{(),}N y y f x x M ==∈,则使MN 成立的实数对(,)a b 有( )A .0个B .1个C .2个D .无数个10.已知2()log (1)f x x =-,若()2120f x x -+-<,则x 的取值范围为( )A .(,0)(1,)-∞⋃+∞B .11,22⎛⎝⎭C .115,01,22⎛⎫⎛+ ⎪ ⎪ ⎝⎭⎝⎭D .(1,0)(1,2)-11.已知函数3()201920191x x f x x -=-++,则关于x 的不等式(21)(2)2f x f x -+>的解集为( ) A .1,4⎛⎫+∞⎪⎝⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .1,4⎛⎫-∞ ⎪⎝⎭D .1,2⎛⎫+∞⎪⎝⎭12.已知函数2,1()1,1x ax x f x ax x ⎧-+≤=⎨->⎩,若存在1212,,x x R x x ∈≠,使得()()12f x f x =成立,则实数a 的取值范围是( ) A .2a <-或2a > B .2a > C .22a -<< D .2a <13.已知函数()||f x x x =,当[,2]x t t ∈+时,恒有不等式(2)4()f x t f x +>成立,则实数t 的取值范围是( ) A .(2,)+∞B .[2,)+∞C .(,2)-∞D .(,2]-∞14.设函数()()212131log 1313x xe e xf x x --=++++,则做得()()31f x f x ≤-成立的x 的取值范围是( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .11,,42⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭ D .11,42⎡⎤⎢⎥⎣⎦15.已知()22,02,0x x f x x x x ⎧-≥=⎨+<⎩,则不等式()()3f f x ≤的解集为( )A .](,3-∞-B .)3,⎡-+∞⎣C .(,3⎤-∞⎦D .)3,⎡+∞⎣二、填空题16.已知函数()y f x =,对任意x ∈R ,都有()()1f x f x a ⋅+=(a 为非零实数),且当[)0,1x ∈时,()2xf x =,则()2021f =___________.17.已知函数()f x 是定义域为R 的奇函数,当0x ≥时,()()1f x x x =-.(1)在坐标系中画出函数()f x 在R 上的完整图象; (2)求函数()f x 在R 上的解析式.18.设函数()f x 是定义在()0,∞+上的可导函数,其导函数为()f x ',且有()()2f x xf x x '+>,则不等式()()()220202020420x f x f ---≤的解集为______.19.设函数()3,111,1x x f x x x x <⎧⎪=⎨-+≥⎪⎩,,则不等式()()26f x f x ->-的解集为____________.20.已知()f x 是定义域为R 的奇函数,满足()()3f x f x =+,若()21f =-,则()2020f =______.21.函数()22f x x x =-,[]2,2x ∈-的最大值为________.22.已知函数()()11xf x x x =>-,())2g x x ≥,若存在函数()(),F x G x 满足:()()()()()(),G x F x f x g x g x f x =⋅=,学生甲认为函数()(),F x G x 一定是同一函数,乙认为函数()(),F x G x 一定不是同一函数,丙认为函数()(),F x G x 不一定是同一函数,观点正确的学生是_________.23.函数()ln f x x x x =+的单调递增区间是_______.24.已知()f x 是R 上的偶函数,且在[0,)+∞单调递增,若(3)(4)f a f -<,则a 的取值范围为____.25.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2)=0,则使得f (x )<0的x 的取值范围是________.26.已知f (x )是R 上的奇函数,当x ≥0时,f (x )=x 2﹣5x ,则f (x ﹣1)>f (x )的解集为_____.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由题知函数()f x 图象关于直线1x =对称,在区间()1,+∞上单调递增,故15(2)(3)22b f a f f c f ⎛⎫⎛⎫=<=-=<= ⎪ ⎪⎝⎭⎝⎭,所以b a c <<.【详解】解:因为当121x x <<时,()()()21210f x f x x x ⎡⎤-->⎣⎦恒成立, 所以函数()f x 在区间()1,+∞上单调递增,由于函数(1)f x +是偶函数,故函数(1)f x +图象关于y 轴对称, 所以函数()f x 图象关于直线1x =对称,所以1522a f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,由于5232<<,函数()f x 在区间()1,+∞上单调递增, 所以15(2)(3)22b f a f f c f ⎛⎫⎛⎫=<=-=<= ⎪ ⎪⎝⎭⎝⎭.故选:A. 【点睛】本题解题的关键在于根据题意得函数()f x 图象关于直线1x =对称,在区间()1,+∞上单调递增,再结合函数对称性与单调性比较大小即可,考查化归转化思想与数学运算求解能力,是中档题.2.C解析:C 【分析】先利用导数证明函数()f x 在区间0,上单调递增,再结合单调性比较大小即可.【详解】由题意知,()2x x e e f x -+=,21()22x x x xe e ef x e--+-'== 当0x >时,()0f x '>,即函数()f x 在区间0,上单调递增1(1)(1)2e ef f -+-==10122<<<,1(1)(2)2ff f ⎛⎫∴<< ⎪⎝⎭,即m p n << 故选:C 【点睛】关键点睛:解决本题的关键是利用导数证明函数()f x 的单调性,再结合单调性比较大小.3.C解析:C 【分析】首先变形条件,得到函数()()f xg x x=在[)1,+∞单调递增,利用二次函数的单调性,求a 的取值范围.【详解】[)12,1,x x ∈+∞,不等式两边同时除以12x x ()()()()12211212121200f x f x x f x x f x x x x x x x --∴>⇔>--, 即函数()()f x g x x=在[)1,+∞单调递增,()22g x x ax a =++, 函数的对称轴是4a x =-,则14a-≤,解得:4a ≥-.故选:C 【点睛】关键点点睛:本题的关键是原式等价为()()121212f x f x x x x x ->-,从而通过构造函数,确定函数的单调性,转化为二次函数的单调性解决问题.4.A解析:A 【分析】采用赋值法,在11()()2f x f f x x ⎡⎤+=⎢⎥⎣⎦中,分别令1x =和1x a =+,联立两个式子,根据函数的单调性可解. 【详解】解:根据题意知,设(1)0f a =≠, 令1x =,则[]1(1)(1)12f f f +=,则()112af a +=,()112f a a+=, 令1x a =+,则11(1))21(1f a f f a a ⎡⎤+++=⎢⎥⎣⎦+, 所以()11121f a f a a ⎛⎫+==⎪+⎝⎭, 又因为函数()f x 是定义在1,2⎛⎫+∞ ⎪⎝⎭上的单调函数, 所以11121a a +=+,2210a a --=,所以1a =或12a =-(舍去),()11f =.故选:A. 【点睛】思路点睛:抽象函数求函数值问题一般是换元法或者赋值法,再结合函数的性质解方程即可.5.C解析:C 【分析】先求得()f x 的值域,根据题意可得()f x 的值域为[1,2]是()g x 在[1,1]-上值域的子集,分0,0a a ><两种情况讨论,根据()g x 的单调性及集合的包含关系,即可求得答案.【详解】因为2()(2)2,[0,2]f x x x =--+∈, 所以min max ()(0)1()(2)2f x f f x f ==⎧⎨==⎩,即()f x 的值域为[1,2],因为对于任意1[0,2]x ∈,总存在2[1,1]x ∈-,使得21()()g x f x =成立, 所以()f x 的值域为[1,2]是()g x 在[1,1]-上值域的子集,当0a >时,()g x 在[1,1]-上为增函数,所以(1)()(1)g g x g -≤≤,所以()[1,1]g x a a ∈---,所以1112a a --≤⎧⎨-≥⎩,解得3a ≥,当0a <时,()g x 在[1,1]-上为减函数,所以(1)()(1)g g x g ≤≤-,所以()[1,1]g x a a ∈---所以1112a a -≤⎧⎨--≥⎩,解得3a ≤-,综上实数a 的取值范围是(,3][3,)-∞-+∞,故选:C 【点睛】解题的关键是将题干条件转化为两函数值域的包含关系问题,再求解,考查分析理解的能力,属中档题.6.C解析:C 【分析】根据条件先判断出()f x 的单调性,根据单调性得到()f x 取值的特点,根据1x -与0的关系,采用分类讨论的方法解不等式,从而求解出解集. 【详解】因为12,x x R ∀∈,且12x x ≠,都有()()()()12120x x f x f x -->成立,所以()f x 为R 上增函数,又因为()f x 为R 上奇函数,所以0x <时,()0f x <;0x >时,()0f x >;0x =时,()0f x =;当10x -=时,1x =,此时()()2012x f x x --=,不符合条件;当10x ->时,因为()()2120x f x x -->,所以22010x x x ⎧->⎨->⎩,解得0x <;当10x -<时,因为()()2120x f x x -->,所以22010x x x ⎧-<⎨-<⎩,解得12x <<;所以()()2120x f x x -->的解集为()(),01,2-∞,故选:C. 【点睛】结论点睛:可直接判断函数单调性的几种变形形式: (1)已知12,x x D ∀∈(D 为函数定义域),且12x x ≠,都有()()()()12120x x f x f x -->或()()12120f x f x x x ->- 成立,则()f x 为单调递增函数;(2)已知12,x x D ∀∈(D 为函数定义域),且12x x ≠,都有()()()()12120x x f x f x --<或()()12120f x f x x x -<- 成立,则()f x 为单调递增函数.7.C解析:C 【分析】由奇函数f (x )满足f (x -4)=-f (x )可推出周期为8,对称轴为2x =,画出函数大致图象,由图象分析f (x )=m 的根的分布情况即可 【详解】f (x )在R 上是奇函数,所以f (x -4)=-f (x )=f (-x ),令4x x =-得()()8f x f x -=,故()f x 周期为8,即()()()4(4)x f f x f f x x =+==---,即()()4f x f x -=,函数对称轴为2x =,画出大致图象,如图:由图可知,两个根关于6x =-对称,两个根关于2x =对称,设1234x x x x <<<, 则12346212224x x x x +=-⨯=-+=⨯=,,故12348x x x x +++=-, 故选:C 【点睛】结论点睛:本题考查由函数的奇偶性,周期性,对称性求根的分布问题,常用以下结论: (1)()()()()1f x f x a f x f x a =-+=±+,,则()f x 的周期为2T a =;(2)()()2f x f a x =-,则函数的对称轴为x a =.8.A解析:A 【分析】根据函数奇偶性先将0x >时的解析式求解出来,然后根据0x >时函数的单调性比较出(1),(2),()f f f π的大小关系.【详解】当0x >时,0x -<,所以()43f x x -=-+,又因为()f x 为奇函数,所以()()43f x f x x -=-=-+,所以()43f x x =-, 显然0x >时,()43f x x =-是递增函数,所以()()()12f f fπ<<,故选:A. 【点睛】思路点睛:已知函数奇偶性,求解函数在对称区间上的函数解析式的步骤: (1)先设出对称区间上x 的取值范围,然后分析x -的范围; (2)根据条件计算出()f x -的解析式;(3)根据函数奇偶性得到()(),f x f x -的关系,从而()f x 在对称区间上的解析式可求.9.A解析:A 【分析】 由已知中函数()()1||xf x x R x =-∈+,我们可以判断出函数的奇偶性及单调性,再由区间[M a =,]()b a b <,集合{|()N y y f x ==,}x M ∈,我们可以构造满足条件的关于a ,b 的方程组,解方程组,即可得到答案.【详解】x R ∈,()()1xf x f x x-==-+,()f x ∴为奇函数, 0x 时,1()111x f x x x -==-++,0x <时,1()111x f x x x-==--- ()f x ∴在R 上单调递减函数在区间[a ,]b 上的值域也为[a ,]b ,则()(),f a b f b a ==, 即1a b a -=+,1ba b-=+,解得0a =,0b = a b <,使M N 成立的实数对(,)a b 有0对 故选:A 【点睛】本题考查的知识点是集合相等,函数奇偶性与单调性的综合应用,其中根据函数的性质,构造出满足条件的关于a ,b 的方程组,是解答本题的关键.10.C解析:C 【分析】首先判断函数的单调性和定义域,再解抽象不等式. 【详解】函数()f x 的定义域需满足210240x x x ->⎧⎨-+≥⎩,解得:1x >, 并且在区间()1,+∞上,函数单调递增,且()22f =, 所以()()()2212012f x x f x x f -+-<⇔-+<,即221112x x x x ⎧-+>⎨-+<⎩,解得:1x <<0x <<.故选:C 【点睛】关键点点睛:本题的关键是判断函数的单调性和定义域,尤其是容易忽略函数的定义域.11.A解析:A 【分析】可知()f x 在R 上是单调递增函数,且()()2f x f x +-=,则不等式等价于(21)(2)f x f x ->-,解出即可.【详解】3()201920191x x f x x -=-++,()f x ∴在R 上是单调递增函数,()3201920191x x f x x ---=+-,()()2f x f x ∴+-=,则()()222f x f x -=-,(21)(2)2f x f x -+>,(21)2(2)(2)f x f x f x ->-=-∴,212x x ∴->-,解得14x >, 故不等式的解集为1,4⎛⎫+∞ ⎪⎝⎭. 故选:A. 【点睛】本题考查抽象函数不等式的求解,解题的关键是判断出函数的单调性,得出()()2f x f x +-=,将不等式化为(21)(2)f x f x ->-求解. 12.D解析:D 【分析】若存在1212,,x x R x x ∈≠,使得()()12f x f x =成立,则说明()f x 在R 上不单调,分0a =,0a <和0a >三种情况讨论求解.【详解】若存在1212,,x x R x x ∈≠,使得()()12f x f x =成立,则说明()f x 在R 上不单调,当0a =时,2,1()1,1x x f x x ⎧-≤=⎨->⎩,图象如图,满足题意;当0a <时,函数2y x ax =-+的对称轴02a x =<,其图象如图,满足题意;当0a >时,函数2y x ax =-+的对称轴02a x =>,其图象如图,要使()f x 在R 上不单调,则只要满足12a <,解得2a <,即02a <<.综上,2a <.故选:D.【点睛】本题考查分段函数的单调性的应用及二次函数的性质的应用,得出()f x 在R 上不单调是解题的关键.13.A解析:A【分析】根据已知函数的解析式易判断出函数的奇偶性及单调性,结合单调性可将不等式(2)4()f x t f x +>可化为22x t x +>,将恒成立问题转化为最值问题后,易得答案.【详解】解:||y x =为偶函数,y x =为奇函数()||f x x x ∴=奇函数当0x 时,2()f x x =为增函数,由奇函数在对称区间上单调性相同可得函数()f x 在R 上增函数 又不等式(2)4()f x t f x +>可化为(2)|2|4||2|2|(2)x t x t x x x x f x ++>==故当[,2]x t t ∈+时,不等式(2)4()f x t f x +>恒成立,即当[,2]x t t ∈+时,不等式22x t x +>恒成立即2x t <恒成立即22t t +<解得2t >故实数t 的取值范围是(2,)+∞故选:A【点睛】本题考查的知识点是函数奇偶性与单调性的综合应用,恒成立问题,其中分析出函数的单调性并将不等式(2)4()f x t f x +>可化为22x t x +>是解答的关键.14.D解析:D【分析】先判断()f x 是偶函数且在0,上递减,原不等式转化为31x x ≥-,再解绝对值不等式即可.【详解】()()()211221133111log 13log 131313x x x x e e e e x x f x x x ---⎛⎫=+++=+++ ⎪++⎝⎭, ()121311log 1,,313x x e e x y x y y -⎛⎫=+== ⎪+⎝⎭在0,上都递减所以()f x 在0,上递减, 又因为()()()()121311log 1313x x e e x f x x f x ----⎛⎫-=+-++= ⎪+⎝⎭,且()f x 的定义域为R ,定义域关于原点对称,所以()f x 是偶函数,所以()()()()313131f x f x fx f x x x ≤-⇔≤-⇔≥-, 可得113142x x x x -≤-≤⇒≤≤,x 的取值范围是11,42⎡⎤⎢⎥⎣⎦, 故选:D.【点睛】 将奇偶性与单调性综合考查一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.15.C解析:C【分析】先解()3f t ≤,再由t 的范围求x 的范围.【详解】0t ≥时,2()03f t t =-≤<满足题意,0t <时,2()23f t t t =+≤,31t -≤≤,∴30t -≤<综上满足()3f t ≤的t 的范围是3t ≥-,下面解不等式()3f x ≥-,0x ≥时,2()3f x x =-≥-,解得x ≤∴0x ≤≤,0x <时,2()23f x x x =+≥-,2(1)20x ++≥,恒成立,∴0x <,综上x ≤故选:C【点睛】思路点睛:本题考查解函数不等式,由于是分段函数,因此需要分类讨论,而原不等式是复合函数形式,因此解题时可把里层()f x 作为一个未知数t (相当于换元),求得()3f t ≥-的解,再由t 的范围求出()f x t =中t 的范围.分类讨论必须牢记,否则易出错.二、填空题16.【分析】推导出函数是周期为的周期函数可得出再由可求得结果【详解】当时则对任意都有(为非零实数)则由可得所以函数是周期为的周期函数因此故答案为:【点睛】方法点睛:函数的三个性质:单调性奇偶性和周期性在 解析:a【分析】推导出函数()f x 是周期为2的周期函数,可得出()()20211f f =,再由()01f =可求得结果.【详解】当[)0,1x ∈时,()2x f x =,则()0021f ==, 对任意x ∈R ,都有()()1f x f x a ⋅+=(a 为非零实数),则()()10f f a ⋅=,()1f a ∴=,由()()1f x f x a ⋅+=可得()()21f x f x a +⋅+=,()()2f x f x ∴+=,所以,函数()f x 是周期为2的周期函数,因此,()()20211f f a ==.故答案为:a .【点睛】方法点睛:函数的三个性质:单调性、奇偶性和周期性,在高考中一般不会单独命题,而是常将它们综合在一起考查,其中单调性与奇偶性结合、周期性与抽象函数相结合,并结合奇偶性求函数值,多以选择题、填空题的形式呈现,且主要有以下几种命题角度;(1)函数的单调性与奇偶性相结合,注意函数的单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性相结合,此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解;(3)周期性、奇偶性与单调性相结合,解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.17.(1)图象答案见解析;(2)【分析】(1)利用奇函数图像关于原点对称先作出当时的图像在作出它关于原点的对称图像即可;(2)先用代入法求在的解析式在合并在一起写成分段函数即可【详解】解:(1)图像如图解析:(1)图象答案见解析;(2)(1),0()(1),0x x x f x x x x -≥⎧=⎨+<⎩. 【分析】(1)利用奇函数图像关于原点对称,先作出当0x ≥时,()()1f x x x =-的图像,在作出它关于原点的对称图像即可;(2)先用代入法求()f x 在0x <的解析式,在合并在一起写成分段函数即可.【详解】解:(1) 图像如图示.(2)设0x <,则0x ->,所以()(1())(1)f x x x x x -=---=-+,又因为函数()f x 是定义域为R 的奇函数,所以()()f x f x -=-.所以当0x <,()()1f x x x =+,综上()f x 的解析式为:(1),0()(1),0x x x f x x x x -≥⎧=⎨+<⎩. 【点睛】函数奇偶性的应用:(1) 利用奇偶性求函数值;(2) 利用奇偶性画图像;(3) 利用奇偶性求函数的解析式.18.【分析】根据已知构造新函数利用导数求得函数的单调性根据函数的单调性列出不等式即可求解【详解】因为函数是定义在上的可导函数且有即设函数则所以函数在上单调递增又因为即所以则即的即不等式的解集为故答案为: 解析:(2020,2022]【分析】根据已知构造新函数,利用导数求得函数的单调性,根据函数的单调性,列出不等式,即可求解.【详解】因为函数()f x 是定义在()0,∞+上的可导函数,且有()()2f x xf x x '+>, 即()()222xf x x f x x '+> 设函数()()2g x x f x =,则()()()220g x xf x x f x '=+>, 所以函数()g x 在()0,∞+上单调递增,又因为()()()220202020420x f x f ---≤,即()()()222020202022x f x f --≤,所以(2020)(2)g x g -≤,则2020020202x x ->⎧⎨-≤⎩,即的20202022x <≤, 即不等式的解集为(2020,2022].故答案为:(2020,2022].【点睛】本题主要考查了函数的单调性的应用,其中解答中构造新函数,结合题设条件求得新函数的单调性,结合新函数的性质求解是解答的关键,着重考查构造思想,以及推理与运算能力.19.【分析】先判断函数是增函数于是可把函数不等式转化为自变量的关系进而可得原不等式的解集【详解】当时单调递增且;当时单调递增且所以函数在上单调递增于是等价于则解得故答案为:【点睛】本题考查函数单调性的判 解析:()2,3-【分析】先判断函数()f x 是增函数,于是可把函数不等式转化为自变量的关系,进而可得原不等式的解集.【详解】当1x <时,()f x x =单调递增,且()1f x <;当1≥x 时,31()1f x x x=-+单调递增,且()1f x ≥. 所以函数()f x 在R 上单调递增. 于是()()26f x f x ->-等价于26x x ->-,则260x x --<,()()320x x -+<,解得23x -<<.故答案为:()2,3-.【点睛】本题考查函数单调性的判断与应用.遇到函数不等式问题,要利用单调性转化为自变量的关系再求解.判断分段函数的单调性,一定要关注对分段间隔点处的情况.20.1【分析】首先根据题中所给的条件判断出函数的最小正周期结合奇函数的定义求得结果【详解】因为所以函数是以3为周期的周期函数且是定义域为的奇函数所以故答案为:1【点睛】该题考查的是有关函数的问题涉及到的 解析:1【分析】首先根据题中所给的条件,判断出函数的最小正周期,结合奇函数的定义,求得结果.【详解】因为()()3f x f x =+,所以函数()f x 是以3为周期的周期函数,且是定义域为R 的奇函数,所以(2020)(67432)(2)(2)1f f f f =⨯-=-=-=,故答案为:1.【点睛】该题考查的是有关函数的问题,涉及到的知识点有函数奇偶性与周期性的综合应用,属于简单题目.21.8【分析】首先画出的图象根据图象即可求出函数的最大值【详解】函数的图象如图所示:由图可知故答案为:【点睛】本题主要考查利用函数的图象求最值熟练画出函数图象为解题的关键属于中档题解析:8【分析】首先画出()f x 的图象,根据图象即可求出函数的最大值.【详解】函数()f x 的图象如图所示:由图可知,max ()(2)44=8f x f =-=+.故答案为:8【点睛】本题主要考查利用函数的图象求最值,熟练画出函数图象为解题的关键,属于中档题. 22.甲【分析】由题意求出的解析式依据两函数为同一函数的条件:定义域和对应关系相同即可得出结论【详解】解得所以故答案为:甲【点睛】本题主要考查两函数为同一函数的条件:定义域和对应关系相同;正确求出两函数的 解析:甲【分析】由题意求出()(),F x G x 的解析式,依据两函数为同一函数的条件:定义域和对应关系相同,即可得出结论.【详解】()()11x f x x x =>-,())2g x x x =≥, ()()11x f x x x ∴=>-,())21x F x x x ∴==≥-,()()()G x g x f x =, ())21G x x x x ∴=≥-, 解得())2G x x =≥,所以()())2F x G x x ==≥. 故答案为:甲【点睛】本题主要考查两函数为同一函数的条件:定义域和对应关系相同;正确求出两函数的解析式和定义域是求解本题的关键;属于易错题;23.【分析】求出函数的定义域并求出该函数的导数并在定义域内解不等式可得出函数的单调递增区间【详解】函数的定义域为且令得因此函数的单调递增区间为故答案为【点睛】本题考查利用导数求函数的单调区间在求出导数不解析:()2,e -+∞【分析】求出函数()y f x =的定义域,并求出该函数的导数,并在定义域内解不等式()0f x '>,可得出函数()y f x =的单调递增区间.【详解】函数()ln f x x x x =+的定义域为()0,∞+,且()ln 2f x x '=+,令()0f x '>,得2x e ->.因此,函数()ln f x x x x =+的单调递增区间为()2,e -+∞,故答案为()2,e -+∞. 【点睛】本题考查利用导数求函数的单调区间,在求出导数不等式后,得出的解集应与定义域取交集可得出函数相应的单调区间,考查计算能力,属于中等题.24.【分析】由偶函数的性质将不等式表示为再由函数在区间上的单调性得出与的大小关系解出不等式即可【详解】函数是上的偶函数所以由得函数在区间上单调递增得解得因此实数的取值范围是故答案为【点睛】本题考查函数不 解析:17a -<<【分析】由偶函数的性质()()f x f x =将不等式表示为()()34f a f -<,再由函数()y f x =在区间[)0,+∞上的单调性得出3a -与4的大小关系,解出不等式即可.【详解】函数()y f x =是R 上的偶函数,所以()()f x fx =, 由()()34f a f -<,得()()34f a f -<,函数()y f x =在区间[)0,+∞上单调递增,34a ∴-<,得434a -<-<, 解得17a -<<,因此,实数a 的取值范围是()1,7-,故答案为()1,7-.【点睛】本题考查函数不等式的求解,对于这类问题,一般要考查函数的奇偶性与单调性,将不等式转化为()()12f x f x <(若函数为偶函数,可化为()()12f x f x <),结合单调性得出1x 与2x 的大小(或1x 与2x 的大小)关系,考查推理能力与分析问题的能力,属于中等题.25.(-22)【详解】∵函数f(x)是定义在R 上的偶函数且在(-∞0)上是增函数又f(2)=0∴f(x)在(0+∞)上是增函数且f(-2)=f(2)=0∴当-2<x <2时f(x)<0即f(x)<0的解为解析:(-2,2)【详解】∵函数f(x)是定义在R 上的偶函数,且在(-∞,0)上是增函数,又f(2)=0,∴f(x)在(0,+∞)上是增函数,且f(-2)=f(2)=0,∴当-2<x <2时,f(x)<0,即f(x)<0的解为(-2,2),即不等式的解集为(-2,2),故填(-2,2).26.【分析】根据函数f (x )是R 上的奇函数和已知条件得出函数和的解析式在同一坐标系中做出和的图像求出交点的坐标根据不等式的解集可以理解为将的图象向右平移一个单位长度后所得函数的图象在函数的图象上方部分的 解析:{23}x x -<<【分析】根据函数f (x )是R 上的奇函数和已知条件得出函数()f x 和()1f x -的解析式,在同一坐标系中做出()f x 和()1f x -的图像,求出交点的坐标,根据不等式(1)()f x f x ->的解集可以理解为将()f x 的图象向右平移一个单位长度后所得函数()1f x -的图象在函数()f x 的图象上方部分的点对应的横坐标取值的集合,由图示可得出解集.【详解】当0x <时, 0x ->,所以 ()()22()55f x x x x x -=--⨯-=+,又f (x )是R 上的奇函数,所以 2()()5f x f x x x =--=--,所以225,0()5,0x x x f x x x x ⎧-≥=⎨--<⎩,所以()()()()22151,1(1)151,1x x x f x x x x ⎧---≥⎪-=⎨----<⎪⎩,即2276,1(1)34,1x x x f x x x x ⎧-+≥-=⎨--+<⎩, 做出()f x 和()1f x -的图像如下图所示,不等式(1)()f x f x ->的解集可以理解为将()f x 的图象向右平移一个单位长度后所得函数()1f x -的图象在函数()f x 的图象上方部分的点对应的横坐标取值的集合,由22576,x x x x -=-+得3,x =所以()3,6A -, 由22534x x x x --=--+得2x =-,所以()2,6B -,所以不等式(1)()f x f x ->的解集为{23}x x-<<.故答案为:{23}x x -<<.【点睛】本题考查根据函数的奇偶性求得对称区间上的解析式,图像的平移,以及运用数形结合的思想求解不等式,关键在于综合熟练地运用函数的奇偶性,解析式的求法,图像的平移,以及如何在图像上求出不等式的解集等一些基本能力,属于中档题.。
(精选试题附答案)高中数学第三章函数的概念与性质知识点题库

(名师选题)(精选试题附答案)高中数学第三章函数的概念与性质知识点题库单选题1、下列图形能表示函数图象的是()A.B.C.D.答案:D分析:根据函数的定义,判断任意垂直于x轴的直线与函数的图象的交点个数,即可得答案.由函数的定义:任意垂直于x轴的直线与函数的图象至多有一个交点,所以A、B显然不符合,C在x=0与函数图象有两个交点,不符合,只有D符合要求.故选:D2、“幂函数f(x)=(m2+m−1)x m在(0,+∞)上为增函数”是“函数g(x)=2x−m2⋅2−x为奇函数”的()条件A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要答案:A分析:要使函数f(x)=(m2+m−1)x m是幂函数,且在(0,+∞)上为增函数,求出m=1,可得函数g(x)为奇函数,即充分性成立;函数g (x )=2x −m 2⋅2−x 为奇函数,求出m =±1,故必要性不成立,可得答案.要使函数f (x )=(m 2+m −1)x m 是幂函数,且在(0,+∞)上为增函数,则{m 2+m −1=1m >0,解得:m =1,当m =1时,g (x )=2x −2−x ,x ∈R , 则g (−x )=2−x −2x =−(2x −2−x )=−g (x ),所以函数g (x )为奇函数,即充分性成立;“函数g (x )=2x −m 2⋅2−x 为奇函数”,则g (x )=−g (−x ),即2x −m 2⋅2−x =−(2−x −m 2⋅2x )=m 2⋅2x −2−x ,解得:m =±1,故必要性不成立,故选:A .3、已知定义在R 上的奇函数f (x )在(0,+∞)上单调递增,且f(1)=0,若实数x 满足xf (x −12)≤0,则x 的取值范围是( )A .[−12,0]∪[12,32]B .[−12,12]∪[32,+∞)C .[−12,0]∪[12,+∞)D .[−32,−12]∪[0,12] 答案:A分析:首先根据函数的奇偶性和单调性得到函数f (x )在R 上单调递增,且f (1)=f (−1)=0,从而得到x ∈(−∞,−1),f (x )<0,x ∈(−1,0),f (x )>0,x ∈(0,1),f (x )<0,x ∈(1,+∞),f (x )>0,再分类讨论解不等式xf (x −12)≤0即可.因为奇函数f (x )在(0,+∞)上单调递增,定义域为R ,f(1)=0,所以函数f (x )在R 上单调递增,且f (1)=f (−1)=0.所以x ∈(−∞,−1),f (x )<0,x ∈(−1,0),f (x )>0,x ∈(0,1),f (x )<0,x ∈(1,+∞),f (x )>0.因为xf (x −12)≤0,当x <0时,f (x −12)≥0,即−1≤x −12≤0或x −12≥1,解得−12≤x <0.当x =0时,符合题意.当x >0时,f (x −12)≤0,x −12≤−1或0≤x −12≤1, 解得12≤x ≤32.综上:−12≤x ≤0或12≤x ≤32. 故选:A4、下列四个函数在(−∞,0)是增函数的为( )A .f (x )=x 2+4B .f (x )=1−2xC .f (x )=−x 2−x +1D .f (x )=2−3x答案:D分析:根据各个函数的性质逐个判断即可对A ,f (x )=x 2+4二次函数开口向上,对称轴为y 轴,在(−∞,0)是减函数,故A 不对.对B ,f (x )=1−2x 为一次函数,k <0,在(−∞,0)是减函数,故B 不对.对C ,f (x )=−x 2−x +1,二次函数,开口向下,对称轴为x =−12,在(−∞,−12)是增函数,故C 不对. 对D ,f (x )=2−3x 为反比例类型,k <0,在(−∞,0)是增函数,故D 对.故选:D5、已知函数f(x)={−3x +3,x <0−x 2+3,x ≥0,则不等式f (a )>f (3a −4)的解集为( ) A .(−12,+∞)B .(2,+∞)C .(−∞,2)D .(−∞,−12)答案:B分析:由分段函数表达式,判断其单调性,利用单调性,求解不等式.根据题目所给的函数解析式,可知函数f (x )在(−∞,+∞)上是减函数,所以a <3a −4,解得a >2.故选:B6、设函数f(x)=x2+2(4−a)x+2在区间(−∞,3]上是减函数,则实数a的取值范围是()A.a≥−7B.a≥7C.a≥3D.a≤−7答案:B分析:根据二次函数的图象和性质即可求解.函数f(x)的对称轴为x=a−4,又∵函数在(−∞,3]上为减函数,∴a−4⩾3,即a⩾7.故选:B.小提示:本题考查由函数的单调区间求参数的取值范围,涉及二次函数的性质,属基础题.7、若函数y=f(x)在R上单调递增,且f(2m−3)>f(−m),则实数m的取值范围是()A.(−∞,−1)B.(−1,+∞)C.(1,+∞)D.(−∞,1)答案:C分析:由单调性可直接得到2m−3>−m,解不等式即可求得结果.∵f(x)在R上单调递增,f(2m−3)>f(−m),∴2m−3>−m,解得:m>1,∴实数m的取值范围为(1,+∞).故选:C.8、已知f(x)是定义在(−2,2)上的单调递减函数,且f(2a−3)<f(a−2),则实数a的取值范围是()A.(0,4)B.(1,+∞)C.(12,52)D.(1,52)答案:D分析:根据函数自变量的定义域以及函数单调递减列式,求出a的取值范围. ∵f(x)是定义在(−2,2)上的单调递减函数,且f(2a−3)<f(a−2),则{2a−3>a−2−2<a−2<2−2<2a−3<2,解得1<a<52故选:D..9、函数f (x )在(−∞,+∞)上是减函数,且a 为实数,则有( )A .f (a )<f (2a )B .f (a 2)<f (a )C .f (a 2+1)<f (a )D .f (a 2−a )<f (a )答案:C分析:利用a =0可排除ABD ;根据函数单调性和a 2+1>a 恒成立可知C 正确.当a =0时,ABD 中不等式左右两侧均为f (0),不等式不成立,ABD 错误;∵a 2+1−a >0对于a ∈R 恒成立,即a 2+1>a 恒成立,又f (x )为R 上的减函数,∴f (a 2+1)<f (a ),C 正确.故选:C.10、已知幂函数y =f(x)的图象过点P(2,4),则f(3)=( )A .2B .3C .8D .9答案:D分析:先利用待定系数法求出幂函数的解析式,再求f(3)的值解:设f(x)=x α,则2α=4,得α=2,所以f(x)=x 2,所以f(3)=32=9,故选:D填空题11、已知f (x )={(3a −1)x +4a,x <1−x +1,x ⩾1是定义在R 上的减函数,那么a 的取值范围是___. 答案:[17,13) 分析:利用函数在R 上是减函数,可列出不等式组{3a −1<0(3a −1)+4a ⩾−1+1 ,由此求得a 的取值范围.由于f (x )={(3a −1)x +4a,x <1−x +1,x ⩾1是定义在R 上的减函数,∴{3a −1<0(3a −1)+4a ⩾−1+1 , 求得17⩽a <13,所以答案是:[17,13). 12、函数y =√7+6x −x 2的定义域是_____.答案:[−1,7].分析:由题意得到关于x 的不等式,解不等式可得函数的定义域.由已知得7+6x −x 2≥0,即x 2−6x −7≤0解得−1≤x ≤7,故函数的定义域为[−1,7].小提示:求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.13、函数y =√x 2−1的单调递减区间为___________.答案:(−∞,−1](或(−∞,−1)都对)解析:利用复合函数的单调性,同增异减,即可得到答案;令t =x 2−1,则y =√t ,∵ t =x 2−1在(−∞,−1)单调递减,y =√t 在(0,+∞)单调递增,根据复合函数的单调性可得:y =√x 2−1在(−∞,−1)单调递减,所以答案是:(−∞,−1).14、已知函数f (x )=mx 2+nx +2(m,n ∈R )是定义在[2m,m +3]上的偶函数,则函数g (x )=f (x )+2x 在[−2,2]上的最小值为______.答案:-6分析:先利用题意能得到f(−x)=f(x)和2m+m+3=0,解得n=0和m=−1,代入f(x)中,再代入g(x),再结合二次函数的性质求最小值因为函数f(x)=mx2+nx+2(m,n∈R)是定义在[2m,m+3]上的偶函数,故{f(−x)=f(x)2m+m+3=0,即{mx2−nx+2=mx2+nx+2m=−1,则{2nx=0m=−1解得{n=0m=−1,所以g(x)=f(x)+2x=−x2+2x+2=3−(x−1)2,x∈[−2,2],所以g(−2)=−(−2)2+2×(−2)+2=−6,g(2)=−22+2×2+2=2,则g(x)min=−6,所以答案是:-615、已知函数y=f(2x+1)的定义域为[−1,2],则函数y=f(x−1)的定义域为_________.答案:[0,6]分析:根据抽象函数的定义域求解规则求解即可.函数y=f(2x+1)的定义域为[−1,2],即−1≤x≤2,所以−1≤2x+1≤5,所以−1≤x−1≤5,即0≤x≤6,所以函数的定义域为[0,6].所以答案是:[0,6].解答题16、上海市某地铁项目正在紧张建设中,通车后将给更多市民出行带来便利,已知该线路通车后,地铁的发车时间间隔t(单位:分钟)满足2≤t≤20,t∈N∗,经测算,在某一时段,地铁载客量与发车时间间隔t相关,当10≤t≤20时地铁可达到满载状态,载客量为1200人,当2≤t<10时,载客量会减少,减少的人数与(10−t)的平方成正比,且发车时间间隔为2分钟时载客量为560人,记地铁载客量为p(t).(1)求p(t)的解析式;(2)若该时段这条线路每分钟的净收益为Q=6p(t)−3360t−360(元),问当发车时间间隔为多少时,该时段这条线路每分钟的净收益最大?答案:(1)p(t)={−10t 2+200t +200,2≤t <101200,10≤t ≤20(t ∈N ∗);(2)6分钟. 分析:(1)2≤t <10时,求出正比例系数k ,写出函数式即可得解;(2)求出每一段上的最大值,再比较大小即可得解.(1)由题意知p(t)={1200−k(10−t)2,2≤t <101200,10≤t ≤20(t ∈N ∗ ),(k 为常数), 因p(2)=1200−k(10−2)2=1200−64k =560,则k =10,所以p(t)={−10t 2+200t +200,2≤t <101200,10≤t ≤20(t ∈N ∗); (2)由Q =6p(t)−3360t −360得Q ={6(−10t 2+200t+200)−3360t −360,2≤t <103840t −360,10≤t ≤20 ,即Q ={840−60(t +36t ),2≤t <103840t−360,10≤t ≤20 (t ∈N ∗), ①当2≤t <10时,Q =840−60(t +36t )≤840−60×12=120,当且仅当t =6等号成立; ②当10≤t ≤20时,Q =3840t −360在[10,20]上递减,当t =10时Q 取最大值24,由①②可知,当发车时间间隔为t =6分钟时,该时段这条线路每分钟的净收益最大,最大为120元.17、已知集合A ={x |2<x <4},集合B ={x |m −1<x <m 2}.(1)若A ∩B =∅;求实数m 的取值范围;(2)命题p:x ∈A ,命题q:x ∈B ,若p 是q 的充分条件,求实数m 的取值集合.答案:(1)−√2≤m ≤√2或m ≥5(2){m |m ≤−2 或2≤m ≤3}分析:(1)讨论B =∅或B ≠∅,根据A ∩B =∅列不等式组即可求解.(2)由题意得出A ⊆B ,再由集合的包含关系列不等式组即可求解.(1)∵A ∩B =∅,∴当B =∅时,m -1≥m 2,解得:m ∈∅.当B ≠∅时,m -1≥4或m 2≤2,∴−√2≤m ≤√2或m ≥5.(2)∵x∈A是x∈B的充分条件,∴A⊆B,∴{m−1≤2m2≥4,解得:m≤-2或2≤m≤3.所以实数m的取值集合为{m|m≤−2或2≤m≤3}18、已知幂函数f(x)=x m2−m−2(m∈Z)是偶函数,且在(0,+∞)上是减函数,求函数f(x)的解析式.答案:f(x)=x−2分析:根据幂函数的单调性,可知m2−m−2<0,又m∈Z,则m=0,1,再根据函数f(x)是偶函数,将m= 0,1分别代入验证可得答案.因为幂函数f(x)在区间(0,+∞)上单调递减,则m2−m−2<0,得m∈(−1,2),又∵m∈Z,∴m=0或1.因为函数f(x)是偶函数,将m=0,1分别代入,当m=0时,m2−m−2=−2,函数为f(x)=x−2是偶函数,满足条件.当m=1时,m2−m−2=−2,函数为f(x)=x−2是偶函数,满足条件.∴f(x)的解析式为f(x)=x−2.19、判断下列函数的奇偶性:(1)f(x)=√4−x2|x+3|−3;(2)f(x)=(x−1)√1+x1−x;(3)f(x)=√1−x2+√x2−1;(4)f(x)={x2−2x+3,x>00,x=0−x2−2x−3,x<0. 答案:(1)奇函数(2)既不是奇函数也不是偶函数(3)既是奇函数又是偶函数(4)奇函数分析:根据函数奇偶性的概念,逐问判断即可.(1)由{4−x 2≥0|x +3|−3≠0,得−2≤x ≤2,且x ≠0, 所以f (x )的定义域为[−2,0)∪(0,2],关于原点对称,所以f (x )=√4−x 2|x+3|−3=√4−x 2x+3−3=√4−x 2x . 又f (−x )=√4−(−x )2−x =−√4−x 2x =−f (x ),所以f (x )是奇函数.(2)因为f (x )的定义域为[−1,1),不关于原点对称,所以f (x )既不是奇函数也不是偶函数.(3)对于函数f (x )=√1−x 2+√x 2−1,{1−x 2≥0x 2−1≥0,∴x =±1,其定义域为{−1,1},关于原点对称. 因为对定义域内的每一个x ,都有f (x )=0,所以f (−x )=f (x ),f (−x )=−f (x ), 所以f (x )=√1−x 2+√x 2−1既是奇函数又是偶函数.(4)函数f (x )的定义域为R ,定义域关于原点对称.①当x =0时,−x =0,所以f (−x )=f (0)=0,f (x )=f (0)=0,所以f (−x )=−f (x );②当x >0时,−x <0,所以f (−x )=−(−x )2−2(−x )−3=−(x 2−2x +3)=−f (x ); ③当x <0时,−x >0,所以f (−x )=(−x )2−2(−x )+3=−(−x 2−2x −3)=−f (x ). 综上,可知函数f (x )为奇函数.。
函数基础练习(题型大全)含答案

函数基础练习(题型大全)含答案一、选择题(本大题共17小题,共85.0分) 1. 函数f(x)=1lg(x+1)+√2−x 的定义域为( )A. (−1,0)∪(0,2]B. [−2,0)∪(0,2]C. [−2,2]D. (−1,2]2. 若函数f(x)={−x 13,x ≤−1x +2x −7,x >−1,则f[f(−8)]=( ) A. −2 B. 2 C. −4 D. 4 3. 函数f(x)=ln(x 2−2x −8)的单调递增区间是( )A. (−∞,−2)B. (−∞,−1)C. (1,+∞)D. (4,+∞)4. 设,,c =30.7,则a ,b ,c 的大小关系是( )A. a <b <cB. c <b <aC. b <c <aD. b <a <c 5. 在下列区间中,函数f(x)=e x +4x −3的零点所在的区间为( )A. (−2,−1)B. (−1,0)C. (0,12)D. (12,1)6. 已知函数f(x)=cosx e x,则函数f(x)的图象在点(0,f(0))处的切线方程为( )A. x +y +1=0B. x +y −1=0C. x −y +1=0D. x −y −1=07. 已知函数y ={x 2+1(x ⩽0)2x(x >0),若f(a)=10,则a 的值是( )A. 3或−3B. −3或5C. −3D. 3或−3或58. 若函数,且满足对任意的实数x 1≠x 2都有成立,则实数a 的取值范围是( ) A. (1,+∞) B. (1,8) C. (4,8) D. [4,8)9. 定义在R 上的奇函数f(x)满足f(x +2)=−1f(x),且在(0,1)上f(x)=3x ,则f(log 354)=( )A. 32B. 23C. −32D. −2310. 函数y =2x 2−e |x|在[−2,2]的图象大致为( )A.B.C.D.11. 设函数f(x)=ln(1+|x|)−11+x 2,则使得f(x)>f(2x −1)成立的x 的取值范围是( )A.B. (13,1) C. (−13,13)D.12. 若函数f(x)=lnx +ax +1x 在[1,+∞)上是单调函数,则a 的取值范围是( )A. (−∞,0]∪[14,+∞)B. (−∞,−14]∪[0,+∞)C. [−14,0]D. (−∞,1]13. 已知函数f(x)=ln(√1+x 2−x)+2,则f(lg5)+f(lg 15)=( )A. 4B. 0C. 1D. 214. 已知函数f(x)={14x +1,x ≤1lnx,x >1,则方程f(x)=ax 恰有两个不同的实数根时,实数a 的取值范围是( )A. (0,1e )B. [14,1e )C. (0,14]D. (14,e)15. 已知函数f(x)(x ∈R)满足f(−x)=2−f(x),若函数y =x+1x与y =f(x)图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则 ∑(x i +y i )=( )m i=1 A. 0B. mC. 2mD. 4m 16. 设函数f (x )=cos ⎝⎛⎭⎫π2-πx +(x +e )2x 2+e2的最大值为M ,最小值为N ,则(M +N -1)2019的值为( ) A.1 B.2 C.22019 D.3201917. 已知函数f (x )的导函数为f ′(x ),若2f (x )+f ′(x )>2,f (0)=5,则不等式f (x )-4e-2x>1的解集为( )A.(1,+∞)B.(-∞,0)C.(-∞,0)∪(1,+∞) D .(0,+∞)二、填空题(本大题共5小题,共25.0分)18. 函数y =log a (2x −3)+8的图象恒过定点P ,P 在幂函数f(x)的图象上,则f(4)= ______. 19. 求曲线f (x )=x 3−3x 2+2x 过原点的切线方程__________. 20. ∫(√1−x 2+x)dx =10________.21. 设函数f(x)={x +1,x ≤02x ,x >0,则满足f(x)+f(x −12)>1的x 的取值范围是______.22. 函数f(x)=lgx 2+1|x|(x ≠0,x ∈R),有下列命题:①f(x)的图象关于y 轴对称;②f(x)的最小值是2;③f(x)在(−∞,0)上是减函数,在(0,+∞)上是增函数; ④f(x)没有最大值.其中正确命题的序号是______ .(请填上所有正确命题的序号) 三、解答题(本大题共5小题,共60.0分)23. 已知函数f(x)=13x 3+ax 2+6x −1.当x =2时,函数f(x)取得极值. (I)求实数a 的值;(II)若1≤x ≤3时,方程f(x)+m =0有两个根,求实数m 的取值范围. 24. 设函数f(x)=ln(x +1)+a(x 2−x),其中a ∈R ,(Ⅰ)讨论函数f(x)极值点的个数,并说明理由; (Ⅱ)若∀x >0,f(x)≥0成立,求a 的取值范围.25.已知函数f(x)=x2−x,g(x)=e x−ax−1(e为自然对数的底数).(1)讨论函数g(x)的单调性;(2)当x>0时,f(x)≤g(x)恒成立,求实数a的取值范围.26.已知函数.(1)讨论函数f(x)的单调性;(2)若a=1,若f(x)有两个零点,求证:.27.已知函数f(x)=(x+1)lnx−ax+2.(1)当a=1时,求在x=1处的切线方程;(2)当a=2时求证:,n∈N∗.答案和解析1.【答案】A【解析】【分析】本题考查了函数的定义域,考查学生的计算能力,属于基础题. 由题意列出不等式组:{x +1>0x +1≠12−x ≥0,解出即可求解.【解答】解:由题意得:{x +1>0x +1≠12−x ≥0,解得−1<x ≤2且x ≠0, ∴函数的定义域为(−1,0)∪(0,2].故选A . 2.【答案】C【解析】【分析】本题主要考查了分段函数,考查了函数的定义域与值域.属于基础题, 利用分段函数函数值的计算得结论. 【解答】解:∵函数f(x)={−x 13,x ≤−1x +2x−7,x >−1, 又∵−8<−1,∴f(−8)=−(−8)13=2, ∵2>−1,∴f[f(−8)]=f(2)=2+22−7=−4.故选C . 3.【答案】D【解析】【分析】本题主要考查复合函数的单调性及对数函数的图象和性质,属于基础题.由x 2−2x −8>0得:x <−2或x >4,令t =x 2−2x −8,结合复合函数单调性“同增异减”的原则,可得答案. 【解答】解:由x 2−2x −8>0得:x <−2或x >4, 即f(x)的定义域为{x|x <−2或x >4}, 令t =x 2−2x −8,y =lnt 在t ∈(0,+∞)内单调递增,而x ∈(−∞,−2)时,t =x 2−2x −8为减函数,x ∈(4,+∞)时,t =x 2−2x −8为增函数, 故函数f(x)=ln(x 2−2x −8)的单调递增区间是(4,+∞). 故选D . 4.【答案】D【解析】【分析】本题考查指数函数、对数函数的单调性的应用,属于基础题.利用指数函数及对数函数的性质,借助中间量0或1即可求解. 【解答】解:0=log 71<a =log 73<log 77=1, b =log 137<log 131=0,c =30.7>30=1, ∴b <a <c . 故选D . 5.【答案】C【解析】【分析】本题考查函数零点存在性定理,属于基础题.若函数f(x)在[a,b]上是连续的,如果函数f(x)满足f(a)·f(b)<0,则f(x)在(a,b)上至少存在一个零点. 【解答】解:∵函数f(x)=e x +4x −3在上连续, 且f(0)=e 0−3=−2<0,f(12)=√e +2−3=√e −1=e 12−e 0>0,∴f(0)·f(12)<0,∴函数f(x)=e x +4x −3的零点所在的区间为(0,12).故选C . 6.【答案】B【解析】【分析】本题考查了基本函数导数公式,导数的四则运算,导数的几何意义,求已知切点的切线方程的方法,属基础题. 先求函数的导函数f′(x),再求所求切线的斜率即f′(0),由于切点为(0,1),故由点斜式即可得所求切线的方程. 【解答】 解:∵f(x)=cosx e x, ∴f′(x)=−sinx−cosxe ,∴f′(0)=−1,f(0)=1,即函数f(x)图象在点(0,1)处的切线斜率为−1, ∴图象在点(0,f(0))处的切线方程为y =−x +1, 即x +y −1=0. 故选B . 7.【答案】B【解析】【分析】本题考查了由分段函数的函数值求参数,解题的关键是确定f(a)的表达式,考查了运算求解能力和分类讨论思想,属于基础题.结合题意,需要对a 进行分类讨论,若a ≤0,则f(a)=1+a 2;若a >0,则f(a)=2a ,从而可求a . 【解答】解:由题意,函数y ={x 2+1(x ⩽0)2x(x >0), f(a)=10,若a ≤0,则f(a)=a 2+1=10,解得a =−3或a =3(舍去); 若a >0,则f(a)=2a =10, ∴a =5,综上可得,a =5或a =−3. 故选B .8.【答案】D【解析】【分析】本题考查的知识点是分段函数的应用,正确理解分段函数的单调性,是解答的关键,属于中档题. 根据函数单调性的定义,由f(x 1)−f(x 2)x 1−x 2>0恒成立,得到f(x)单调递增,则分段f(x)在各段上都是递增,且衔接处非减,得到不等式求解即可. 【解答】解:∵对任意的实数x 1≠x 2都有f(x 1)−f(x 2)x 1−x 2>0成立,∴函数f(x)={a x ,x ≥1(4−a 2)x +2,x <1在R 上单调递增, ∴{a >14−a 2>0a 1≥(4−a 2)×1+2 , 解得a ∈[4,8), 故选D . 9.【答案】C【解析】【分析】本题考查函数值的求法,指数函数、对数函数的运算与性质,函数的周期性及奇函数性质的综合应用,利用条件求出函数的周期以及利用函数的性质逐步转化自变量是解题的关键.由已知条件和函数周期性的定义求出函数的周期,利用函数的周期性、奇函数的性质和函数的解析式,逐步转化由运算性质求出f(log 354)的值. 【解答】解:由f(x +2)=−1f(x)得,f(x +4)=−1f(x+2)=f(x), 所以函数f(x)的周期是4,因为f(x)是定义在R 上的奇函数,且3<log 354<4, 则0<4−log 354<1, 且在(0,1)上,f(x)=3x ,所以f(log 354)=f(log 354−4)=−f(4−log 354).故选C .10.【答案】D【解析】【分析】本题考查的知识点是函数的图象,属于中档题.根据已知函数的解析式,分析函数的奇偶性,特殊点处的函数值以及单调性,利用排除法,可得答案. 【解答】解:∵f (x )=y =2x 2−e |x |,∴f(−x)=2(−x)2−e|−x|=2x2−e|x|,故函数为偶函数,当x=±2时,y=8−e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2−e x,f′(x)=4x−e x,设g(x)=4x−e x,g′(x)=4−e x,当x∈(0,ln4)时,g′(x)<0,g(x)单调递减,即f′(x)=4x−e x单调递减,当x∈(ln4,2)时,g′(x)>0,g(x)单调递增,即f′(x)=4x−e x单调递增,因为f′(0)=−1<0且f′(ln4)=4ln4−4>0,则f′(x)=4x−e x=0在[0,ln4]有解,设为x0,当x∈(0,x0)时,f′(x)<0,f(x)单调递减,当x∈(x0,ln4)时,f′(x)>0,f(x)单调递增,故函数y=2x2−e|x|在[0,ln4]不是单调的,又ln4<2,故函数y=2x2−e|x|在[0,2]不是单调的,排除C,故选D.11.【答案】B【解析】【分析】本题主要考查函数奇偶性和单调性的应用,考查函数性质的综合应用,运用偶函数的性质是解题的关键,属于中档题.根据函数的奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【解答】解:f(x)的定义域为R,,∴函数f(x)=ln(1+|x|)−11+x2为偶函数,且在x≥0时,f(x)=ln(1+x)−11+x2,而为[0,+∞)上的单调递增函数,且y=−11+x2为[0,+∞)上的单调递增函数,∴函数f(x)在[0,+∞)单调递增,∴f(x)>f(2x−1)等价为f(|x|)>f(|2x−1|),即|x|>|2x−1|,平方得3x2−4x+1<0,解得:13<x<1,所求x的取值范围是(13,1).故选B.12.【答案】B【解析】【分析】本题主要考查求导公式和法则,导数与函数单调性的关系,以及恒成立问题的转化,考查分离常数法,整体思想、分类讨论思想,属于较难题.由求导公式和法则求出f′(x),由条件和导数与函数单调性的关系分类讨论,分别列出不等式进行分离常数,再构造函数,利用整体思想和二次函数的性质求出函数的最值,可得a的取值范围.【解答】解:由题意得,f′(x)=1x +a−1x2,因为f(x)=lnx+ax+1x在[1,+∞)上是单调函数,所以f′(x)≥0或f′(x)≤0在[1,+∞)上恒成立,①当f′(x)≥0时,则1x +a−1x2≥0在[1,+∞)上恒成立,即a≥1x2−1x,设g(x)=1x2−1x=(1x−12)2−14,因为x∈[1,+∞),所以1x∈(0,1],当1x=1时,g(x)取到最大值是:0,所以a≥0,②当f′(x)≤0时,则1x +a−1x2≤0在[1,+∞)上恒成立,即a≤1x2−1x,设g(x)=1x2−1x=(1x−12)2−14,因为x∈[1,+∞),所以1x∈(0,1],当1x =12时,g(x)取到最小值是:−14,所以a≤−14,综上可得,a≤−14或a≥0,所以数a的取值范围是(−∞,−14]∪[0,+∞),故选B.13.【答案】A【解析】【分析】本题考查了对数的运算以及函数的性质,属于基础题.先得出f(x)+f(−x)=4,即可得出结果.【解答】解:∵f(x)=ln(√1+x2−x)+2,∴f(x)+f(−x)=ln(√1+x2−x)+2+ln(√1+x2+x)+2=ln1+4=4,则f(lg5)+f(lg15)=f(lg5)+f(−lg5)=4.故选A.14.【答案】B【解析】【分析】本题考查了函数的图象与性质、导数的应用问题,考查函数与方程的关系,属于中档题.题意转化为y=f(x)与y=ax有2个交点,画出函数的图象,观察满足题意的直线y=ax的条件,利用导数求出切线的斜率,结合图形得出a的取值范围.【解答】解:∵方程f(x)=ax恰有两个不同实数根,∴y=f(x)与y=ax有2个交点,画出y =f(x)的图象和y =ax 的图象,如图所示:其中l 1是直线y =ax 与对数部分图象相切时的情况,l 2是与x ≤1时函数的直线部分平行的直线, 由图可以看出,直线y =ax 的斜率a 应当在l 1与l 2的斜率之间,可以与l 2重合. 当x >1时,f(x)=lnx ,∴y ′=f ′(x)=1x , 设切点为P(x 0,y 0),则k =1x 0,∴切线方程为y −y 0=1x 0(x −x 0),而切线过原点,O(0,0)代入,得y 0=1,∴x 0=e ,k =1e , ∴直线l 1的斜率为1e ,又∵直线l 2与y =14x +1平行,∴直线l 2的斜率为14, ∴实数a 的取值范围是[14,1e ), 故选B . 15.【答案】B【解析】【分析】由条件可得f(x)+f(−x)=2,即有f(x)关于点(0,1)对称,又函数y =x+1x,即y =1+1x 的图象关于点(0,1)对称,即有(x 1,y 1)为交点,即有(−x 1,2−y 1)也为交点,计算即可得到所求和.本题考查抽象函数的运用:求和,考查函数的对称性的运用,以及化简整理的运算能力,属于中档题. 【解答】解:函数f(x)(x ∈R)满足f(−x)=2−f(x), 即为f(x)+f(−x)=2, 可得f(x)关于点(0,1)对称, 函数y =x+1x,即y =1+1x 的图象关于点(0,1)对称,即有(x 1,y 1)为交点,即有(−x 1,2−y 1)也为交点, (x 2,y 2)为交点,即有(−x 2,2−y 2)也为交点,…则有∑i =1m(x i +y i )=(x 1+y 1)+(x 2+y 2)+⋯+(x m +y m )=12[(x 1+y 1)+(−x 1+2−y 1)+(x 2+y 2)+(−x 2+2−y 2)+⋯+(x m +y m )+(−x m +2−y m )] =m .故选B .16.答案 A解析 由已知x ∈R ,f (x )=cos ⎝⎛⎭⎫π2-πx +(x +e )2x 2+e 2=sinπx +x 2+e 2+2e x x 2+e 2=sinπx +2e x x 2+e 2+1,令g (x )=sinπx +2e xx 2+e2,易知g (x )为奇函数,由于奇函数在对称区间上的最大值与最小值的和为0,M +N =f (x )max +f (x )min =g (x )max +1+g (x )min +1=2,(M +N -1)2019=1. 17.答案 D解析 设F (x )=e 2x f (x )-e 2x -4, 则F ′(x )=2e 2x f (x )+e 2x f ′(x )-2e 2x =e 2x [2f (x )+f ′(x )-2]>0,所以函数F (x )=e 2x f (x )-e 2x -4在R 上为增函数. 又f (0)=5,所以F (0)=f (0)-1-4=0. 又不等式f (x )-4e-2x>1等价于e 2x f (x )-e 2x -4>0,即F (x )>0,解得x >0, 所以不等式的解集为(0,+∞).18.【答案】64【解析】【分析】本题考查对数函数的性质和幂函数,属于基础题.先找到定点P 的坐标,通过P 点坐标求解幂函数f (x )=x b 的解析式,从而求得f(4). 【解答】解:由题意,令2x −3=1,则x =2, 故点P(2,8),设幂函数f(x)=x b , 则2b =8,解得b =3, 所以f(x)=x 3, 故f(4)=64, 故答案为64.19.【答案】y =2x 和y =−14x【解析】【分析】本题考查导数的几何意义:切点处的导数值是切线的斜率;注意“在点处的切线”与“过点的切线”的区别,属于基础题.求出函数的导数,利用导数的几何意义:切点处的导数值是切线的斜率,分原点是切点和原点不是切点两类求. 【解答】解:f ′(x)=3x 2−6x +2.设切线的斜率为k .(1)当切点是原点时,k =f ′(0)=2,所以所求曲线的切线方程为y =2x .(2)当切点不是原点时,设切点是(x 0,y 0),则有y 0=x 03−3x 02+2x 0,k =f ′(x 0)=3x 02−6x 0+2,①又k =y 0x 0=x 02−3x 0+2,②由①②得x 0=32,k =y 0x 0=−14. ∴所求曲线的切线方程为y =−14x.故答案为:y =2x 和y =−14x. 20.【答案】π+24【解析】【分析】本题考查了定积分的计算,巧用几何意义,由面积求积分,为中档题.【解答】解:∫01(√1−x 2+x)dx =∫01√1−x 2dx +∫01x dx=π4+12x 2|01=π4+12=π+24. 故答案为π+24.21.【答案】(−14,+∞)【解析】【分析】本题考查不等式的求解,结合分段函数的不等式,利用分类讨论的数学思想进行求解是解决本题的关键,属于中档题.根据分段函数的表达式,分别讨论x 的取值范围,进行求解即可.【解答】解:若x ≤0,则x −12≤−12,则f(x)+f(x −12)>1等价为x +1+x −12+1>1,即2x >−12,则x >−14,此时−14<x ≤0,当x >0时,f(x)=2x >1,x −12>−12,当x −12>0即x >12时,满足f(x)+f(x −12)>1恒成立,当0≥x −12>−12,即12≥x >0时,f(x −12)=x −12+1=x +12>12,此时f(x)+f(x−12)>1恒成立,综上x>−14,故答案为:(−14,+∞).22.【答案】①④【解析】【分析】本题考查复合函数的性质,属于中档题.从偶函数的角度可知是否关于y轴对称,先求x 2+1|x|的范围再求f(x)的范围,由复合函数的“同增异减”判断单调性.【解答】解:①f(−x)=lg x 2+1|x|=f(x),∴函数f(x)是偶函数,f(x)的图象关于y轴对称,故①正确;②x2+1|x|=|x|+1|x|≥2,∴f(x)=lg x2+1|x|≥lg2,∴f(x)的最小值是lg2,故②不正确;③函数g(x)=x2+1|x|=|x|+1|x|在(−∞,−1),(0,1)上是减函数,在(−1,0),(1,+∞)上是增函数,故函数f(x)=lg x 2+1|x|在(−∞,−1),(0,1)上是减函数,在(−1,0),(1,+∞)上是增函数,故③不正确;④由③知,f(x)没有最大值,故④正确;故答案为①④.23.【答案】解:(I)由f(x)=13x3+ax2+6x−1,则f′(x)=x2+2ax+6,因在x=2时,f(x)取到极值,所以f′(2)=0⇒4+4a+6=0,解得,a=−52;(II)由(I)得f(x)=13x3−52x2+6x−1,且1≤x≤3,则f′(x)=x2−5x+6=(x−2)(x−3),由f′(x)=0,解得x=2或x=3,f′(x)>0,解得x>3或x<2;f′(x)<0,解得2<x<3;∴f(x)的递增区间为:(−∞,2)和(3,+∞);f(x)递减区间为:(2,3),又f(1)=176,f(2)=113,f(3)=72,要f(x)+m=0有两个根,则f(x)=−m有两解,分别画出函数y=f(x)与y=−m的图象,如图所示.由图知,实数m 的取值范围:−113<m ≤−72. 24.【答案】解:(Ⅰ)函数f(x)=ln(x +1)+a(x 2−x),其中a ∈R ,x ∈(−1,+∞). f ′(x)=1x+1+2ax −a =2ax 2+ax−a+1x+1.令g(x)=2ax 2+ax −a +1,x ∈(−1,+∞).(1)当a =0时,g(x)=1,此时f′(x)>0,函数f(x)在(−1,+∞)上单调递增,无极值点.(2)当a >0时,Δ=a 2−8a(1−a)=a(9a −8).①当0<a ≤89时,Δ≤0,g(x)≥0,f′(x)≥0,函数f(x)在(−1,+∞)上单调递增,无极值点.②当a >89时,Δ>0,设方程2ax 2+ax −a +1=0的两个实数根分别为x 1,x 2,x 1<x 2. ∵x 1+x 2=−12, ∴x 1<−14,x 2>−14. 由g(−1)=1>0,可得−1<x 1<−14.∴当x ∈(−1,x 1)时,g(x)>0,f′(x)>0,函数f(x)单调递增; 当x ∈(x 1,x 2)时,g(x)<0,f′(x)<0,函数f(x)单调递减; 当x ∈(x 2,+∞)时,g(x)>0,f′(x)>0,函数f(x)单调递增. 因此当a >89时,函数f(x)有两个极值点.(3)当a <0时,Δ>0.由g(−1)=1>0,可得x 1<−1<x 2. ∴当x ∈(−1,x 2)时,g(x)>0,f′(x)>0,函数f(x)单调递增; 当x ∈(x 2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减. 因此当a <0时,函数f(x)有一个极值点.综上所述:当a <0时,函数f(x)有一个极值点;当0≤a ≤89时,函数f(x)无极值点;当a >89时,函数f(x)有两个极值点.(Ⅱ)由(Ⅰ)可知:(1)当0≤a ≤89时,函数f(x)在(0,+∞)上单调递增.∵f(0)=0,∴x ∈(0,+∞)时,f(x)>0,符合题意.(2)当89<a ≤1时,由g(0)=1−a ≥0,可得x 1,x 2≤0,函数f(x)在(0,+∞)上单调递增. 又f(0)=0,∴x ∈(0,+∞)时,f(x)>0,符合题意.(3)当1<a 时,由g(0)=1−a <0,可得x 2>0,∴x ∈(0,x 2)时,函数f(x)单调递减.又f(0)=0,∴x ∈(0,x 2)时,f(x)<0,不符合题意,舍去;(4)当a <0时,设ℎ(x)=x −ln(x +1),x ∈(0,+∞),ℎ′(x)=x x+1>0. ∴ℎ(x)在(0,+∞)上单调递增.因此x ∈(0,+∞)时,ℎ(x)>ℎ(0)=0,即ln(x +1)<x , 可得:f(x)<x +a(x 2−x)=ax 2+(1−a)x ,当x >1−1a 时,ax 2+(1−a)x <0,此时f(x)<0,不合题意,舍去. 综上所述,a 的取值范围为[0,1]. 25.【答案】解:(1)∵g(x)=e x −ax −1,∴g ′(x )=e x −a ,①若a ≤0,g ′(x )>0,g(x)在(−∞,+∞)上单调递增; ②若a >0,当x ∈(−∞,lna]时,g′(x )≤0,g(x)单调递减; 当x ∈(lna,+∞)时,g′(x )>0,g(x)单调递增,综合上述,若a ≤0,则g(x)在上单调递增;若a >0,则g(x)在(lna,+∞)上单调递增,在(−∞,lna]上单调减.(2)当x >0时,x 2−x ≤e x −ax −1,即a ≤e x x −x −1x +1, 令ℎ(x)=e x x −x −1x +1(x >0),则ℎ′(x)=e x (x−1)−x 2+1x 2,令φ(x)=e x (x −1)−x 2+1(x >0),则φ′(x)=x(e x −2),当x ∈(0,ln2)时,φ′(x)<0,φ(x)单调递减;当x ∈(ln2,+∞)时,φ′(x)>0,φ(x)单调递增,又φ(0)=0,φ(1)=0,∴当x ∈(0,1)时,φ(x)<0,即ℎ′(x)<0,∴ℎ(x)单调递减,当x ∈(1,+∞)时,φ(x)>φ(1)=0,即ℎ′(x)>0,∴ℎ(x)单调递增,∴ℎ(x)min =ℎ(1)=e −1,∴实数a 的取值范围是(−∞,e −1]. 26.【答案】解:(1)函数的定义域为(0,+∞), f′(x )=b x 2−1x =b−xx 2,当b ≤0,f′(x )<0在(0,+∞)上恒成立,当b >0时,f′(x )<0得x ∈(b,+∞);f′(x )>0得x ∈(0,b), 所以,当b ≤0时,f (x )在(0,+∞)上单调递减,当b >0时,f (x )在(0,b)上单调递增,在(b,+∞)单调递减;(2)证明:由题意知,f(x 1)=f(x 2)=0,即1x 1+lnx 1=1x 2+lnx 2, 于是x 2−x 1x 1x 2=ln x2x 1, 记x 2x 1=t ,t >1,则lnt =t−1tx 1,解得x 1=t−1tlnt ,于是,x 1+x 2=x 1+tx 1=(1+t)x 1=t 2−1tlnt , ∴x 1+x 2−2=t 2−1tlnt −2=2(t 2−12t −lnt)lnt , 记函数g(t)=t 2−12t −lnt ,∴g′(x )=(t−1)22t 2,当t >1时g′(t )>0,故g(t)在(1,+∞)上单调增.于是,t >1时,g(t)>g(1)=0.又lnt >0,所以即x 1+x 2>2成立.27.【答案】解:(1)当a =1时,f(x)=(x +1)lnx −x +2(x >0), f ′(x)=lnx +1x ,因为f ′(1)=1,f(1)=1,所以曲线f(x)在x =1处的切线方程为y =x .(3)当a =2时,f(x)在(1,+∞)上单调递增,所以当x ∈(1,+∞)时,f(x)>f(1)=0,即(x +1)lnx −2x +2>0,所以lnx >2(x−1)x+1在(1,+∞)上恒成立, 令x =n+1n ,得ln n+1n >2(n+1n −1)n+1n +1,化简得ln(n +1)−lnn >22n+1,所以ln2−ln1>22+1,ln3−ln2>24+1,…,ln(n +1)−lnn >22n+1,累加得ln(n +1)−ln1>23+25+⋯+22n+1,即13+15+17+⋯+12n+1<12ln(n +1),n ∈N ∗.。
人教A版高一数学必修第一册《函数的概念与性质》单元练习题卷含答案解析(5)

人教A 版高一数学必修第一册《函数的概念与性质》单元练习题卷(共22题)一、选择题(共10题)1. 设 D 是含数 1 的有限实数集,f (x ) 是定义在 D 上的函数.若 f (x ) 的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,f (1) 的可能取值只能是 ( ) A . √3B .√32C .√33D . 02. 如果函数 f (x )=12(m −2)x 2+(n −8)x +1(m ≥0,n ≥0) 在区间 [12,2] 上单调递减,那么 mn 的最大值为 ( ) A .16 B .18 C .25D .8123. 定义“函数 y =f (x ) 是 D 上的 a 级类周期函数”如下:函数 y =f (x ),x ∈D ,对于给定的非零常数 a ,总存在非零常数 T ,使得定义域 D 内的任意实数 x 都有 af (x )=f (x +T ) 恒成立,此时 T 为 f (x ) 的周期.若 y =f (x ) 是 [1,+∞) 上的 a 级类周期函数,且 T =1,当 x ∈[1,2) 时,f (x )=2x +1,且 y =f (x ) 是 [1,+∞) 上的单调递增函数,则实数 a 的取值范围为 ( ) A . [56,+∞)B . [2,+∞)C . [53,+∞)D . [10,+∞)4. 下列函数中,既是偶函数又在 (0,+∞) 上单调递增的函数是 ( ) A . y =cosxB . y =x 3C . y =log 12xD . y =e x +e −x5. 若函数 f (x )(x ∈R ) 为奇函数,f (1)=12,f (x +2)=f (x )+f (2),则 f (5)= ( )A . 0B . 1C . 52D . 56. 设函数 f (x )={x 2+1,x ≤12x ,x >1,则 f(f (3)) 等于 ( )A . 15B . 3C . 23D .1397. 已知函数 f (x )={x 2−2ax +2a,x ≤12x −alnx,x >1.若关于 x 的不等式 f (x )≥a 2 在 R 上恒成立,则实数 a 的取值范围为 ( ) A . (−∞,2√e] B . [0,32] C . [0,2]D . [0,2√e]8. 函数 f (x )=2x 2+2x x+1是 ( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数9. 已知函数 f (x )={2x −2−x ,x ≥02−x −2x ,x <0,若对任意的 x ∈R ,都有 f (2x +1)≥f (x −a ) 成立,则实数 a 的值为 ( ) A . −12B . 12C . −1D . 110. 如图,在四边形 ABCD 中,AB ∥CD ,AB ⊥BC ,AD =DC =2,CB =√2,动点 P 从 A 点出发,按照 A →D →C →B 路径沿边运动,设 P 点运动的路程为 x ,△APB 的面积为 y ,则函数 y =f (x ) 的图象大致是 ( )A .B .C .D .二、填空题(共6题)11. 记 t =x +y −a(x +2√2xy),x >0,y >0.已知对任意的 x >0,y >0,恒有 t ≥0,则实数 a 的取值范围为 .12. 若函数 f (x )=√1−log 2x 的反函数为 f −1(x ),则 f −1(x ) 的值域为 .13. 已知函数 f (x )={x 2,x ≤0−x 2,x >0,则 f [f (−2)]= .14. 已知函数 f (x )=sinx +tanx .项数为 27 的等差数列 {a n } 满足 a n ∈(−π2,π2),且公差 d ≠0,若 f (a 1)+f (a 2)+⋯+f (a 27)=0,则当 k = 时,f (a k )=0.15. 试写出一个与函数 y =x 2 定义域和值域都相同的函数 .16. 已知 f (x ) 是定义在 R 上的奇函数.当 x >0 时,f (x )=x 2−4x ,则不等式 f (x )>x 的解集用区间表示为 .三、解答题(共6题)17. 某工厂有一段旧墙长 14 m ,现准备利用这段旧墙为一面建造平面图形为矩形,面积为 126 m 2 的厂房,工程条件是:(1)建 1 m 新墙的费用为 a 元; (2)修 1 m 旧墙的费用为 a4 元;(3)拆去 1 m 的旧墙,用可得的建材建 1 m 的新墙的费用为 a2 元. 经讨论有两种方案:①利用旧墙一段 x m (0<x <14) 为矩形一边; ②矩形厂房利用旧墙的一面边长 x ≥14. 试写出两种方案中总费用关于 x 的函数关系.18. 定义在 R 上的严格减函数 y =f (x ) 满足:当且仅当 x ∈M ⊆R + 时,函数值 f (x ) 的集合为[0,2] 且 f (12)=1;对 M 中的任意 x 1,x 2 都有 f (x 1⋅x 2)=f (x 1)+f (x 2).(1) 求证;14∈M ,18∉M ;(2) 求证:y =f (x ) 在 M 上的反函数 f −1(x ) 满足 f −1(x 1)⋅f −1(x 2)=f −1(x 1+x 2); (3) 设 x ∈[0,2],解不等式 f −1(x 2+x )⋅f −1(x +2)≤14.19. 已知函数 f (x ) 对一切实数 x ,y 都有 f (x +y )=f (x )+f (y ).(1) 求证:f (x ) 是奇函数;(2) 若 f (−3)=a ,试用 a 表示 f (12).20. 判断函数 f (x )={x 2−2x +3,x >0,0,x =0,−x 2−2x −3,x <0. 的奇偶性.21. 设函数 y =f (x ) 的表达式为 f (x )=x 2+∣x −a ∣,其中 a 为实常数.(1) 判断函数 y =f (x ) 的奇偶性,并说明理由; (2) 设 a >0,函数 g (x )=f (x )x在区间 (0,a ] 上为严格减函数,求实数 a 的最大值.22. 已知 f (x ) 是定义在 R 上的奇函数,且 f (1)=1,对于任意的 x 1,x 2∈R (x 1≠x 2),都有f (x 1)−f (x 2)x 1−x 2>0.(1) 解关于 x 的不等式 f (x 2−3ax )+f (2a 2)<0;(2) 若 f (x )≤m 2−2am +1 对所有 x ∈[−1,1],a ∈[−1,1] 恒成立,求实数 m 的取值范围.答案一、选择题(共10题) 1. 【答案】B【知识点】抽象函数2. 【答案】B【解析】当 m =2 时,f (x )=(n −8)x +1,要使其在区间 [12,2] 上单调递减,则 n −8<0⇒n <8,于是 mn <16,则 mn 无最大值.当 m ∈[0,2) 时,f (x ) 的图象开口向下,要使 f (x ) 在区间 [12,2] 上单调递减,需 −n−8m−2≤12,即 2n +m ≤18,又 n ≥0,则 mn ≤m (9−m2)=−12m 2+9m . 而 g (m )=−12m 2+9m 在 [0,2) 上为增函数,所以 m ∈[0,2) 时,g (m )<g (2)=16,故 m ∈[0,2) 时,mn 无最大值. 当 m >2 时,f (x ) 的图象开口向上,要使 f (x ) 在区间 [12,2] 上单调递减,需 −n−8m−2≥2,即2m +n ≤12,而 2m +n ≥2√2m ⋅n ,所以 mn ≤18,当且仅当 {2m +n =12,2m =n. 即 {m =3,n =6. 时,取“=”,此时满足 m >2. 故 (mn )max =18.【知识点】二次函数的性质与图像、函数的最大(小)值、函数的单调性3. 【答案】C【解析】 f (n +1)=af (n )=a (2n +1)≥2(n +1)+1,a ≥1+22n+1 对 n ≥1,n ∈N ∗ 恒成立, 所以 a ≥(1+22n+1)max=1+23=53.【知识点】函数的最大(小)值4. 【答案】D【解析】 y =cosx 是偶函数,但在 (0,+∞) 不是单调递增,y =x 3 和 y =log 12x 2 不是偶函数,所以只有 y =e x +e −x 满足题意. 【知识点】函数的奇偶性、函数的单调性5. 【答案】C【解析】因为 f (x ) 为奇函数,所以 f (−1)=−f (1), 又 f (x +2)=f (x )+f (2),令 x =−1,得 f (1)=f (−1)+f (2), 于是 f (2)=2f (1)=1;令 x =1,得 f (3)=f (1)+f (2)=32,于是 f (5)=f (3)+f (2)=52. 故选C .【知识点】函数的奇偶性、抽象函数6. 【答案】D【解析】因为 f (3)=23≤1,所以 f(f (3))=(23)2+1=139.【知识点】分段函数7. 【答案】C【知识点】分段函数、恒成立问题8. 【答案】D【解析】因为 f (x )=2x 2+2x x+1的定义域为 {x∣ x ≠−1},定义域不关于原点对称,所以 f (x ) 既不是奇函数也不是偶函数. 【知识点】函数的奇偶性9. 【答案】A【解析】函数 f (x )={2x −2−x ,x ≥02−x −2x ,x <0,所以当 x ≥0 时,f (x )=2x −2−x , −x <0,即 f (−x )=2x −2−x , 所以 f (x )=f (−x ),同理当 x <0 时,f (x )=2−x −2x , 则 −x >0,则 f (−x )=2−x −2x , 即 f (x )=−f (−x ),综上可知,函数 f (x )={2x −2−x ,x ≥02−x −2x ,x <0 为偶函数,当 x ≥0 时,f (x )=2x −2−x ,此时 f (x ) 单调递增, 所以由偶函数对称性可知当 x <0 时 f (x ) 单调递减,若对任意的 x ∈R ,都有 f (2x +1)≥f (x −a ) 成立,则需 ∣2x +1∣≥∣x −a ∣,两边同时平方,移项化简可得3x2+(2a+4)x+1−a2≥0,由二次函数性质,可得Δ=(2a+4)2−4×3×(1−a2)≤0,化简可得(2a+1)2≤0,由平方数性质可知(2a+1)2≥0,所以只能是(2a+1)2=0,解得a=−12.【知识点】函数的奇偶性、函数的单调性、分段函数10. 【答案】A【解析】当x∈[0,2]时,y=f(x)=√2+12,x,y与x成正比,故排除C,D;当x∈(2,4]时,y=f(x)=1+√2,△APB的面积保持不变,排除B.故选A.【知识点】函数图象、函数的表示方法二、填空题(共6题)11. 【答案】{a∣ a≤12}【解析】由t≥0,得x+y≥a(x+2√2xy).因为x>0,y>0,所以a≤x+2√2xy.因为2√2xy≤x+2y,所以x+2√2xy ≥x+yx+(x+2y)=12,当且仅当x=2y>0时,等号成立,因为a≤12,所以实数a的取值范围是{a∣ a≤12}.【知识点】均值不等式的应用12. 【答案】(0,2]【解析】求原函数定义域即解不等式1−log2x>0.【知识点】函数的值域的概念与求法13. 【答案】−16【解析】f[f(−2)]=f(4)=−16.【知识点】分段函数14. 【答案】14【解析】提示:函数 f (x )=sinx +tanx 为奇函数,a 1+a 27=a 2+a 26=⋯=2a 14=0 时,满足题意.又因为此函数在 (−π2,π2) 上为增函数,所以 k 只能等于 14. 【知识点】函数的奇偶性、等差数列15. 【答案】 y =(x +1)2(答案不唯一)【知识点】函数的相关概念16. 【答案】 (−5,0)∪(5,+∞)【解析】因为 f (x ) 是定义在 R 上的奇函数,所以 f (0)=0, 又当 x <0 时,−x >0,所以 f (−x )=x 2+4x . 又 f (x ) 为奇函数,所以 f (−x )=−f (x ), 所以 f (x )=−x 2−4x (x <0), 所以 f (x )={x 2−4x,x >00,x =0−x 2−4x,x <0①当 x >0 时,由 f (x )>x 得 x 2−4x >x ,解得 x >5; ②当 x =0 时,f (x )>x 无解;③当 x <0 时,由 f (x )>x 得 −x 2−4x >x ,解得 −5<x <0. 综上,不等式 f (x )>x 的解集用区间表示为 (−5,0)∪(5,+∞). 【知识点】函数的奇偶性、二次不等式的解法三、解答题(共6题)17. 【答案】方案①:修旧墙费用为 x ⋅a4 元,拆旧墙造新墙费用为 (14−x )⋅a2 元,其余建新墙费用为 (2x +2×126x−14)a 元,∴ 总费用 y =7a (x4+36x−1)(0<x <14).方案②:利用旧墙费用为 14⋅a 4=7a 2(元),建新墙费用为 (2x +252x−14)a (元),总费用 y =2a (x +126x)−212a (x ≥14).【知识点】建立函数表达式模型18. 【答案】(1) 因为 12∈M ,又 14=12×12,f (12)=1, 所以 f (14)=f (12×12)=f (12)+f (12)=2∈[0,2],所以 14∈M ,又因为 f (18)=f (14×12)=f (14)+f (12)=3∉[0,2], 所以 18∉M .(2) 因为 y =f (x ) 在 M 上是严格减函数,所以 y =f (x ) 在 M 上有反函数 y =f −1(x ),x ∈[0,2].任取 x 1,x 2∈[0,2],设 y 1=f −1(x 1),y 2=f −1(x 2), 所以 x 1=f (y 1),x 2=f (y 2)(y 1,y 2∈M ). 因为 x 1+x 2=f (y 1)+f (y 2)=f (y 1y 2), 所以 y 1y 2=f −1(x 1+x 2).又 y 1y 2=f −1(x 1)f −1(x 2),所以 f −1(x 1)⋅f −1(x 2)=f −1(x 1+x 2). (3) 因为 y =f (x ) 在 M 上是严格减函数, 所以 f −1(x ) 在区间 [0,2] 上也是严格减函数.f −1(x 2−x )⋅f −1(x +2)≤14 等价于 f −1(x 2−x +x +2)≤f −1(2).转化为 {0≤x 2−x ≤2,0≤x +2≤2,x 2+2≥2,解得 {−1≤x ≤0或1≤x ≤2,−2≤x ≤0,x ∈R. 即 −1≤x ≤0.所以,不等式的解集为 [−1,0].【知识点】函数的单调性、抽象函数、反函数19. 【答案】(1) 由已知 f (x +y )=f (x )+f (y ), 令 y =−x 得 f (0)=f (x )+f (−x ), 令 x =y =0 得 f (0)=2f (0), 所以 f (0)=0, 所以 f (x )+f (−x )=0, 即 f (−x )=−f (x ), 故 f (x ) 是奇函数.(2) 由(1)知 f (x ) 为奇函数. 所以 f (−3)=−f (3)=a , 所以 f (3)=−a .又 f (12)=f (6)+f (6)=2f (3)+2f (3)=4f (3), 所以 f (12)=−4a .【知识点】函数的奇偶性20. 【答案】若 x >0,则 −x <0,f (−x )=−(−x )2−2(−x )−3=−x 2+2x −3=−f (x ); 若 x =0,则 −x =0,f (−x )=f (0)=0=−f (0);若 x <0,则 −x >0,f (−x )=(−x )2−2(−x )+3=x 2+2x +3=−f (x ). 综上所述 f (−x )={−x 2+2x −3,x >0,0,x =0,x 2+2x +3,x <0.所以 f (−x )=−f (x ),所以 f (x ) 是奇函数.【知识点】函数的奇偶性21. 【答案】(1) 当 a =0 时,y =f (x ) 为偶函数;当 a ≠0 时,y =f (x ) 为非奇非偶函数;(2) a ∈(0,1].【知识点】函数的单调性、函数的最大(小)值22. 【答案】(1) 因为对于任意 x 1,x 2∈[−1,1],x 1≠x 2,总有 f (x 1)−f (x 2)x 1−x 2>0,所以函数 f (x ) 在 [−1,1] 上是递增的奇函数.不等式 f (x 2−3ax )+f (2a 2)<0 变形为不等式 f (x 2−3ax )<−f (2a 2)=f (−2a 2), 所以 x 2−3ax +2a 2<0⇒(x −2a )(x −a )<0. ①当 a >0 时,不等式解集为 {x∣ a <x <2a }; ②当 a =0 时,不等式解集为 ⌀;③当 a <0 时,不等式解集为 {x∣ 2a <x <a }.(2) 所以函数 f (x ) 在 [−1,1] 上是增函数,且 f (x )max =f (1)=1.所以问题转化为 t 2−2αt −1≥f (x )max =f (1)=1 对任意的 α∈[−1,1] 恒成立. 令 g (α)=m 2−2αm +1,α∈[−1,1],只需 {g (1)=m 2−2m +1≥1,g (−1)=m 2+2m +1≥1, 解得 m =0 或 m ≥2 或 m ≤−2.所以实数 m 的取值范围为 {m∣ m =0 或 m ≥2 或 m ≤−2}. 【知识点】函数的单调性、函数的奇偶性。
(人教版)厦门市必修第一册第三单元《函数概念与性质》测试题(包含答案解析)

一、选择题1.已知函数()xxf x e e -=-,则不等式()()2210f xf x +--<成立的一个充分不必要条件为( ) A .()2,1- B .()0,1 C .1,12⎛⎫-⎪⎝⎭D .()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭2.已知幂函数2242()(1)mm f x m x -+=-在(0,)+∞上单调递增,函数()2xg x t =-,任意1[1,6)x ∈时,总存在2[1,6)x ∈使得()()12f x g x =,则t 的取值范围是( )A .128t <<B .128t ≤≤C .28t >或1t <D .28t ≥或1t ≤3.对于实数a 和b ,定义运算“*”:,,,.b a b a b a a b ≤⎧*=⎨>⎩设()f x x =,()224g x x x =--+,则()()()M x f x g x =*的最小值为( )A .0B .1C .2D .34.函数()f x 对于任意x ∈R ,恒有()12f x f x ⎛⎫<+ ⎪⎝⎭,那么( ) A .可能不存在单调区间 B .()f x 是R 上的增函数 C .不可能有单调区间D .一定有单调区间5.若函数()f x 同时满足:①定义域内存在实数x ,使得()()0f x f x ⋅-<;②对于定义域内任意1x ,2x ,当12x x ≠时,恒有()()()12120x x f x f x -⋅->⎡⎤⎣⎦;则称函数()f x 为“DM 函数”.下列函数中是“DM 函数”的为( )A .()3f x x =B .()sin f x x =C .()1x f x e-=D .()ln f x x =6.已知函数()312xx f x x x e e=-+-+,其中e 是自然对数的底数,若()()2120f a f a -+≤则实数a 的取值范围是( )A .11,2⎡⎤-⎢⎥⎣⎦B .[]1,2-C .(]1,1,2⎡⎫-∞-+∞⎪⎢⎣⎭D .(][),21,-∞-+∞7.定义在R 上的奇函数()f x 满足当0x <时,3(4)f x x =+,则(1),(2),()f f f π的大小关系是( ) A .(1)(2)()f f f π<<B .(1)()(2)f f f π<<C .()(1)(2)f f f π<<D .()(2)(1)f f f π<<8.函数()21x f x x-=的图象大致为( )A .B .C .D .9.已知函数()f x 的定义域为,(4)R f x +是偶函数,(6)3f =,()f x 在(,4]-∞上单调递减,则不等式(24)3f x -<的解集为( ) A .(4,6)B .(,4)(6,)-∞⋃+∞C .(,3)(5,)-∞⋃+∞D .(3,5)10.函数()22368f x x x x =--+-( )A .35,5⎡⎤⎣⎦B .[]1,5C .2,35⎡⎣D .35,35⎡⎣11.已知函数()2121f x ax x ax =+++-(a R ∈)的最小值为0,则a =( ) A .12B .1-C .±1D .12±12.已知函数2,1()1,1x ax x f x ax x ⎧-+≤=⎨->⎩,若存在1212,,x x R x x ∈≠,使得()()12f x f x =成立,则实数a 的取值范围是( ) A .2a <-或2a > B .2a > C .22a -<< D .2a <13.已知函数()()2lg 1f x x x =-+,若函数()f x 在开区间()(),1t t t +∈R 上恒有最小值,则实数t 的取值范围为( ). A .3111,,2222⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭ B .1113,,2222⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭ C .11,22⎛⎫-⎪⎝⎭ D .13,22⎛⎫⎪⎝⎭14.已知定义在R 上的函数()f x 满足:(1)(2)()f x f x -=;(2)(2)(2)f x f x +=-;(3)12,[1,3]x x ∈ 时,1212()[()()]0x x f x f x -->.则(2019),(2020),(2021)f f f 的大小关系是( )A .(2021)(2020)(2019)f f f >>B .(2019)(2020)(2021)f f f >>C .(2020)(2021)(2019)f f f >>D .(2020)(2019)(2021)f f f >>15.下列函数中,在[)1,+∞上为增函数的是 A .()22y x =-B .1y x =-C .11y x =+ D .()21y x =-+二、填空题16.已知函数()f x 为定义在R 上的奇函数,且对于12,[0,)x x ∀∈+∞,都有()()()221112210x f x x f x x x x x ->≠-,且(3)2f =,则不等式6()f x x>的解集为___________.17.若函数()21f x x a x =--是区间[0,)+∞上的严格增函数,则实数a 的取值范围是____.18.已知()f x 是定义域为R 的奇函数,满足()()3f x f x =+,若()21f =-,则()2020f =______.19.设函数2()21k f x x x =-+(120191,,1,2,3,,2019k x k k k +⎡⎤∈-=⎢⎥⎣⎦)的值域依次是1232019,,,,A A A A ,则1232019A A A A ⋂⋂⋂⋂=__________.20.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式()()f x f x x--<0的解集为________.21.如果方程24x +y |y |=1所对应的曲线与函数y =f (x )的图象完全重合,那么对于函数y =f (x )有如下结论:①函数f (x )在R 上单调递减;②y =f (x )的图象上的点到坐标原点距离的最小值为1; ③函数f (x )的值域为(﹣∞,2];④函数F (x )=f (x )+x 有且只有一个零点. 其中正确结论的序号是_____.22.定义在R 上的偶函数()f x 满足(1)()f x f x +=-,且当[1,0)x ∈-时1()2xf x ⎛⎫= ⎪⎝⎭则()2log 8f =_________.23.已知()f x 是R 上的偶函数,且在[0,)+∞单调递增,若(3)(4)f a f -<,则a 的取值范围为____.24.已知函数1()22x x f x =-,则满足()()2560f x x f -+>的实数x 的取值范围是________. 25.函数()93x xf x =+()1t x t ≤≤+,若()f x 的最小值为2,则()f x 的最大值为________.26.设函数()f x x x b =+,给出四个命题:①()y f x =是偶函数;②()f x 是实数集R 上的增函数;③0b =,函数()f x 的图像关于原点对称;④函数()f x 有两个零点. 上述命题中,正确命题的序号是__________.(把所有正确命题的序号都填上)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据解析式可判断出()f x 是定义在R 的增函数且是奇函数,不等式可化为()()221f x f x <+,即得221x x <+,解出即可判断.【详解】可得()f x 的定义域为R ,x y e =和x y e -=-都是增函数,()f x ∴是定义在R 的增函数,()()x x f x e e f x --=-=-,()f x ∴是奇函数,则不等式()()2210f x f x +--<化为()()()2211f xf x f x <---=+,221x x ∴<+,解得112x -<<, 则不等式成立的充分不必要条件应是1,12⎛⎫- ⎪⎝⎭的真子集, 只有B 选项满足. 故选:B. 【点睛】本题考查利用函数的单调性和奇偶性解不等式,解题的关键是判断出()f x 是增函数且是奇函数,从而将不等式化为()()221f xf x <+求解.2.B解析:B【分析】先根据幂函数定义解得m ,再根据单调性进行取舍,根据任意存在性将问题转化为对应函数值域包含问题,最后根据函数单调性确定对应函数值域,根据值域包含关系列不等式解得结果. 【详解】由题意22(1)1420m m m ⎧-=⎨-+>⎩,则0m =,即()2f x x =,当[)11,6x ∈时, ()[)11,36f x ∈,又当[)21,6x ∈时, ()[)22,64g x t t ∈--,∴216436t t -≤⎧⎨-≥⎩,解得128t ≤≤,故选:B . 【点睛】对于方程任意或存在性问题,一般转化为对应函数值域包含关系,即1212,,()()()x x f x g x y f x ∀∃=⇒=的值域包含于()y g x =的值域; 1212,,()()()x x f x g x y f x ∃∃=⇒=的值域与()y g x =的值域交集非空.3.B解析:B 【分析】由题意可得()()()()()()()()()g x f x g x M x f x g x f x f x g x ⎧≤⎪=*=⎨>⎪⎩,通过解不等式得出()()2241,x x x M x x x ⎧⎤--+∈⎪⎥⎪⎣⎦=⎨⎛⎪∈-∞⋃+∞ ⎪ ⎝⎭⎩,作出函数()M x 的图象,根据函数图象可得答案. 【详解】由条件有()()()()()()()()()g x f x g x M x f x g x f x f x g x ⎧≤⎪=*=⎨>⎪⎩当0x ≥时,()224g x x x x =--+≥,得到01x ≤≤, 即01x ≤<时,()()f x g x <,当1x >时,()()f x g x > 当0x <时,()224g x x x x =--+≤-,得x ≤即当1172x--≤时,()()f xg x>,当11702x--<<时,()()f xg x<所以()()211724,12117,1,2x x xM xx x⎧⎡⎤----+∈⎪⎢⎥⎪⎣⎦=⎨⎛⎫--⎪∈-∞⋃+∞⎪⎪ ⎪⎝⎭⎩作出函数()M x 的图象,如图所示,由图可得,当1x=时,()M x有最小值1故选:B4.A解析:A【分析】根据题意,举出两个满足()12f x f x⎛⎫<+⎪⎝⎭的例子,据此分析选项可得答案.【详解】根据题意,函数()f x对于任意x∈R,恒有()12f x f x⎛⎫<+⎪⎝⎭,则()f x的解析式可以为:()2,1 1.51,0.510,00.5xf x xx⎧⎪<≤⎪⎪=<≤⎨⎪<≤⎪⎪⎩,满足()12f x f x⎛⎫<+⎪⎝⎭,不是增函数,没有单调区间,也可以为()f x x=,满足()12f x f x⎛⎫<+⎪⎝⎭,是增函数,其递增区间为R,则()f x可能存在单调区间,也可能不存在单调区间,则A 正确;BCD 错误; 故选:A. 【点睛】关键点睛:本题考查函数单调性的定义,构造反例是解决本题的关键.5.A解析:A 【分析】根据题意函数定义域关于原点对称且函数值有正有负,且为定义域内的单调递增函数,通过此两点判定即可. 【详解】解:由定义域内存在实数x 有()()0f x f x ⋅-<,可得函数定义域关于原点对称且函数值有正有负,排除D 、C.由②得“DM 函数”为单调递增函数,排除B. 故选:A 【考点】确定函数单调性的四种方法: (1)定义法:利用定义判断;(2)导数法:适用于初等函数、复合函数等可以求导的函数;(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接; (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.6.C解析:C 【分析】求导判断函数()312xxf x x x e e =-+-+的单调性,再利用定义判断函数的奇偶性,根据单调性与奇偶性求解即可. 【详解】根据题意,()2132xx f x x e e'=-+--,因为当且仅当0x =时,()213220x x f x x e e -'=-+-≤-=,所以函数()f x 在R 上单调递减;又()3311()220x xx x f x f x x x e x x e e e---+=-++-+-+=,所以函数()f x 为奇函数,()()2120f a f a -+≤,则()()212f a f a -≤-,因为函数()f x 为奇函数,()()212f a f a -≤-,又因为函数()f x 在R 上单调递减,所以212a a -≥-,可得1a ≤-或12a ≥. 故选:C. 【点睛】对于求值或范围的问题,一般先利用导数得出区间上的单调性,再利用定义判断奇偶性,再利用其单调性脱去函数的符号“f ”,转化为解不等式组的问题,若()f x 为偶函数,则()()()f x f x f x -==.7.A解析:A 【分析】根据函数奇偶性先将0x >时的解析式求解出来,然后根据0x >时函数的单调性比较出(1),(2),()f f f π的大小关系.【详解】当0x >时,0x -<,所以()43f x x -=-+,又因为()f x 为奇函数,所以()()43f x f x x -=-=-+,所以()43f x x =-, 显然0x >时,()43f x x =-是递增函数,所以()()()12f f f π<<,故选:A. 【点睛】思路点睛:已知函数奇偶性,求解函数在对称区间上的函数解析式的步骤: (1)先设出对称区间上x 的取值范围,然后分析x -的范围; (2)根据条件计算出()f x -的解析式;(3)根据函数奇偶性得到()(),f x f x -的关系,从而()f x 在对称区间上的解析式可求.8.D解析:D 【分析】分析函数()f x 的奇偶性及其在区间()0,∞+上的单调性,由此可得出合适的选项. 【详解】函数()21x f x x -=的定义域为{}0x x ≠,()()()2211x x f x f x x x----===-, 函数()f x 为偶函数,其图象关于y 轴对称,排除B 、C 选项;当0x >时,()211x f x x x x-==-,因为y x =,1y x =-在区间()0,∞+上都是增函数,所以函数()f x 在()0,∞+上单调递增,排除A 选项,故选:D. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左、右位置;从函数的值域,判断图象的上、下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 利用上述方法排除、筛选选项.9.D解析:D 【分析】由题知函数()f x 的图象关于直线4x =对称,则有()f x 在[4,)+∞上单调递增,且有(6)(2)3f f ==,再利用单调性解不等式即可得结果.【详解】因为(4)f x +是偶函数,所以函数()f x 的图象关于直线4x =对称,则(6)(2)3f f ==. 因为()f x 在(,4]-∞上单调递减,所以()f x 在[4,)+∞上单调递增, 故(24)3f x -<等价于224x <-6<,解得35x <<. 故选:D 【点睛】关键点睛:本题的关键是能得出函数()f x 的图象关于直线4x =对称,进而判断出函数的单调性来,要求学生能够熟悉掌握函数性质的综合应用.10.A解析:A 【详解】由()()2223682x 31x 3f x x x x =---+-=----,知2680x x -+-≥,解得[]2,4.x ∈令()2t 231x 3x =----,则()21x 323x t --=--.,即为()2y 1x 3=--和y 23x t =--两函数图象有交点,作出函数图象,如图所示:由图可知,当直线和半圆相切时t 最小,当直线过点A(4,0)时,t 最大. 当直线和半圆相切时,3t 114-=+,解得35t =±,由图可知35t =-.当直线过点A(4,0)时,2430t ⨯--=,解得t 5=.所以t 35,5⎡⎤∈-⎣⎦,即() 35,5f x ⎡⎤∈-⎣⎦.故选A.11.C解析:C 【分析】设()()()()2121g x h x ax g x h x x ax ⎧+=+⎪⎨-=+-⎪⎩,计算可得()()()()()()()2,2,g x g x h x f x h x g x h x ⎧≥⎪=⎨<⎪⎩,再结合图像即可求出答案. 【详解】设()()()()2121g x h x ax g x h x x ax ⎧+=+⎪⎨-=+-⎪⎩,则()()221g x x axh x x⎧=+⎪⎨=-⎪⎩, 则()()()()()()()()()()()2,2,g x g x h x f x g x h x g x h x h x g x h x ⎧≥⎪=++-=⎨<⎪⎩,由于函数()f x 的最小值为0,作出函数()(),g x h x 的大致图像,结合图像,210x -=,得1x =±, 所以1a =±. 故选:C 【点睛】本题主要考查了分段函数的图像与性质,考查转化思想,考查数形结合思想,属于中档题.12.D解析:D 【分析】若存在1212,,x x R x x ∈≠,使得()()12f x f x =成立,则说明()f x 在R 上不单调,分0a =,0a <和0a >三种情况讨论求解. 【详解】若存在1212,,x x R x x ∈≠,使得()()12f x f x =成立,则说明()f x 在R 上不单调,当0a =时,2,1()1,1x x f x x ⎧-≤=⎨->⎩,图象如图,满足题意;当0a <时,函数2y x ax =-+的对称轴02ax =<,其图象如图,满足题意;当0a >时,函数2y x ax =-+的对称轴02ax =>,其图象如图,要使()f x 在R 上不单调,则只要满足12a<,解得2a <,即02a <<.综上,2a <. 故选:D. 【点睛】本题考查分段函数的单调性的应用及二次函数的性质的应用,得出()f x 在R 上不单调是解题的关键.13.A解析:A 【分析】根据函数的奇偶性和单调性,求出最小值取得的条件,结合开区间位置求解参数的取值范围. 【详解】由题210x x -+>恒成立,所以()()2lg 1f x x x =-+定义域为R ,()()()()2lg 1f x x x f x -=---+=,所以()()2lg 1f x xx =-+为定义在R 上的偶函数,当220,11x y x x x x ≥=-+=-+在10,2⎡⎤⎢⎥⎣⎦单调递减,在1,2⎡⎫+∞⎪⎢⎣⎭单调递增, 所以()()2lg 1f x x x =-+在10,2⎡⎤⎢⎥⎣⎦单调递减,在1,2⎡⎫+∞⎪⎢⎣⎭单调递增,在1,2⎛⎤-∞- ⎥⎝⎦单调递减,在1,02⎡⎤-⎢⎥⎣⎦单调递增,1122f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,所以函数()()2lg 1f x x x =-+在12x =和12x =-处均取得最小值,若函数()f x 在开区间()(),1t t t +∈R 上恒有最小值, 则112t t <-<+或112t t <<+, 解得:3111,,2222t ⎛⎫⎛⎫∈--- ⎪ ⎪⎝⎭⎝⎭故选:A14.B解析:B 【分析】根据已知可得函数()f x 的图象关于直线1x =对称,周期为4,且在[]1,3上为增函数,得出()()20193f f =,()()()202002f f f ==,()()20211f f =,根据单调性即可比较(2019),(2020),(2021)f f f 的大小. 【详解】解:∵函数()f x 满足:(2)()f x f x -=,故函数的图象关于直线1x =对称;(2)(2)f x f x +=-,则()()4f x f x +=,故函数的周期为4;12,[1,3]x x ∈ 时,1212()[()()]0x x f x f x -->,故函数在[]1,3上为增函数;故()()20193f f =,()()()202002f f f ==,()()20211f f =, 而()()()321f f f >>,所以(2019)(2020)(2021)f f f >>. 故选:B. 【点睛】本题考查函数的基本性质的应用,考查函数的对称性、周期性和利用函数的单调性比较大小,考查化简能力和转化思想.15.B解析:B 【解析】对于A ,函数()22y x =-的图象是抛物线,对称轴是x =2,当x <2时是减函数,x >2时是增函数,∴不满足题意;对于B ,函数1,111,1x x y x x x -≥⎧=-=⎨-<⎩,∴当1≥x 时,是增函数,x <1时,是减函数,∴满足题意; 对于C ,函数11y x =+,当x <−1,x >−1时,函数是减函数,∴不满足题意; 对于D ,函数()21y x =-+的图象是抛物线,对称轴是x =−1,当x >−1时是减函数,x <−1时是增函数,∴不满足题意;故选B.二、填空题16.【分析】令可得是上的增函数根据为奇函数可得为偶函数且在上是减函数分类讨论的符号将变形后利用的单调性可解得结果【详解】令则对于都有所以是上的增函数因为函数为定义在R 上的奇函数所以所以所以是定义在R 上的 解析:(3,0)(3,)-⋃+∞【分析】令()()g x xf x =,可得()g x 是[0,)+∞上的增函数,根据()f x 为奇函数可得()g x 为偶函数,且在(,0)-∞上是减函数,分类讨论x 的符号,将6()f x x>变形后,利用()g x 的单调性可解得结果. 【详解】令()()g x xf x =,则对于12,[0,)x x ∀∈+∞,都有211221()()0()g x g x x x x x ->≠-,所以()g x 是[0,)+∞上的增函数,因为函数()f x 为定义在R 上的奇函数,所以()()f x f x -=-,所以()()()()g x xf x xf x g x -=--==,所以()g x 是定义在R 上的偶函数,所以()g x 在(,0)-∞上是减函数,当0x >时,6()f x x>化为()63(3)xf x f >=,即()(3)g x g >,因为()g x 是[0,)+∞上的增函数,所以3x >, 当0x <时,6()f x x>化为()6xf x <,因为()f x 为奇函数,且(3)2f =,所以(3)(3)2f f -=-=-,所以()6xf x <化为()3(3)(3)g x f g <--=-,因为()g x 在(,0)-∞上是减函数,所以30x -<<,综上所述:6()f x x>的解集为(3,0)(3,)-⋃+∞. 故答案为:(3,0)(3,)-⋃+∞【点睛】关键点点睛:构造函数()()g x xf x =,利用()g x 的奇偶性和单调性求解是解题关键.17.【分析】首先将函数写成分段函数的形式再分解函数的单调性列不等式求解【详解】要使函数在单调递增则在单调递增且在单调递增以及在分界点处即得解得:故答案为:【点睛】关键点点睛:本题的第一个关键是去绝对值第 解析:[]0,2【分析】首先将函数写成分段函数的形式,再分解函数的单调性,列不等式求解. 【详解】()22,1,1x ax a x f x x ax a x ⎧-+≥=⎨+-<⎩,要使函数()f x 在[)0,+∞单调递增,则2y x ax a =-+在[)1,+∞单调递增,且2y x ax a =+-在[)0,1单调递增,以及在分界点处a a -≤,即得1202a aa a ⎧≤⎪⎪⎪-≤⎨⎪-≤⎪⎪⎩,解得:02a ≤≤. 故答案为:[]0,2 【点睛】关键点点睛:本题的第一个关键是去绝对值,第二个关键是根据分段函数的单调性列不等式,每段都是增函数,以及在分界点处的不等式.18.1【分析】首先根据题中所给的条件判断出函数的最小正周期结合奇函数的定义求得结果【详解】因为所以函数是以3为周期的周期函数且是定义域为的奇函数所以故答案为:1【点睛】该题考查的是有关函数的问题涉及到的解析:1 【分析】首先根据题中所给的条件,判断出函数的最小正周期,结合奇函数的定义,求得结果. 【详解】因为()()3f x f x =+,所以函数()f x 是以3为周期的周期函数, 且是定义域为R 的奇函数,所以(2020)(67432)(2)(2)1f f f f =⨯-=-=-=, 故答案为:1. 【点睛】该题考查的是有关函数的问题,涉及到的知识点有函数奇偶性与周期性的综合应用,属于简单题目.19.【分析】求出二次函数的对称轴判断函数的最小值与最大值然后求解值域的交集即可【详解】函数的对称轴为开口向上所以函数的最小值为函数()的值域依次是它们的最小值都是函数值域中的最大值为:当即时此时所以值域解析:2220190,1010⎡⎤⎢⎥⎣⎦【分析】求出二次函数的对称轴,判断函数的最小值与最大值,然后求解值域的交集即可. 【详解】函数()221k f x x x =-+的对称轴为1x =,开口向上,所以函数的最小值为()10f =,函数2()21k f x x x =-+(120191,,1,2,3,,2019k x k k k +⎡⎤∈-=⎢⎥⎣⎦)的值域依次是1232019,,,,A A A A ,它们的最小值都是0,函数值域中的最大值为:当12019111k k k +⎛⎫--=-⎪⎝⎭,即1010k =时,此时111010x =-, 所以,值域中的最大值中的最小值为22112019111101010101010f ⎛⎫⎛⎫⎛⎫-=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以,212320192010220190,1010A A A A A ⎡⎤==⎢⎥⎣⎦.故答案为:222019 0,1010⎡⎤⎢⎥⎣⎦.【点睛】本题考查二次函数的性质,函数的最值,考查分析问题解决问题的能力,涉及集合的交集计算,属于基础题.20.(-10)∪(01)【分析】首先根据奇函数f(x)在(0+∞)上为增函数且f(1)=0得到f(-1)=0且在(-∞0)上也是增函数从而将不等式转化为或进而求得结果【详解】因为f(x)为奇函数且在(0解析:(-1,0)∪(0,1)【分析】首先根据奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,得到f(-1)=0,且在(-∞,0)上也是增函数,从而将不等式转化为()0xf x>⎧⎨<⎩或()0xf x<⎧⎨>⎩,进而求得结果.【详解】因为f(x)为奇函数,且在(0,+∞)上是增函数,f(1)=0,所以f(-1)=-f(1)=0,且在(-∞,0)上也是增函数.因为()()f x f xx--=2·()f xx<0,即()0xf x>⎧⎨<⎩或()0xf x<⎧⎨>⎩解得x∈(-1,0)∪(0,1).故答案为:(-1,0)∪(0,1).【点睛】该题考查的是有关函数的问题,涉及到的知识点有函数奇偶性与单调性的应用,属于简单题目.21.②④【分析】根据题意画出方程对应的函数图象根据图像判断函数单调性值域最值以及函数零点个数的判断数形结合即可选择【详解】当y≥0时方程y|y|=1化为(y≥0)当y<0时方程y|y|=1化为(y<0)解析:②④【分析】根据题意,画出方程对应的函数图象,根据图像判断函数单调性、值域、最值以及函数零点个数的判断,数形结合即可选择.【详解】当y≥0时,方程24x+y|y|=1化为2214xy+=(y≥0),当y<0时,方程24x+y|y|=1化为2214xy-=(y<0).作出函数f (x )的图象如图:由图可知,函数f (x )在R 上不是单调函数,故①错误; y =f (x )的图象上的点到坐标原点距离的最小值为1,故②正确; 函数f (x )的值域为(﹣∞,1],故③错误;双曲线2214x y -=的渐近线方程为y 12=±,故函数y =f (x )与y =﹣x 的图象只有1个交点, 即函数F (x )=f (x )+x 有且只有一个零点,故④正确. 故答案为:②④. 【点睛】本题考查函数单调性、值域以及零点个数的判断,涉及椭圆和双曲线的轨迹绘制,以及数形结合的数学思想,属综合中档题.22.2【分析】利用确定函数的周期再结合偶函数性质求值【详解】用x+1代换x 得即f(x+2)=f(x)f(x)为周期函数T=2又是偶函数所以故答案为:2【点睛】本题考查由函数的周期性和奇偶性求函数值属于中解析:2 【分析】 利用()()1f x f x +=-确定函数的周期,再结合偶函数性质求值.【详解】用x +1代换x ,得[]()()(1)+1(+1)f x f x f x f x +=-=--=⎡⎤⎣⎦,即f (x +2)=f (x ),f (x )为周期函数,T =2,又 2log 83=, ()f x 是偶函数,所以()()()()121log 831122f f f f -⎛⎫===-== ⎪⎝⎭,故答案为:2. 【点睛】本题考查由函数的周期性和奇偶性求函数值,属于中档题.函数()f x 若满足()()f x a f x +=-,1()()f x a f x +=等时,则此函数为周期函数,且2a 是它的一个周期.23.【分析】由偶函数的性质将不等式表示为再由函数在区间上的单调性得出与的大小关系解出不等式即可【详解】函数是上的偶函数所以由得函数在区间上单调递增得解得因此实数的取值范围是故答案为【点睛】本题考查函数不 解析:17a -<<【分析】由偶函数的性质()()f x fx =将不等式表示为()()34f a f -<,再由函数()y f x =在区间[)0,+∞上的单调性得出3a -与4的大小关系,解出不等式即可. 【详解】函数()y f x =是R 上的偶函数,所以()()f x f x =,由()()34f a f -<,得()()34fa f -<,函数()y f x =在区间[)0,+∞上单调递增,34a ∴-<,得434a -<-<, 解得17a -<<,因此,实数a 的取值范围是()1,7-,故答案为()1,7-. 【点睛】本题考查函数不等式的求解,对于这类问题,一般要考查函数的奇偶性与单调性,将不等式转化为()()12f x f x <(若函数为偶函数,可化为()()12fx f x <),结合单调性得出1x 与2x 的大小(或1x 与2x 的大小)关系,考查推理能力与分析问题的能力,属于中等题.24.【分析】根据题意由奇函数的定义可得函数为奇函数由函数单调性的性质可得函数在上为减函数;据此可得解可得的取值范围即可得答案【详解】解:根据题意函数即函数为奇函数又由在上为减函数在上增函数与则函数在上为 解析:(2,3)【分析】根据题意,由奇函数的定义可得函数()f x 为奇函数,由函数单调性的性质可得函数()f x 在R 上为减函数;据此可得()()()22560(5)6f x x f f x x f -+>⇒->-22(5)(6)56f x x f x x ⇒->-⇒-<-,解可得x的取值范围,即可得答案. 【详解】解:根据题意,函数1()22x x f x =-,11()2(2)()22xx x x f x f x ---=-=--=-,即函数()f x 为奇函数, 又由12x y =在R 上为减函数,2x y =-在R 上增函数与,则函数()f x 在R 上为减函数, 则()()2560f x x f -+>()2(5)6f x x f ∴->-2(5)(6)f x x f ∴->- 256x x ∴-<-,解可得:23x <<, 即x 的取值范围为(2,3); 故答案为:(2,3) 【点睛】本题考查函数的奇偶性与单调性的综合应用,关键是得到关于x 的不等式,属于基础题.25.12【分析】首先设将原函数转化为再根据二次函数的单调性即可得到答案【详解】设因为所以则函数转化为因为在为增函数所以解得或(舍去)即所以故答案为:【点睛】本题主要考查根据函数单调性求最值同时考查了换元解析:12 【分析】首先设3x m =,将原函数转化为()2g m m m =+,()133t t m +≤≤,再根据二次函数的单调性即可得到答案. 【详解】设3x m =,因为1t x t ≤≤+,所以133t t m +≤≤.则函数()93x x f x =+()1t x t ≤≤+转化为()2g m m m =+,()133t t m +≤≤.因为()g m 在13,3t t +⎡⎤⎣⎦为增函数,所以()()()2min 3332t t t g m g ==+=,解得31t =或32t =-(舍去).即0t =.所以()()()1max 3312t f x g g +===.故答案为:12 【点睛】本题主要考查根据函数单调性求最值,同时考查了换元法,属于中档题.26.②③【解析】①错∵∴不是偶函数②∵由图象知在上单调递增正确③时关于原点对称正确④若时只有一个零点错误综上正确命题为②③解析:②③ 【解析】①错,∵()f x x x b =+,()()f x x x b f x -=-+≠,∴()y f x =不是偶函数.②∵22(0)()(0)x b x f x x b x ⎧+>=⎨-+≤⎩,由图象知()f x 在R 上单调递增,正确.③0b =时,22(0)()(0)x x f x x x ⎧>=⎨-≤⎩,()f x 关于原点对称,正确.④若0b =时,()f x 只有一个零点,错误.综上,正确命题为②③.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数概念与基本性质练习题
1
.如果函数()yfx的图象与函数()32gxx的图象关于坐标原点对
称,则()yfx的表达式为( )
A.23yx B.23yx C.23yx D.23yx
2.设函数()fx对任意x、y
满足()()()fxyfxfy,且(2)4f,则
(1)f
=( )
A.-2 B.±21 C.±1 D.2
3.设I=R,已知2()lg(32)fxxx的定义域为F
,函数
()lg(1)lg(2)gxxx
的定义域为G,那么GUICF等于( )
A.(2,+∞) B.(-∞,2) C.(1,+ ∞) D.(1,2)U(2
,+
∞)
4.已知函数)(xf的定义域为[0,4]
,求函数)()3(2xfxfy的定义域
为( )
A.[2,1] B.[1,2] C.[2,1] D.[1,2]
5.下列四个函数:① 1xyx; ②2yxx; ③ 2(1)yx; ④
21xyx
,其中在(-,0) 上为减函数的是( )。
(A)① (B)④ (C)①、④ (D)①、②、④
6. 已知函数)(xf是定义在)2,2(上的减函数,若(1)(21)fmfm,实
数m的取值范围为( )
A. m>0 B. 30
A.函数1yx是奇函数,且在定义域内为减函数
B.函数30(1)yxx是奇函数,且在定义域内为增函数
C.函数2yx是偶函数,且在(3,0)上为减函数
D.函数2(0)yaxcac是偶函数,且在(0,2)上为增函数
8. 若)(x,()gx都是奇函数,()()()2fxaxbgx在(0
,+∞)上
有最大值5,则()fx在(-∞,0)上有( )
A.最小值-5 B.最大值-5 C.最小值-1 D
.最大
值-
3
9.定义在R上的奇函数()fx在(0,+∞)上是增函数,又(3)0f,
则不等式()0xfx的解集为()
A.(-3,0)∪(0,3) B.(-∞,-3)∪(3,
+∞)
C.(-3,0)∪(3,+∞) D.(-∞,-3)∪(0,
3)
10.函数232yxx的值域为
11.函数|1||2|yxx的值域为
12.已知]3,1[,)2()(2xxxf,函数)1(xf的单调递减区间为
13.若()fx是偶函数,当x∈[0,+∞)时,()1fxx,则(1)0fx的
解集是
14.判断函数2()1axfxx (a≠0)在区间(-1,1)上的单调性。
15.试判断下列函数的奇偶性:
(1)()|2||2|fxxx; (2)331)(2xxxf; (3)
0
)1(||)(xxxxf
.
16.(1)已知f(x)是一次函数,且满足3(1)2(1)217fxfxx,求()fx;
(2)已知221)(,21)(xxxgfxxg (x0), 求)21(f.
17.已知函数2()23fxxx在[0,]a(0)a上的最大值为3
,最小值为
2,求实数a的取值范围.
18.已知函数21()(,,)axfxabcZbxc是奇函数,又,(1)2f,(2)3f,
求a、b、c的值.
函数概念与基本性质练习题
参考答案
1—5 D A C C A 6—9 B CC A
10. [0,2] 11. [3,) 12. ]1,2[ 13. {|02}xx
14.
解:设1211xx, 则
1
12
2
1
()()1axfxfxx
-1222xax=)1)(1())(1(22211221xxxxxxa,
∵ 2110x, 2210x,1210xx, 210xx, ∴)1)(1())(1(22211221xxxxxx>0,
∴ 当0a时, 12()()0fxfx, 函数()yfx在(-1, 1)上为减函数,
当0a时, 12()()0fxfx, 函数()yfx在(-1, 1)上为增函数
.
15. 解:(1)函数的定义域为R,()|2||2||2||2|()fxxxxxfx,
故()fx为偶函数.
(2)由210|3|30xx得:110xx且,定义域为[1,0)(0,1],关于原
点对称,
22
11()33xxfxxx
,21()()xfxfxx,故()fx为奇函数.
(3)函数的定义域为(-∞,0)∪(0,1)∪(1,+∞),它不关于原点对
称,故函数既非奇函数,又非偶函数.
16. 解:(1)设()(0)fxaxba,由3(1)2(1)217fxfxx得:
3[(1)]2[(1)]217axbaxbx
,∴
5217axabx
∴ 2517aab,解得:27ab,∴ ()27fxx.
(2)令1()122gxx,得14x.∴ 2211()14()1512()4f.
17. 解:2()(1)2fxx,
(1)当12a,即2a时,2(1)2()233ffaaa,解得:20(aa或舍);
(2)当12aa,即12a时,(1)2(0)3ff,适合题意;
(3)当1a时,2(0)3()232ffaaa,解得:1a(舍).
综上所述:
12a
18.
解:由()()fxfx得()bxcbxc ∴c=0. 又(1)2f,得12ab,
而(2)3f,得4131aa,解得12a.
又aZ,∴0a或1a.
若0a,则b=12Z,应舍去; 若1a,则b=1∈Z.
∴1,1,0abc.