2010年中考数学专题复习必备教案3

合集下载

中考数学专题复习教案

中考数学专题复习教案

中考数学专题复习教案一、教学目标本教案旨在帮助学生复中考数学各个专题,提高他们的数学能力和应试技巧。

具体目标如下:1. 复和掌握中考数学常见的专题知识点;2. 提高解题能力,培养学生的逻辑思维和问题解决能力;3. 熟悉中考数学题型和解题技巧,为考试做好准备。

二、教学内容根据中考数学的考试大纲和常见试题,本教案将涵盖以下专题的重点内容:1. 整式的加减运算2. 整式的乘法3. 分式的加减运算4. 分式的乘除运算5. 初等函数6. 平面图形的性质与运动7. 空间图形的性质与运动8. 数据的收集、整理与分析9. 概率与统计10. 三角形的性质与计算三、教学方法与策略为了有效地提高学生的数学研究效果,本教案采用以下教学方法和策略:1. 知识与实践相结合:通过教师讲解和学生实际操作相结合,深化学生对数学知识的理解;2. 案例教学:通过实际例题,让学生掌握解题的方法和技巧;3. 互动教学:引导学生积极参与讨论和提问,增强他们的研究兴趣和主动性;4. 个性化教学:根据学生的不同差异,采用不同的教学方式和资源,满足学生的研究需求;5. 检测与评价:定期进行小测验和练,及时发现学生的问题并加以解决。

四、教学评价为了对学生的研究情况进行评价和跟踪,本教案将采用以下评价方式:1. 日常表现评价:包括学生的课堂参与情况、作业完成情况等;2. 期中考试:对学生的专题掌握情况进行全面测试;3. 模拟考试:模拟中考试题,检验学生对各个专题的综合应用能力;4. 学业成绩评价:综合考虑学生的平时表现、考试成绩等因素,对学生的数学学业水平进行评价。

五、教学资源为了支持教学的顺利进行,本教案将准备以下教学资源:1. 教材:根据教学内容准备相应的教材和教辅资料;2. 题:提供各个专题的练题,供学生进行巩固和练;3. 投影仪和白板:用于展示案例和讲解;4. 计算器:辅助学生进行计算和实验。

六、教学计划根据教学内容和学校的教学进度,本教案将制定详细的教学计划。

2010届中考数学统计复习教案

2010届中考数学统计复习教案

中考复习教案——统计中考要求及命题趋势1、了解总体、个体、样本不同的抽样可能得到不同的结果,频数分布的意义和作用,2、理解频数、频率的概念3、掌握用扇形统计图表示数据,计算加权平均数,根据具体问题可选择合适的统计图表示数据的集中程度;计算极差和方差,并用它们表示数据的离散程度。

列频率分布表,画频数分布直方图和频数折线图,并解决简单的实际问题;样本估计总体的思想,用样板的平均数、方差估计总体的平均数。

方差,根据统计结果作出合理的判断和预测,比较清晰的表示自己的观点,对日常生活中的某些数据发表自己的看法,认识到统计在社会生活及科学领域中应用,并能解决一些简单的实际问题。

每年中考都考查总体、样本及样本容量等概念,以及确定平均数、众数、中位数、标准差。

应试对策1牢固掌握概念,并能掌握概念间的区别和联系,以及在实际问题中应用。

2统计的特点是与数据打交道解题时计算较繁,所以要有意识培养认真、耐心、细致的学习态度和学习习惯。

3要关注统计知识与方程、不等式相结合的综合性试题,会读频率分布直方图,会分析图表,注重能力的培养、加大训练力度。

一、数据的代表【回顾与思考】数据的代表⎧⎧⎪⎨⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩算术平均数平均数加权平均数中位数众数极差方差--标准差【例题经典】考查众数和中位数的概念(2006年临安市)某青年排球队12名队员的年龄情况如下:则这个队队员年龄的众数和中位数是()A.19,20 B.19,19 C.19,20.5 D.20,19【点评】关键弄清众数和中位数的概念,明确众数可以是1个,多个,•也可以没有;求中位数要把数据从小到大排列.考查平均数的概念和计算公式例2 (2006年泸州市)江北水厂为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下:(1)计算这10户家庭该月平均用水量;(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少立方米?【点评】关键是能够灵活运用公式求平均数.考查极差、方差、标准差的概念及生活中的应用例3 在暑假开展的社会实践活动中,•小丽同学帮助李大爷统计了一周内卖出A、B两种品牌雪糕的数量,记录数据如下表:(1)请你用统计表提供的数据完成上表;(2)若A种雪糕每支利润0.20元,B种雪糕每支利润0.15元,•请你根据题中提供的信息,对李大爷购进雪糕提出建议,并简述你的理由.【点评】极差最简单、用得最少,即最大数与最小数之差,方差与标准差所反映数据情况准确一些.二、数据的收集与处理【回顾与思考】数据的收集与处理⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎨⎪⎪⎪⎪⎪⎩扇形统计图统计图表条形统计图折线统计图样本,总体制作统计图【例题经典】考查运用统计知识进行说明的能力例1 射击集训队在一个月的集训中,对甲、乙两名运动员进行了10次测试,•成绩如下:甲:9,6,6,8,7,6,6,8,8,6;乙:4,5,7,6,8,7,8,8,8,9.如果你是教练员,会选择哪位运动员参加比赛?请说明理由.【点评】答案不唯一,多鼓励学生说明理由即可.考查统计图的应用例2 (2006年随州市)为了了解某校1000名初中生右眼视力情况,随机对50名学生右眼视力进行了检查,绘制了如下统计表和频率分布直方图.请解答下列问题:(1)补全统计表和频率分布直方图;(2)•填空:•在这个问题中,•样本是________,•在这个样本中,•视力的中位数是________,视力的众数落在频率分布直方图(从左至右依次是第一、二、三、四、五小组)的________小组内.(3)如果右眼视力在0.6及0.6以下的必须矫正,试估计该校右眼视力必须矫正的学生约有多少人?【点评】理解样本与总体的关系 考查制作统计图的能力例3 (2006年绍兴市)如图表示某校七年级360位同学购买不同品牌计算器人数的扇形统计图,每位同学购买一只计算器,试回答下列问题: (1)分别求出购买各品牌计算器的人数; (2)试画出购买不同品牌计算器人数的频数分布直方图.【点评】要注意扇形统计图与条形统计图之间转换时,数据代表的意义. 例题精讲今年我市初中毕业生人数为12.8万人,比去年增加了9%,预计明年初中毕业生人数将比今年减少9%,下列说法:①去年我市初中毕业生人数约为%918.12 万人;②按预计,明年我市初中毕业生人数将与去年持平;③按预计,明年我市初中毕业生人数会比去年多.其中正确的是( )A ①②B ①③ C.②③ D .①答案:D在样本方差的计算式S2=101(x1-20)2+(x2-20)2+…+(x10-20)2]中,数字10与20分别表示样本的 ( )A .容量、方差B .平均数、容量C .容量、平均数D .标准差、平均数 答案:C下表是某校初三(1)班20名学生某次数学测验的成绩统计表(1)若这20名学生成绩的平均分数为82分,求x 和y 的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数为a ,中位数为b ,求a ,b 的值. 解:根据题意,得1+5+x+y+2=20 60+70×5+80x+90y+100 2=8220 ,解得x=5 y=7 (2)a=90 b=80已知一组数据:6,3,4,7,6,3,5,6 (1)求这组数据的平均数、众数、中位数; (2)求这组数据的方差和标准差.解:(1)按从小到大的顺序排列数据:3,3,4,5,6,6,6,7. 平均数5 众数是6,中位数是5.5 (2)方差=2 标准差s=2为了调查不同面额纸币上细菌数量与使用频率之间的关系.某中学研究性学习小组从银行、商店、农贸币场及医院收费处随机采集了 8种面额的纸币各30张,分别用无菌生理盐水漂洗这些纸币,对洗出液进行细菌培养,测得数据如下表.(1)计算出被采集的所有纸币平均每张的细菌个数约为 (结果取整数).(2)由表中数据推断出面额为的纸币的使用频率较高.根据上面的推断和生活常识总结出:纸币上细菌越多,纸币的使用频率.看来,接触钱币以后要注意洗手噢!答案:(1)5417(2)l元,越高小谢家买了一辆小轿车,小谢连续记录了七天每天行驶的路程.请你用统计初步的知识,解答下列问题:(1)小谢家小轿车每月(每月按30天计算)要行驶多少千米?(2)若每行驶100千米需汽油8升,汽油每升3.45元.请你求出小谢家一年(一年按12个月计算)的汽油费是多少元?解:(1)由图知这七天中平均每天行驶的路程为50(千米).∴每月行驶的路程为30×50=l 500(千米).答:小谢家小轿车每月要行驶1500千米.(2)小谢一家一年的汽油费用是4 968元.。

中考数学考点知识复习教案

中考数学考点知识复习教案

中考数学考点知识复习教案一、复习目标1. 回顾和巩固中考数学考试范围内的重点知识,包括代数、几何、概率统计等模块的核心概念和基本技能。

2. 提高学生的解题能力,通过典型题目的讲解和练习,帮助学生掌握解题方法和技巧。

3. 培养学生的应试策略,提高考试中的时间管理和题目筛选能力。

二、复习内容1. 实数与代数式的复习:包括实数的性质、代数式的运算和化简等。

2. 方程(含不等式)的复习:一元一次方程、一元二次方程、不等式组的解法等。

3. 函数的复习:一次函数、二次函数的图像和性质,以及函数的定义域和值域等。

4. 几何图形的复习:平面几何图形的性质、勾股定理、相似三角形、平行四边形等。

5. 统计与概率的复习:统计量的计算、概率的基本计算公式、随机事件的概率等。

三、教学方法1. 采用讲解与练习相结合的方法,通过教师的详细讲解和学生的同步练习,加深对知识点的理解和记忆。

2. 使用典型题目进行案例分析,引导学生掌握解题的思路和方法。

3. 组织小组讨论和互助学习,鼓励学生之间相互提问和解答,提高学习效果。

4. 定期进行模拟测试,帮助学生熟悉考试环境和题型,提高应试能力。

四、教学评估1. 定期进行课堂提问,检查学生对复习内容的掌握情况。

2. 布置课后作业和练习题,评估学生的解题能力和应用能力。

3. 组织模拟考试,评估学生的考试表现和得分情况。

4. 根据学生的反馈和进步情况,及时调整教学方法和复习内容。

五、教学计划1. 第一周:实数与代数式的复习2. 第二周:方程(含不等式)的复习3. 第三周:函数的复习4. 第四周:几何图形的复习5. 第五周:统计与概率的复习六、复习策略与时间安排1. 制定复习计划:根据学生的学习进度和实际情况,合理分配每个知识点的复习时间和重点。

2. 突出重点和难点:针对中考数学的常见考点和难点,给予学生重点讲解和练习。

3. 合理安排时间:确保每个知识点有足够的复习时间,留出时间进行模拟测试和解答学生的疑问。

中考数学复习-几何专题复习-教案

中考数学复习-几何专题复习-教案

中考数学复习-几何专题复习-教案一、教学目标1. 知识与技能:巩固和掌握初中阶段几何的基本知识和技能,提高解题能力。

2. 过程与方法:通过复习,使学生能够灵活运用几何知识解决实际问题,培养学生的逻辑思维能力和空间想象能力。

3. 情感态度与价值观:激发学生学习几何的兴趣,提高学生对数学学科的认同感和自信心。

二、教学内容1. 第一课时:三角形的全等和相似教学重点:全等三角形的判定和性质,相似三角形的判定和性质。

教学难点:全等三角形和相似三角形的应用。

2. 第二课时:四边形的性质和判定教学重点:四边形的性质和判定方法。

教学难点:四边形性质和判定方法的综合运用。

3. 第三课时:圆的性质和判定教学重点:圆的性质和判定方法。

教学难点:圆的性质和判定方法在实际问题中的应用。

4. 第四课时:角的计算和证明教学重点:角的计算方法和证明方法。

教学难点:角的计算和证明在实际问题中的应用。

5. 第五课时:几何图形的面积和体积教学重点:几何图形的面积和体积计算方法。

教学难点:几何图形面积和体积计算在实际问题中的应用。

三、教学过程1. 复习导入:通过复习已学过的几何知识,引导学生回顾和巩固相关概念、定理和公式。

2. 讲解与示范:针对每个课时的教学内容,进行详细的讲解和示范,引导学生理解和掌握相关知识和技能。

3. 练习与讨论:布置适量的练习题,组织学生进行练习和讨论,巩固所学知识,提高解题能力。

四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 练习成果:评估学生在练习中的表现,检查学生对知识的掌握程度。

3. 期中期末考试:通过期中期末考试,全面评估学生的复习效果。

五、教学资源1. 教材:选用合适的中考数学复习教材,为学生提供系统的复习资料。

2. 习题集:挑选适合学生水平的习题集,提高学生的解题能力。

3. 教学课件:制作精美的教学课件,辅助讲解和展示教学内容。

4. 教学视频:收集相关的教学视频,为学生提供更多学习资源。

[初中数学]2010年初三数学总复习教案 人教版5

[初中数学]2010年初三数学总复习教案 人教版5

32-5初三复习方程解法教案教学目的:1、使学生进一步掌握移项法则与方程的基本解法,并会用系数化为1解 方程。

2、培养学生观察、分析、概括的能力以及准确而迅速的运算能力。

教学分析:重点:利用系数化为1解ax=b ,以及解一元一次、一元二次、分式方程、 方程组这几类方程。

难点:系数化为1时,注意“ - ”号问题。

如何去分母问题。

教学方法:讲练结合,以练为主.教学过程:一、概念复习:1、移项的依据据是什么?移项要注意什么?2、等式有哪些基本性质?3、用移项解方程,并写出检验:1、X+12=342、3X=2x+53、7x-3=6x4、x-74=-4二、例题分析:例1、选择:1、关于x 的方程ax = 3x - 5有负数解,则a 应满足的条件是( )A 、a <3B 、a > 3C 、a ≥3D 、a ≤ 32. 下列方程中,有实数解的是( ) A.023=+-x B.02=+-x x C.022=-+-x x D.x x -=-34例2、填空:1、关于x 的方程x 2+kx+6=0有一个根是-2,那么k = 。

另一根为 。

2、方程2422-=-x x x 的根是__________3、方程23=-x 的根是__________例3、解方程:1、 0222x 2=+-x2、 112)1(31)282222=+-+-+x x x x x x (3、()()()b a b a b x a x ≠-=---22224、()n m n m x m n x ≠-=+--2例4、已知关于x 的方程k 2x 2+(2k-1)x+1=0的两个不等实数根为x 1、 x 2(7分)1)求k 的取值范围2)是否存在一个实数k ,使方程的两个实数根互为相反数?如果存在,求出k 值;如果不存在,说明为什么?三、巩固训练:选择题:1、方程35-=+b x a x 中,x 为未知数,a 、b 为已知数,且a ≠ b ,则这个方程是( )A 、一元一次方程B 、二元一次方程C 、三元一次方程D 、分式方程2.用换元法解方程23312-=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-x x x x 时,如果设y x x =-1,那么原方程可化为( )A.0232=++y yB.0232=--y yC. 0232=-+y yD. 0232=+-y y3、关于x 的方程x 2+ax+a 2=0的两根和是3a -8,则两根之积是 。

初中数学中考总复习教案_最新版

初中数学中考总复习教案_最新版

2010年中考总复习(初中数学·浙教版)编著:胡荣进目录第一章实数与代数式1.1 有理数 (4)1.2 实数 (6)1.3 整式 (8)1.4 因式分解 (10)1.5 分式 (12)1.6 二次根式 (14)●单元综合评价 (16)第二章方程与不等式2.1 一次方程(组) (20)2.2 分式方程 (23)2.3 一元二次方程 (25)2.4 一元一次不等式(组) (28)2.5 方程与不等式的应用 (30)●单元综合评价 (33)第三章函数3.1 平面直角坐标系与函数 (37)3.2 一次函数 (39)3.3 反比例函数………………………………………………………………………………3.4 二次函数…………………………………………………………………………………3.5 函数的综合应用…………………………………………………………………………●单元综合评价………………………………………………………………………………第四章图形的认识4.1 简单空间图形的认识……………………………………………………………………4.2 线段、角、相交线与平行线……………………………………………………………4.3 三角形及全等三角形……………………………………………………………………4.4 等腰三角形与直角三角形………………………………………………………………4.5 平行四边形………………………………………………………………………………4.6 矩形、菱形、正方形……………………………………………………………………4.7 梯形………………………………………………………………………………………●单元综合评价………………………………………………………………………………第五章圆5.1 圆的有关性质……………………………………………………………………………5.2 与圆有关的位置关系……………………………………………………………………5.3 圆中的有关计算…………………………………………………………………………5.4 几何作图…………………………………………………………………………………●单元综合评价………………………………………………………………………………第六章图形的变换6.1 图形的轴对称……………………………………………………………………………6.2 图形的平移与旋转………………………………………………………………………6.3 图形的相似………………………………………………………………………………6.4 图形与坐标………………………………………………………………………………6.5 锐角三角函数……………………………………………………………………………6.6 锐角三角函数的应用……………………………………………………………………●单元综合评价………………………………………………………………………………第七章统计与概率7.1 数据的收集、整理与描述………………………………………………………………7.2 数据的分析………………………………………………………………………………7.3 概率………………………………………………………………………………………●单元综合评价………………………………………………………………………………第八章拓展性专题8.1 数感与符号感……………………………………………………………………………8.2 空间观念…………………………………………………………………………………8.3 统计观念…………………………………………………………………………………8.4 应用性问题………………………………………………………………………………8.5 推理与说理………………………………………………………………………………8.6 分类讨论问题……………………………………………………………………………8.7 方案设计问题……………………………………………………………………………8.8 探索性问题………………………………………………………………………………8.9 阅读理解问题……………………………………………………………………………1.1 有理数【教学目标】1.理解有理数的有关概念,能用数轴上的点表示有理数,会求倒数、相反数、绝对值.2.掌握有理数的加、减、乘、除、乘方及简单的混合运算,会比较两个有理数的大小.3.理解近似数和有效数字的概念,会将一个数表示成科学记数法的形式.4.能运用有理数的运算解决简单的实际问题,会探索有规律性的计算问题.【重点难点】重点:有理数的加、减、乘、除、乘方运算及简单的混合运算.难点:对含有较大数字的信息作出合理的解释和推断.【考点例解】例1 (1)-5的绝对值是( ) A. -5 B. 5 C. 15 D. 15- (2)2007年3月5日,温总理在《政府工作报告》中,讲述了六大民生新亮点,其中之一就是全部免除了西部地区和部分中部地区农村义务教育阶段约52000000名学生的学杂费. 这个数据保留两个有效数字用科学记数法表示为( )A. 75210⨯B. 75.210⨯C. 85.210⨯D. 85210⨯(3)2008年2月4日,我国遭受特大雪灾,部分城市的平均气温情况如下表(记温度零上为正,单位:℃),则其中当天平均气温最低的城市是( )A. 广州B. 福州C. 北京D. 哈尔滨 分析:本题主要是考查学生对有理数相关概念的理解. 第(1)小题考查绝对值的意义;第(2)小题考查科学记数法;第(3)小题考查有理数的大小比较.解答:(1)B ; (2)B ; (3)D.例2 计算:32211(1)3()3+-÷⨯-.分析:本题主要是考查有理数的乘方运算及有理数混合运算的顺序.解答:原式11801(1)9198181=+-÷⨯=-=.例3 观察表①,寻找规律,表②、表③、表④分别是从表①中截取的一部分,其中a 、b 、c 的值分别是( )A. 20,29,30B. 18,30,26C. 18,20,26D. 18,30,28 分析:本题主要考查有理数运算的简单应用. 表①中第一行中的数均为连续的自然数,而下面各行依次是第一行的2倍、3倍、4倍、…;表①中第一列中的数均为连续的自然数,依次从左往右各列的最大公约数分别是2、3、4、….解答:D.【考题选粹】1.(2007·宜宾)数学家发明了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数:21a b ++.如把(3,-2)放入其中,会得到23(2)18+-+=. 现将实数对(-2,3)放入其中得到实数m ,再将实数对(m ,1)放入其中得到的数是 .2.(2007·玉溪)小颖中午回家自己煮面条吃,有下面几道工序:①洗锅盛水2分钟;②洗菜3分钟;③准备面条及佐料2分钟;④用锅把水烧开7分钟;⑤用烧开的水煮面条和菜3分钟. 以上各道工序,除④外,一次只能进行一道工序,则小颖要将面条煮好,最少用 分钟.【自我检测】见《数学中考复习一课一练》.表① 表②表③ 表④1.2 实数【教学目标】1.了解算术平方根、平方根、立方根的概念,会求非负数的算术平方根和实数的立方根.2.了解无理数与实数的概念,知道实数与数轴上的点的一一对应关系,能用有理数估计一个无理数的大致范围.3.会用算术平方根的性质进行实数的简单四则运算,会用计算器进行近似计算.【重点难点】重点:用算术平方根的性质进行实数的简单四则运算.难点:实数的分类及无理数的值的近似估计.【考点例解】例1 (1)下列实数:227,sin 60,3π,0,3.14159,2(-无理数有( )A. 1个B. 2个C. 3个D. 4个(2)下列语句:①无理数的相反数是无理数;②一个数的绝对值一定是非负数;③有理数比无理数小;④无限小数不一定是无理数. 其中正确的是( )A.①②③B.②③④C.①②④D.②④ 分析:本题主要是考查学生对无理数与实数概念的理解.解答:(1)C ; (2)C.例2计算:021111sin301820082-⎛⎫⎛⎫--+- ⎪⎪⎝⎭⎝⎭.分析:本题主要是考查零指数幂、负指数幂及算术平方根的化简与运算.解答:原式)11141122=-+⨯-=-+-=-例3 我国《劳动法》对劳动者的加班工资作出了明确规定:春节长假期间,前3天是法定休假日,用人单位应按照不低于劳动者本人日工资或小时工资的300%支付加班工资;后4天是休息日,用人单位应首先安排劳动者补休,不能安排补休的,按照不低于劳动者本人日工资或小时工资的200%支付加班工资. 小王由于工作需要,今年春节的初一、初二、初三共加班三天(春节长假从十二月卅日开始). 如果小王的月平均工资为2800元,那么小王加班三天的加班工资应不低于 元.分析:本题主要考查学生灵活应用实数运算的相关知识解决实际问题的能力.要注意的是今年的法定假期共有11天,因此日工资标准的计算方法是:280021.75÷.解答:()280021.752300%1200%1030÷⨯⨯+⨯≈(元).【考题选粹】1.(2007·内江)若a ,b 均为整数,且当1x =时,代数式2x ax b ++的值为0,则b a 的算术平方根为 .2.(2007()312tan 452--⨯+. 3.(2007·重庆)将正整数按如右图所示的规律排列 下去. 若用有序实数对(n ,m )表示第n 排、 从左到右第m 个数,如(4,3)表示实数9,则 (7,2)表示的实数是 .【自我检测】见《数学中考复习一课一练》.1 ………………… 第一排2 3 ……………… 第二排4 5 6 …………… 第三排7 8 9 10 ……… 第四排……………………………………1.3 整式【教学目标】1.了解整式的有关概念,理解去括号法则,能熟练进行整式的加减运算.2.掌握正整数指数幂的运算性质,能在运算中灵活运用各种性质.3.会进行简单的整式乘法运算和简单的多项式除法运算,了解两个乘法公式及其几何背景,能运用乘法公式进行简便.4.会通过对问题的分析列出代数式,能熟练进行整式的化简与求值.【重点难点】重点:列代数式表示数量关系,整式的化简与求值.难点:乘法公式的灵活运用.【考点例解】例1 (1)已知整式3121y x a -与b a b y x +--23是同类项,那么a ,b 的值分别是( ) A. 2,-1 B. 2,1 C. -2,-1 D. -2,1(2)下列运算中正确的是( )A.853x x x =+B.()923x x = C.734x x x =⋅ D.()9322+=+x x (3)如果5m x =,25n x =,那么代数式52m n x -的值是 .分析:本题主要是考查同类项的概念和整式的加法、乘法和正整数指数幂的运算. 解答:(1)A ; (2)C ; (3)5.例2 (1)王老板以每枝a 元的单价买进玫瑰花100枝. 现以每枝比进价多两成的价格卖出70枝后,再以每枝比进价低b 元的价格将余下的30枝玫瑰花全部卖出,则王老板的全部玫瑰花共卖了 元(用含a ,b 的代数式表示).(2)如图3-1所示,用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案:①第4个图案中有白色纸片 张;②第n 个图案中有白色纸片 张. 分析:本题主要考查列代数式表示数量关系,第(1)题的关键是弄清前70枝玫瑰花的单价和后30枝的单价分别是多少;第(2)题的关键是要发现图案中的规律:第一个图形有4张白色纸片,以后每个图形都比前一个图形多3张白色纸片.解答:(1)()()b a b a a 3011430%20170-=-++.(2)①13; ②31n +.例3 先化简,再求值:()()()()232325121x x x x x +-----,其中13x =-.分析:本题主要考查乘法公式的灵活应用及整式的化简求值.解答这一类题目时,一般应先将整式化简,然后再将字母的值代入计算.解答:原式222945544195x x x x x x =--+-+-=-.当13x =-时,原式19583⎛⎫=⨯--=- ⎪⎝⎭.【考题选粹】1.(2006·济宁)()()2006200588-+-能被下列数整除的是( )A. 3B. 5C. 7D. 92.(2007·淄博)根据以下10个乘积,回答问题:1129⨯;1228⨯;1327⨯;1426⨯;1525⨯;1624⨯;1723⨯;1822⨯;1921⨯;2020⨯.(1)试将以上各乘积分别写成一个“□2-○2”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)试由(1)、(2)猜测一个一般性的结论(不要求证明).【自我检测】见《数学中考复习一课一练》.1.4 因式分解【教学目标】1.理解因式分解的概念,了解因式分解与整式乘法之间的关系.2.掌握因式分解的一般思考顺序,会运用提公因式法和公式法进行因式分解,会利用因式分解解决一些简单的实际问题.【重点难点】重点:运用提公因式法和公式法进行因式分解.难点:利用因式分解解决一些简单的实际问题.【考点例解】例1 (1)在一次数学课堂练习中,小聪做了以下4道因式分解题,你认为小聪做得不够完整的一道题是( )A.()321x x x x -=-B.()2222x xy y x y -+=- C.()22x y xy xy x y -=- D.()()22x y x y x y -=+-. (2)因式分解()219x --的结果是( )A.()()81x x ++B.()()24x x +-C.()()24x x -+D.()()108x x -+.分析:本题主要是考查因式分解的概念和因式分解一般思考顺序,强调因式分解一定要分解到结果中的每个因式都不能再分解为止.解答:(1)A ; (2)B. 例2 利用因式分解说明:712255-能被120整除.分析:要说明712255-能被120整除,关键是通过因式分解得到712255-含有因数120,可将712255-化为同底数形式,然后利用提公因式法分解因数.解答:∵ ()71214121221211255555515245120-=-=-=⨯=⨯,∴ 712255-能被120整除.例3 在日常生活中经常需要密码,如到银行取款、上网等. 有种用“因式分解”法产生的密码方便记忆,原理是:如对于多项式,因式分解的结果是()()()22x y x y x y -++,若取9x =,9y =,则各因式的值分别是:0x y -=,18x y +=,22162x y +=,于是就可以把“018162”作为一个六位数的密码. 同理,对于多项式324a ab -,若取10a =,10b =,则产生的密码是: (写出一个即可). 分析:本题是因式分解的知识在实际生活中的简单应用. 解答时只需要先对多项式进行因式分解,再求各因式的值就可以了.解答:()()()32224422a ab a a b a a b a b -=-=-+,当10a =,10b =时,各因式的值分别是:10a =,210a b -=,230a b +=,所以密码可以为101030(也可以为103010或301010). 【考题选粹】1.(2006·南通)已知2A a =+,25B a a =-+,2519C a a =+-,其中2a >.(1)求证:0B A ->,并指出A 与B 的大小关系; (2)指出A 与C 的大小关系,并说明理由.2.(2007·临安)已知a 、b 、c 是ABC ∆的三边,且满足422422a b c b a c +=+,判断ABC ∆的形状. 阅读下面的解题过程:解:由 422422a b c b a c +=+ 得 442222a b a c b c -=-, ①即 ()()()2222222a bab c a b +-=-, ②∴ 222a b c +=, ③ ∴ ABC ∆是直角三角形. ④试问:以上解题过程是否正确? . 若不正确,请指出错在哪一步?(填代号) ;错误原因是 ;本题的正确结论应该是 .【自我检测】见《数学中考复习一课一练》.1.5 分式【教学目标】1.了解分式概念,会求分式有意义、无意义和分式值为0时,分式中所含字母的条件.2.掌握分式的基本性质和分式的变号法则,能熟练地进行分式的通分和约分.3.掌握分式的加、减、乘、除四则运算,能灵活地运用分式的四则运算法则进行分式的化简和求值. 【重点难点】重点:分式的基本性质和分式的化简.难点:分式的化简和通过分式的运算解决简单的实际问题. 【考点例解】例1 (1)在函数23xy x =-中,自变量x 的取值范围是( ) A.0x ≠ B.32x ≠ C.32x > 且0x ≠ D.0x ≠且32x ≠.(22的值为零,则x 的值为 .(3)下列分式的变形中,正确的是( )A.1111a a b b +-=+-B.x y x y x y x y ---=-++C.()222x y x y x y x y --=-+ D.22x y x yx y x y--=++ 分析:本题主要考查分式的概念与分式的基本性质. 在分式中,要使分式有意义,分式的分母要不为零;要使分式值为0,则要求分子的值为0且分式有意义.解答:(1)B ; (2)x = (3)C. 例2 先化简:21111xx x ⎛⎫+÷ ⎪--⎝⎭,再选择一个恰当的x 的值代入求值. 分析:本题主要考查分式的化简和分式有意义的条件. 在分式化简中,经常可以把分式的除法改为乘法,再利用“分解约分”法进行化简. 在本题中的x 不能取0和±1.解答:原式()()1111x x x x x x-+=⋅=+-,当2x =时,原式=3. 例3 (1)已知一个正分数()0nm n m>>,如果分子、分母同时增加1,分数的值是增大减小?请证明你的结论;(2)若正分数()0nm n m>>中分子和分母同时增加2,3,…,k (整数k >0),情况如何?(3)请你用上面的结论解释下面的问题:建筑学规定,民用住宅窗户面积必须小于地板面积,但按采光标准,窗户面积与地板的比应不小于10%,并且这个比值越大,住宅的采光条件越好. 问同时增加相等的窗户面积和地板面积,住宅的采光条件是变好还是变坏?请说明理由.分析:本题考查了分式的大小比较,并要求利用有关知识解决实际问题. 解题的关键是理解题意,得到正确的结论. 解答:(1)正分数()0nm n m>>中,若分子、分母同时增加1,分数的值增大,证明如下:∵ 0m n >>, ∴ 0m n ->,()10m m +>∴()1011n n m nm m m m +--=>++, 即11n n m m +>+. (2)正分数()0nm n m>>中分子和分母同时增加2,3,…,k (整数k >0)时,分式的值也增大. (3)住宅的采光条件变好,理由略.【考题选粹】1.(2007·东营)小明在考试时看到一道这样的题目:“先化简2211111aa a a ⎛⎫⎛⎫-÷-⎪ ⎪--+⎝⎭⎝⎭,再求值.”小明代入某个数后求得值为 3. 你能确定小明代入的是哪一个数吗?你认为他代入的这个数合适吗?为什么?2.(2007·嘉兴)解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向”问题. 例如,原问题是“若矩形的两边长分别为3和4,求矩形的周长”,求出周长等于14后,它的一个“逆向”问题可以是“若矩形的周长为14,且一边长为3,求另一边的长”;也可以是“若矩形的周长为14,求矩形面积的最大值”等等.(1)设322x x A x x =--+,24x B x-=,求A 与B 的值; (2)提出(1)的一个“逆向”问题,并解答这个问题. 【自我检测】见《数学中考复习一课一练》.1.6 二次根式【教学目标】1.了解二次根式的概念,掌握二次根式有意义的条件.2.了解二次根式的加、减、乘、除运算法则,会对简单的二次根式进行化简,会用二次根式的运算法则进行实数的简单四则运算. 【重点难点】重点:二次根式的化简和用二次根式的运算法则进行实数的简单四则运算. 难点:二次根式的化简. 【考点例解】例1 (1)若代数式2-x 在实数范围内有意义,则x 的取值范围是( ) A.2>x B.2≥x C.2<x D.2≤x .(2)若x 为实数,则下列各式中一定有意义的是( )A.x -2B.12+xC.21xD.22-x 分析:本题主要考查二次根式的概念,即在二次根式中,被开方数必须是非负数. 解答:(1)B ; (2)B. 例2 (1)计算:⎪⎪⎭⎫ ⎝⎛-+483137512.(2)比较大小:-152.分析:本题主要考查二次根式性质的灵活应用和二次根式的混合运算. 第(1)题中,可先利用二次根式的性质进行化简,然后利用实数的运算法则进行计算;第(2)题要先逆用性质:()02≥=a a a ,再进行两个数的大小比较.解答:(1)原式()1232323433532=⨯=-+=. (2)∵ 6373-=-,60152-=-,且6063>,∴ 15273-<-.例 3 已知ABC ∆的三边a ,b ,c 满足224210212--+=--++b a c b a ,则ABC ∆为( ).A. 等腰三角形B. 正三角形C. 直角三角形D. 等腰直角三角形 分析:本题考查了二次根式的非负性,即:在二次根式a 中,0≥a 且0≥a . 解答:将原式变形,得 ()()0211424251022=--+⎥⎦⎤⎢⎣⎡+---++-c b b a a .即 ()()02114522=--+--+-c b a .∴ 05=-a ,014=--b ,021=--c .∴ 5===c b a . ∴ A B C ∆为等边三角形,故选B. 【考题选粹】1.(2006·南充)已知0<a ,那么化简a a 22-的正确结果是( )A.a -B.aC.a 3-D.a 32.(2007·烟台)观察下列各式:312311=+,413412=+,514513=+,…,请将你发现的规律用含自然数()1≥n n 的等式表示出来: . 【自我检测】见《数学中考复习一课一练》.第一单元综合测试(数与式)班级 学号 姓名 得分 . 一、选择题(本题有10小题,每小题4分,共40分)1. 如果水库的水位高于标准水位3m 时,记作+3m ,那么低于标准水位2m 时,应记作( ) A. -2m B. -1m C. +1m D. +2m2. 2007年我国某省国税系统完成税收收入为3.45065×1011元,也就是收入了( ) A. 345.065亿元 B. 3450.65亿元 C. 34506.5亿元 D. 345065亿元 3. 若整式()16322+-+x m x 是一个完全平方式,那么m 的值是( )A. -5B. 7C. -1D. 7或 -1 4. 估计88的大小应在( )A. 9.1~9.2之间B. 9.2~9.3之间C. 9.3~9.4之间D. 9.4~9.5 5. 如图1,点A ,B 在数轴上对应的实数分别是m ,n ,那么A ,B 两点间的距离是( ) A.m n + B.m n - C.n m - D.n m -- 6. 下列运算中,错误的是( ) A.()0a ac c b bc =≠ B.1a b a b --=-+ C.0.55100.20.323a b a b a b a b ++=-- D.x y y xx y y x--=++ 7. 某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律,5小时后细胞存活的个数是( ) A. 31个 B. 33个 C.35个 D.37个8. 如果代数式2346x x -+的值为9,则代数式2463x x -+的值为( ) A. 7 B. 9 C. 12 D. 18 9. 如图2,图中阴影部分的面积是( ) A.5xy B.9xy C.8.5xy D.7.5xy10.已知m ,n 是两个连续自然数(m <n ),且q mn =,设p =p 的值是( )A.奇数B.偶数C.奇数或偶数D.有理数或无理数 二、填空题(本题有6小题,每小题5分,共30分) 11.写出一个小于2的无理数: .12.列代数式表示:“数a 的2倍与10的和的二分之一”应为 . 13.已知7x y +=,且12xy =,则当x y <时,代数式11x y-的值为 . 14.一个矩形的面积是()29x -米2,它的一条边为()3x +米,那么它的另一边为 米.15.数学家发现一个魔术盒,当任意实数对...(),a b 进入时,会得到一个新的实数:21a b ++.例如把(3,-2)放入其中后,就会得到32+(-2)+1=8. 现将实数对...(-2,3)放入其中得到实数m ,再将实数对...(),1m 放入其中后,得到的实数是 .16.如果2007个整数1a ,2a ,…,2007a 满足下列条件:10a =,212a a =-+,322a a =-+,…,200720062a a =-+,则1232007a a a a ++++= .三、解答题(本题有7小题,共80分)17.(10()012sin 452 3.14π--+-.18.(10分)先化简代数式:22221244a b a b a b a ab b --÷-+++,然后选择一个使原式有意义的a ,b 值代入求值.19.(10分)观察下面一列数,探求其中的规律: 1-,12,13-,14,15-,16, , , ,… (1)请在上面的横线上填出第7,8,9个数;(2)第2008个数是什么?第n 个数是什么?如果这一列数无限地排列下去,那么与哪个数越来越接近?20.(10分)分解因式:(1)44x y - (2)2484xy xy x -+21.(12分)2007年4月18日是全国铁路第六次大提速的第一天. 这一天,小明爸爸因要出差,于是他到火车站查询列车的开行时间,下表是他从火车站带回家的最新时刻表:2007年4月18日起××次列车时刻表小明爸爸找出了以前同一车次的时刻表如下:2006年3月20日××次列车时刻表比较了两张时刻表后,小明爸爸提出了下面两个问题,请你帮小明解答: (1)现在该次列车的运行时间比以前缩短了多少小时?(2)如果该次列车提速后的平均时速为200千米/小时,那么该次列车原来的平均时速为多少?(结果精确到个位)22.(14分)下面的图(1)是由边长为a 的正方形剪去一个边长为b 的小正方形后余下的图形.把图(1)剪开后,再拼成一个四边形,可以用来验证公式:22()()a b a b a b -=+-. (1)请你通过对图(1)的剪拼,画出三种不同拼法的示意图.要求:①拼成的图形是四边形;②在图(1)上画出剪裁线(用虚线表示); ③在拼出的图形上标出已知的边长.(2)选择其中的一种拼法写出验证上述公式的过程.aabb图(1)23.(14分)设22131a =-,22253a =-,…,()()222121n a n n =+--(n ≥ 0的自然数). (1)探究:n a 是8的倍数吗?请说明理由,并用文字语言表述你所获得的结论; (2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”. 试找出1a ,2a ,…,n a ,…,这一列数中从小到大排列的前4个完全平方数,并求:当n 满足什么条件时,n a 为完全平方数?2.1 一次方程(组)【教学目标】1.理解方程、方程组,以及方程和方程组的解的概念.2.掌握解一元一次方程和二元一次方程组的一般步骤与方法,体会“消元”的数学思想,会求二元一次方程的正整数解.3.能根据实际问题中的数量关系,列出一元一次方程或二元一次方程组来解决简单的实际问题,并能检验解的合理性. 【重点难点】重点:解一元一次方程和二元一次方程组的一般步骤与方法.难点:根据实际问题中的数量关系,列出一元一次方程或二元一次方程组.【考点例解】例1 (1)若关于x 的一元一次方程12332=---k x k x 的解是1-=x ,则k 的值是( ) A. 72 B. 1 C.1713- D. 0. (2)若二元一次方程组⎩⎨⎧=-=+433by x ay x 的解为⎩⎨⎧==12y x ,则b a -的值为( )A. 1B. 3C. -1D. -3分析:本题主要考查方程和方程组的概念,以及一元一次方程和二元一次方程组的解法. 解答:(1)B ; (2)C.例2 已知方程组⎩⎨⎧=+=-9.30531332b a b a 的解是⎩⎨⎧==2.13.8b a ,则方程组()()()()⎩⎨⎧=-++=--+9.301523131322y x y x 的解是 .分析:本题主要考查一元一次方程或二元一次方程组的解法和整体代换的思想. 在解答时,既可以直接求方程组的解,也可以利用整体思想,分别把2+x 和1-y “看作”a 和b ,通过解一元一次方程来解决.解答:⎩⎨⎧==2.23.6y x . 例3 陈老师为学校购买运动会的奖品后,回学校向总务处王老师交帐时说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还剩余418元.…”王老师算了一下说:“你肯定搞错了”.(1)王老师为什么说陈老师搞错了呢?请你用方程的知识给予解释.(2)陈老师连忙拿出购物发票进行核对,发现自己的确是弄错了,因为他还买了一个笔记本. 但笔记本的单价已经模糊不清了,只能辨认出应该是小于10元的整数. 问:笔记本的单价可能是多少元?分析:本题考查了列一元一次方程解应用题. 列方程(组)解应用题的一般步骤是:审题、设元、列方程、解方程、检验和作答. 在检验时,不仅要检验所求得的结果是否是所列方程的解,而且还要检验方程的解是否符合实际问题.解答:(1)设单价为8元的书买了x 本,则单价为12元的书买了()x -105本.由题意得 ()4181500105128-=-+x x .解这个方程,得 5.44=x .因为书的本数一定是正整数,所以5.44=x (本)不合题意,因此陈老师错了.(2)设笔记本的单价为y 元,则由题意得()y x x --=-+4181500105128.解这个关于y 的方程,得 1784-=x y .∵ 100<<y , ∴ 1017840<-<x , 解得41884178<<x . 又∵ x 为正整数, ∴x 可以取45、46.当45=x 时,21784541784=-⨯=-=x y (元);当46=x 时,61784641784=-⨯=-=x y (元).答:笔记本的单价可能是2元或6元.例4 新星学校的一间阶梯教室内,第1排的座位数为a ,从第2排开始,每一排都比前一排增加b 个座位.(1)请你在下表的空格内填写一个适当的代数式:(2)已知第4排有18个座位,第15排的座位数是第5排的座位数的2倍,则第21排有多少个座位?分析:本题考查了列二元一次方程组解应用题. 解答本题的关键是会从表中数据的变化中寻找出一定的规律,再利用规律求出a 和b 的值.解答:(1)3a b +.(2)根据题意,得 ()3181424a b a b a b +=⎧⎪⎨+=+⎪⎩,解得 122a b =⎧⎨=⎩.+⨯=.∴1220252答:第21排有52个座位.【考题选粹】1.(2007·济宁)甲、乙两人同时从山脚开始爬山,到达山顶后立即下山,在山脚和山顶之间不断往返运动,已知山坡长为360m,甲、乙两人上山的速度比是6:4,并且甲、乙两人下山的速度都是各自上山速度的1.5倍,当甲第三次到达山顶时,则此时乙所在的位置是 .2.(2007·北京)某地区为了改善生态环境,增加农民收入,自2004年起就鼓励农民在荒山上广泛种植某种果树,并且出台了一项激励措施:即在开荒种树的过程中,每一年新增果树达到100棵的农户,当年都可得到生活补贴1200元,且每超出一棵,政府还给予每棵a元的奖励. 另外,种植的果树,从下一年起,每年每棵平均将有b元的果实收入.下表是某农户在头两年通过开荒种树每年获得的总收入情况:(注:年总收入=生活补贴费+政府奖励费+果实收入)【自我检测】见《数学中考复习一课一练》.2.2 分式方程【教学目标】1.了解分式方程的概念,能将实际问题中的等量关系用分式方程表示出来.2.会解可化为一元一次方程(或一元二次方程)的分式方程,体验转化的数学思想;了解增根的概念,会进行分式方程的验根.3.能根据实际问题中的数量关系,列出分式方程来解决简单的实际问题,并能检验解的合理性.【重点难点】重点:解可化为一元一次方程(或一元二次方程)的分式方程的一般步骤与方法. 难点:根据实际问题中的数量关系,列出分式方程,并检验解的合理性.【考点例解】例1 如果关于x 的分式方程1133a x x -=++无解,那么a 的值是( ) A. 1 B. -1 C. 3 D. -3.分析:本题主要考查分式方程的增根概念. 需要注意的是:分式方程的增根应该满足变形后的整式方程,但不满足原分式方程.解答:A.例2 解分式方程:21124x x x -=--. 分析:本题主要考查分式方程的解法. 在解答时,应按照解分式方程的一般步骤进行,并注意验根.解答:去分母,得 ()()()2221x x x x +-+-= 去括号,得 22241x x x +-+=移项,合并同类项,得 23x =-方程两边同时除以2,得 32x =-经检验,32x =-是原方程的解. 例3 某公司投资某个项目,现有甲、乙两个工程队有能力承包这个项目. 公司经调查发现:乙工程队单独完成工程所需的时间是甲工程队单独完成工程所需时间的2倍,;甲、乙两队合作完成工程需要20天,甲队每天的工作费用为1000元,乙队每天的工作费用为550元. 根据以上信息,从节约资金的角度考虑,该公司应选择哪个工程队来承包这个项目?公司应付出的费用为多少元?分析:本题考查了列分式方程解应用题. 解答本题的关键是根据题意求出甲、乙两队单独完成工程所需的时间,进而求出各自的总费用.解答:设甲队单独完成工程需要x 天,则乙队单独完成工程需要2x 天. 根据题意,得 112012x x ⎛⎫+= ⎪⎝⎭解得 30x = 经检验,30x =是原方程的解,且30x =和260x =都符合题意.∴ 应付甲工程队的费用为:30100030000⨯=(元),应付乙工程队的费用为:30255033000⨯⨯=(元).∵ 3000033000<, ∴ 该公司应选择甲工程队,需付出的总费用为30000元. 答:该公司应选择甲工程队,需付出的总费用为30000元.【考题选粹】1.(2007·青岛)某市在旧城改造过程中,需要整修一段全长2400米的道路. 为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务. 若设原计划每小时修路x 米,则根据题意可得方程 .2.(2007·怀化)解方程:25231x x x x +=++. 【自我检测】见《数学中考复习一课一练》.。

2010年中考数学备考教案集

2010年中考数学备考教案集

初中数学中考备考精品教案集集体备课成果资料初三数学总复习课时安排建议一、第一阶段复习内容与课时安排(共47课时)以知识的纵向关系为线索实现知识的第一二、第二阶段复习(约18课时)以知识的横向关系为线索实现知识的第二覆盖,建议专题为:1、选择填空2、归纳猜想3、探索开放4、图表信息5、阅读理解6、操作设计7、实践应用8、几何与代数综合三、第三阶段复习:模拟测试(约12课时)实现知识的第三覆盖。

第1课实数溧阳市绸缪中学姜龙海复习教学目标:1、理解现实世界中具有相反意义的量的含义,会借助数轴理解实数的相反数和绝对值的意义,会求实数的相反数和绝对值,并会比较实数的大小。

2、了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根和立方根。

3、了解无理数与实数的概念,知道实数与数轴上的点的一一对应的关系,会用一个有理数估4Ⅰ1234567813、232是分数,也是有理数。

()4、3-2没有平方根。

()5、若3x =x ,则x的值是0和1。

()6、a2的算术平方根是a。

()三、选择:1、和数轴上的点一一对应的数是()A、整数B、有理数C、无理数D、实数2、已知:xy<0,且|x|=3 ,|y|=1,则x+y的值等于()A、2或-2B、4或-4C、4或2D、4或-4或2或-23、如果一个数的平方根与立方根相同,这个数为()A、0B、1C、0或1D、0或+1或-1Ⅱ[尝试] 例1,已知下列各数:∏,-2.6,227,0,0.4,-(-3),3(-27),(--12)-2,cos300,23.6 ,-10,0.21221222122221……(按此规律,从左至右,在每相邻的两个1之间,每段在原有2的基础上再增加一个2)。

把以上各数分别填入相应的集合。

无理数集合:( …) 有理数集合:( …)整数结集合:( …)分数集合:( …) 正数集合:( …) (解略)提炼:实数的分类思想方法。

例2,计算下列各题:1、 20-(-12 )22、 例3(1(2(3解:(1)a (2 (3Ⅲ[小结] 有理数 1、实数的分类什么叫无理数相反数:2、实数a 的 绝对值: 倒数: (当 时)3、实数的运算和科学记数法4、运用绝对值的意义,解决数形结合问题中的动点问题,渗透化归和分类讨论的数学思想方法,注意逆向思维的运用。

2010年中考数学专题复习教学案——函数综合应用

2010年中考数学专题复习教学案——函数综合应用

2010 年中考数学专题复习教学案——函数综合应用
函数的综合应用
◆课前热身
1.已知关于的函数图象如图所示,则当时,自变量的取值范围是()A.B.或
C.D.或
2.在平面直角坐标系中,函数的图象经过()
A.一、二、三象限B.二、三、四象限
C.一、三、四象限D.一、二、四象限
3.点在反比例函数()的图象上,则k 的值是().
A.B.C.D.
4、如图为二次函数的图象,给出下列说法:
①;②方程的根为;③;④当时,y 随x 值的增大而增大;⑤当时,.
其中,正确的说法有.(请写出所有正确说法的序号)
【参考答案】
1. B
2. D
3. B
4.①②④
◆考点聚焦知识点一次函数与反比例函数的综合应用;一次函数与二次函数的综合应用;二次函数与图象信息类有关的实际应用问题
大纲要求
灵活运用函数解决实际问题
考查重点及常考题型
利用函数解决实际问题,常出现在解答题中
◆备考兵法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一单元 数与式第3课时 整式知识点回顾:知识点一:整式的加减(1)如何识别同类项同类项应满足下列两个条件:①所含的字母 ;②相同字母的指数也分别 .(2)怎样合并同类项合并同类项就是把同类项的系数 ,所得的结果作为系数,字母和字母的指数 .(3)正确理解“添括号、去括号”法则去括号的法则是:括号前面是“+”号,把括号和它前面的“+”号去掉,括号内的各项都 ;括号前面是“-”号,把括号和它前面的“-”号去掉,括号内的各项都要 .添括号的法则是:所添括号前面是“+”号,括到括号里的各项都 ,所添括号前面是“-”号,括到括号里的各项都 .(4)准确进行整式的加减整式的加减实质上就是“去括号”和“合并同类项”法则的综合运用,如果有括号,就 ,如果有同类项,再 .例1 先化简、再求值)]23()5[(42222y xy x y xy x xy -+--+- (其中21,41-=-=y x ) 解: )]23()5[(42222y xy x y xy x xy -+--+-=222222224)235(4y xy y xy xy y xy x y xy x xy -=--=+---+- 当21,41-=-=y x 时原式的值为0)21()21()41(22=---⨯-⨯ 点评:在求整式的值时,应先将整式进行化简,即去括号、合并同类项,然后再把整式中字母的值代入计算,可化繁为简,使运算简便.同步测试1: 1.化简:b b a a 3)43(4---.2.求比多项式22325b ab a a +--少ab a -25的多项式.3.先化简、再求值)432()12(3)34(222a a a a a a --+-+-- (其中2-=a )参考答案:1.b a +;2.222b ab a +--;3.51052+--a a , 当2-=a 时,值为5.知识点二:幂的运算(1)同底数幂的乘法:同底数幂相乘,底数 ,指数 .即 n m n m a a a +=⋅(m ,n 都是正整数)(2)幂的乘方:幂的乘方:底数 , 指数 .即 mn n m a a =)((m ,n 都是正整数)(3)积的乘方:先把积中的每一个因式分别 ,再把所得的结果 .即n n n b a ab =)((n 是正整数)(4)同底数幂的除法:同底数幂相除,底数 ,指数 .即n m n m a a a -=÷(a ≠0, m ,n 都是正整数,且m >n )①零指数幂:不等于零的数的零次幂等于 . 即=0a (a ≠0).②负整数指数幂: 不等于零的数的负整数次幂等于这个数的正整数次幂的 .即 =-p a (a ≠0,p 是正整数).例2. 计算a a a ⋅+2433)(2)(3[]解:a a a ⋅+2433)(2)(3=9998952323a a a a a a =+=⋅+点评:在整式运算中同样应遵循先乘方、再乘除、最后做加减的原则.同步测试2:1.计算1092)21(⋅-= 2.计算532)(x x ÷3下列计算正确的是 ( ).(A)3232a a a =+ (B)a a 2121=- (C)623)(a a a -=⋅- (D)aa 221=- 参考答案:1.2-;2.x ;3. D;知识点三:整式乘法(1) 单项式乘单项式单项式与单项式相乘,把它们的系数、相同字母的幂分别 ,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个 .(2)单项式乘多项式单项式与多项式相乘,就是根据乘法对加法的分配律,用单项式乘多项式的每一项,再把所得的积 .(3)多项式乘多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积 .例3.计算:(1))3()32()23(32232b a ab c b a -⋅-⋅-; (2))3)(532(22a a a -+-; 解:(1))3()32()23(32232b a ab c b a -⋅-⋅-=)3()94()23(34232b a b a c b a -⋅⋅- =c b a c b b a a a 77433222)()()]3(9423[=⋅⋅⋅⋅⋅⋅-⨯⨯- (2))3)(532(22a a a -+-=23535153926a a a a a -++--=159592235+--+-a a a a点评:为防止“漏项”,应注意将一个多项式的每一项“遍乘”另一个多项式的每一项;要正确确定积中每项的符号;如有同类项,则应合并同类项,得出最简结果;通常情况下,最后结果应按某一字母的降幂排列。

同步测试3:计算:1.)8(25.123x x -⋅ ;2.)532()3(2+-⋅-x x x ; 3.())2(32y x y x +-;参考答案:1.510x -;2. x x x 159623-+-;3. 2262y xy x -+;[来知识点四:乘法公式(1)平方差公式:两个数的和与这两个数的积,等于 . 即()()22b a b a b a -=-+.(2)完全平方公式:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的 . 即:()2222b ab a b a ++=+, ()2222b ab a b a +-=-. 例4.利用乘法公式计算:()()n m n m 234234+--+解:()()n m n m 234234+--+=()()]234][234[n m n m ---+=()()22234n m -- =()22412916n n m +--=91241622-+-n n m点评:巧妙的将n 23-看作一个整体是解决本题的关键.同步测试4:1.计算:()()x y y x 5225---2.已知6,5-==+ab b a ,试求22b ab a +-的值3.计算:2011200920102⨯-参考答案:1. 22254x y -;2. 43;3. 1;知识点五:整式除法(1) 单项式除以单项式:单项式相除,把系数、同底数幂分别 后,作为商的因式;对于只在被除式里含有的字母,则连同它的 一起作为商的一个因式.(2)多项式除以单项式:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商 .(3) 整式除法与整式乘法互为逆运算①整式除法中没有余式,则被除式= ⨯ ;②整式除法中有余式,则被除式=除式⨯商式+ ;例5.已知多项式3223-++x ax x 能被122+x 整除,商式为3-x ,试求a 的值分析:根据整式除法与整式乘法互为逆运算,先求出除式与商式的积[来源:学。

科。

网] 解:362)3)(12(232-+-=-+x x x x x根据题意可得:36223-+-x x x =3223-++x ax x由两个多项式相等,则对应项系数必相等,得到:6-=a点评:解决这类问题的依据是:被除式=除式⨯商式,以及两个多项式相等,则对应项系数必相等.同步测试5:计算:1.b a c b a 232232÷-; 2.)2(23)2(433y x y x +÷+; 3.22222335121)433221(y x y x y x y x ÷+- 参考答案: 1. c b 231-; 2. 222221y xy x ++; 3. 9863+-x y x ; 随堂检测1.当5=x 时,试求整式()()13152322+--+-x x x x 的值 2.王老师购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m ),解答下列问题:(1)写出用含x 、y 的整式表示的地面总面积;(2)若m x 4=,m y 5.1=,铺12m 地砖的平均费用为80元,求铺地砖的总费用为多少元?3.下列计算中,正确的是 ( ).(A)842x x x =⋅ (B)236x x x =÷ (C)532532a a a =+ (D)6234)2(x x =4.若3=m a ,2=n a ,则n m a +=5.计算:31(2)(1)4a a -⋅- 6.计算:1.1009.991002⨯-7.已知4=+y x ,1=xy ,试求代数式)1)(1(22++y x 的值8.一个矩形的面积为ab a 322+,其宽为a ,试求其周长.9.计算:)()532(222223m m n n m n m a a b a a -÷-+-++10.试确定2011201075⋅的个位数字参考答案:1.整式化简为:x x 82-, 当5=x 时,其值为15-.2.(1)地面总面积为182666122++=+++y x x y(2)把m x 4=,m y 5.1=代入,可得总面积为:45185.1246=+⨯+⨯(2m )所以铺地砖的总费用为36004580=⨯(元)3.选D.4.n m a +=623=⨯=⋅n m a a .5.a a 2214+- 6.1.1009.991002⨯-=01.0)1.0100(100)1.0100)(1.0100(1002222=--=+--7.)1)(1(22++y x =12)()(1222222+-++=+++xy y x xy y x y x把4=+y x ,1=xy ,整体代入得到:161124122=+⨯-+ 即)1)(1(22++y x =16 8.()b a a ab a 32322+=÷+,其周长为()b a a b a 662322+=++.9.53222+-+n n n m b a a10.2011201075⋅=7357)75(7752010201020102010⋅=⋅⨯=⋅⋅,因为个位数为5的数的任何次幂的个位数仍然是5,再与7相乘,其乘积的个位数还是5,所以最后结果的个位数为5 .。

相关文档
最新文档