阶段性检测卷(一)

合集下载

福建省部分优质高中2024-2025学年高二上学期第一次阶段性质量检测数学试卷

福建省部分优质高中2024-2025学年高二上学期第一次阶段性质量检测数学试卷

福建省部分优质高中2024-2025学年高二上学期第一次阶段性质量检测数学试卷一、单选题1.已知2b a c =+,则直线0ax by c ++=恒过定点( ) A .(1,2)- B .(1,2) C .(1,2)-D .(1,2)--2.已知两点()3,2A -,()2,1B ,过点()0,1P -的直线l 与线段AB (含端点)有交点,则直线l 的斜率的取值范围为( ) A .(][),11,-∞-+∞U B .[]1, 1-C .[)1,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭D .1,15⎡⎤-⎢⎥⎣⎦3.下列命题中正确的是( )A .点()3,2,1M 关于平面yOz 对称的点的坐标是()3,2,1--B .若直线l 的方向向量为()1,1,2e =-r ,平面α的法向量为()6,4,1m =-r,则l α⊥C .若直线l 的方向向量与平面α的法向量的夹角为120o ,则直线l 与平面α所成的角为30oD .已知O 为空间任意一点,A ,B ,C ,P 四点共面,且任意三点不共线,若12OP mOA OB OC =-+u u u r u u u r u u u r u u u r ,则12m =-4.已知{},,a b c r r r为空间的一个基底,则下列各组向量中能构成空间的一个基底的是( )A .a b +r r ,c b +r r ,a c -r rB .2a b +r r,b r ,a c -r r C .2a b +r r,2c b +r r ,a b c ++r r rD .a b +r r ,a b c ++r r r ,c r5.过点()1,4A 的直线在两坐标轴上的截距之和为零,则该直线方程为( ) A .30x y -+=B .50x y +-=C .40x y -=或50x y +-=D .40x y -=或30x y -+=6.如图,在平行六面体1111ABCD A B C D -中,底面ABCD 是菱形,侧面11A ADD 是正方形,且1120A AB ∠=︒,60DAB ∠=︒,2AB =,若P 是1C D 与1CD 的交点,则异面直线AP 与DC 的夹角的余弦值为( )A B C D 7.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA ,1BB 的中点,G 为棱11A B 上的一点,且()102AG λλ=<<,则点G 到平面1D EF 的距离为( )A B C D 8.平面几何中有定理:已知四边形ABCD 的对角线AC 与BD 相交于点E ,且AC BD ⊥,过点E 分别作边AB ,BC ,CD ,DA 的垂线,垂足分别为1P ,2P ,3P ,4P ,则1P ,2P ,3P ,4P 在同一个圆上,记该圆为圆F .若在此定理中,直线AB ,BC ,AC 的方程分别为0x y -=,20x y +=,2x =,点()43,1P ,则圆F 的方程为( )A .()221252416x y ⎛⎫-+-=⎪⎝⎭B .()22113239x y ⎛⎫-+-= ⎪⎝⎭C .()221412416x y ⎛⎫-++= ⎪⎝⎭ D .()22125239x y ⎛⎫-++= ⎪⎝⎭二、多选题9.已知向量()1,1,0a =-r ,()1,0,1b =-r ,()2,3,1c =-r,则( ) A .6a b -=rr B .()()37a b b c +⋅+=r r rrC .()4a b c +⊥r r rD .()a b c -r rr ∥10.给出下列命题正确的是( )A .直线l 的方向向量为()3,1,2a =-r,平面α的法向量为12,1,2b ⎛⎫=- ⎪⎝⎭r ,则l 与α平行B .直线()()()1213m x m y m m -+-=-∈R 恒过定点()5,2-C .已知直线()2210a x ay ++-=与直线320ax y -+=垂直,则实数a 的值是43-D .已知,,A B C 三点不共线,对于空间任意一点O ,若212555OP OA OB OC =++u u u r u u u r u u u r u u u r,则,,,P A B C 四点共面11.如图,平行六面体1111ABCD A B C D -的所有棱长均为2,AB ,AD ,1AA 两两所成夹角均为60o ,点E ,F 分别在棱1BB ,1DD 上,且12BE B E =,12D F DF =,则( )A .A ,E ,1C ,F 四点共面B .1AA u u u r 在1AC uuu r 方向上的投影向量为113AC u u u urC .EF u u u rD .直线1AC 与EF三、填空题12.1:30l x y -+=,与直线2:220l x my +-=平行,则直线1l 与2l 的距离为.13.已知{},,a b c r r r是空间向量的一个基底,{},,a b a b c +-r r r r r 是空间向量的另一个基底,若向量p r 在基底{},,a b c r r r 下的坐标为()4,2,3,则向量p r在基底{},,a b a b c +-r r r r r 下的坐标为.14.“曼哈顿距离”是人脸识别中的一种重要测距方式,其定义如下:设()11,A x y ,()22,B x y ,则A ,B 两点间的曼哈顿距离()1212,d A B x x y y =-+-.已知()4,6M ,点N 在圆22:640C x y x y +++=上运动,若点P 满足(),2d M P =,则PN 的最大值为.四、解答题15.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为矩形,且12,,AA AB AD E F ==分别为111,C D DD 的中点.(1)证明://AF 平面1A EB .(2)求平面11A B B 与平面1A BE 夹角的余弦值.16.已知ABC V 的顶点()1,2,A AB 边上的中线CM 所在直线的方程为210,x y ABC +-=∠的平分线BH 所在直线的方程为y x =. (1)求直线BC 的方程和点C 的坐标; (2)求ABC V 的面积.17.设直线1:230l x y -+=和直线2:30l x y ++=的交点为P .(1)若直线l 经过点P ,且与直线250x y ++=垂直,求直线l 的方程; (2)若直线m 与直线250x y ++=关于点P 对称,求直线m 的方程. 18.在空间几何体ABC DEF -中,四边形,ABED ADFC 均为直角梯形,π2FCA CAD DAB ABE ∠=∠=∠=∠=,4,5,6AB AC CF AD BE =====.(1)如图1,若π2CAB ∠=,求直线FD 与平面BEF 所成角的正弦值; (2)如图2,设π02CAB θθ⎛⎫∠=<< ⎪⎝⎭(ⅰ)求证:平面BEF ⊥平面DEF ;(ⅱ)若二面角E BF D --cos θ的值.19.已知圆C 经过坐标原点O 和点()2,2G -,且圆心C 在直线20x y +-=上. (1)求圆C 的方程;(2)设PA PB 、是圆C 的两条切线,其中,A B 为切点. ①若点P 在直线20x y --=上运动,求证:直线AB 经过定点; ②若点P 在曲线214y x =(其中4x >)上运动,记直线PA PB 、与x 轴的交点分别为 M N 、, 求PMN V 面积的最小值.。

长沙一中2025届高三上学期阶段性检测(一)化学试题

长沙一中2025届高三上学期阶段性检测(一)化学试题

长沙市一中2024-2025学年度高三阶段性检测(一)化学试卷时量:75分钟 总分:100分可能用到的相对原子质量:H 1 C 12 N 14 O 16 Cl 35.5 Fe 56一、选择题(本题共14小题,每小题3分,共42分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列文物的主要成分不同于其他三种的是( ) A .双面神人青铜面具B .元代青花带盖瓷梅瓶C .元代“阳平治都功印”铭玉印D .屈蹲羽人活环玉佩饰2.下列有关化学用语的叙述错误的是( )A .3NH 的结构式为B .2CS 的电子式为C .简单硫离子的结构示意图为D .基态N 原子的价层电子排布图为3.设A N 为阿伏加德罗常数的值。

下列叙述正确的是( ) A .1mol 金属钠生成22Na O ,转移的电子数为A 2N B .60g 二氧化硅晶体中含有A N 个2SiO 分子C .乙烯和丙烯的混合物共28g ,含有的氢原子数为A 4ND .由31molCH COONa 和少量3CH COOH 形成的中性溶液中,3CH COO −数目小于A N4.利用下列试剂和如图所示装置制备气体并除去其中的非水杂质,能达到目的的是(必要时可加热,加热及夹持装置已略去)( ) 选项 气体试剂Ⅰ试剂Ⅱ试剂ⅢA 2Cl浓盐酸 2MnO NaOH 溶液 B 2CO 稀盐酸 3CaCO饱和3NaHCO 溶液 C 2SO浓硝酸 ()23Na SO s 饱和3NaHSO 溶液D24C H 浓硫酸()25C H OH 14KMnO 酸性溶液5.常温下,通过下列实验探究3NaHCO 的性质。

实验 实验操作和现象1 用pH 试纸测定130.1mol L NaHCO −⋅溶液的pH ,测得pH 约为82 向135mL0.5mol L NaHCO −⋅溶液中加入125mL1mol L CaCl −⋅溶液,产生白色沉淀和气体 3 向135mL0.5mol L NaHCO −⋅溶液中加入()125mL0.1mol L Ba OH −⋅溶液,产生白色沉淀4向135mL0.5mol L NaHCO −⋅溶液中加入1245mL0.1mol L H SO −⋅溶液,有无色气体逸出下列有关说法错误的是( )A .130.1mol L NaHCO −⋅溶液中存在()()()()2323OHCO H H CO c c c c −−++=+ B .实验2发生反应的离子方程式为233222HCO Ca CaCO H O CO −++=↓++↑ C .实验3发生反应的离子方程式为2332HCO BaOH BaCO H O −+−++=↓+D .实验4发生反应的离子方程式为322HCO H H O CO −+++↑6.苯乙烯是一种重要的化工原料,在2CO 气氛下乙苯催化脱氢生成苯乙烯的一种反应历程如图所示,下列说法错误的是( )A .由原料到状态1产生了活性氢原子B .由状态1到状态2有极性键的断裂和形成C .催化剂可提高苯乙烯选择性,增大苯乙烯的产率D .由状态2到生成物只有2种元素的化合价发生了变化7.实验是科学探究的重要手段,下列实验操作或方案正确且能达到预期目的的是( ) 选项ABCD实验操作或方案实验目的石油分馏时接收馏出物 酸式滴定管排气操作制取氨气证明温度对平衡的影响8.常温下,下列各组粒子在指定溶液中一定能大量共存的是( )A .澄清透明溶液:K +、Na +、24SO −、4MnO −B .遇KSCN 变红色的溶液:Na +、2Mg +、I −、Cl −C .pH 0=的溶液:4NH +、2Fe +、223S O −、ClO −D .通入足量3NH 的溶液:K +、2Cu+、24SO −、Cl −9.科学家合成了一种高温超导材料,其晶胞结构如图所示。

阶段性过关检测卷(一)(含答案)

阶段性过关检测卷(一)(含答案)
A.0或B.0或3
C.1或D.1或3
3、已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件
A⊆C⊆B的集合C的个数为()
A.1B.2
C.3D.4
4、函数y=的定义域为 ( )
A.[-4,1] B.[-4,0)
C.(0,1] D.[-4,0)∪(0,1]
5、已知函数f(x)满足f(x)+2f(3-x)=x2,则f(x)的解析式为()
A.a<2B.a>2
C.-2<a<2D.a>2或a<-2
二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)
13、函数f(x)=-的定义域为________________.
14、已知M={a||a|≥2},A={a|(a-2)(a2-3)=0,a∈M},则集合A的子集共有_个.
A.[1,+∞)B.[0,2]
C.[1,2]D.(-∞,2]
11、对于任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,那么x的取值范围是()
A.(1,3)B.(-∞,1)∪(3,+∞)
C.(1,2)D.(3,+∞)
12、已知函数f(x)=若∃x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是()
15、已知f(x)是奇函数,且x≥0时,f(x)=x(1-x),则x<0时,f(x)=________.
16、设函数f(x)=,那么f(2 013)=。
阶段性过关检测卷答题卡
(测试时间:120分钟 评价分值:150分)
一、选择题(本大题共12小题,每小题5分,共60分)
1
2
3
4
5

小学一年级语文阶段性测试卷

小学一年级语文阶段性测试卷

1. 下列词语中,字形、字音都相同的是()。

A. 天空B. 水平C. 飞翔D. 开心2. 下列句子中,没有错别字的是()。

A. 小明很可爱,他每天都笑嘻嘻的。

B. 妈妈给我买了一本有趣的字典。

C. 天上的月亮像一个大圆盘。

D. 我要好好学习,将来当一名科学家。

3. 下列句子中,用词不当的是()。

A. 妈妈说:“你真是个懂事的孩子。

”B. 老师夸奖我:“你做得很好。

”C. 小鸟在树上叽叽喳喳地唱歌。

D. 我和同学们一起做游戏。

4. 下列词语中,意思相近的是()。

A. 美丽美观美味B. 高兴快乐欢乐C. 温暖热闹寒冷D. 轻松紧张沉重5. 下列句子中,使用了比喻修辞手法的是()。

A. 小明跑步很快。

B. 月亮像小船。

C. 老师的手很温暖。

D. 小猫跳得很高。

6. 我最喜欢的动物是______,因为它______。

7. 在课堂上,老师告诉我们______。

8. 我的妈妈______,她______。

9. 春天来了,小草______,花儿______。

10. 我喜欢读书,因为读书可以让我______。

三、改写句子(每题2分,共6分)11. 原句:小鸟在树上叽叽喳喳地唱歌。

改写:小鸟______。

12. 原句:太阳从东方升起。

改写:______升起。

13. 原句:我每天都去公园玩。

改写:______。

四、阅读理解(每题3分,共9分)14. 阅读下面的短文,回答问题。

小猫钓鱼小猫喜欢钓鱼,每天早上都会去河边钓鱼。

但是,小猫钓鱼的时候总是三心二意,一会儿看看鱼漂,一会儿捉捉蝴蝶,一会儿又去捉蜻蜓。

这一天,小猫又去钓鱼了。

它刚坐下,就看到一只蝴蝶飞过来,小猫立刻放下鱼竿去捉蝴蝶。

可是,蝴蝶飞得太快了,小猫怎么也捉不到。

小猫生气地回到了鱼竿旁,可是鱼漂却一动不动。

小猫又去捉蜻蜓,可是蜻蜓飞得更高了。

小猫捉不到蜻蜓,又回到了鱼竿旁。

这次,小猫决定专心钓鱼。

不一会儿,鱼竿动了一下,小猫赶紧提起鱼竿,一条大鱼被钓了上来。

安徽省六安市2024-2025学年皋城中学九年级上学期9月阶段性检测数学试题

安徽省六安市2024-2025学年皋城中学九年级上学期9月阶段性检测数学试题

初三阶段性目标检测(一)数学试卷时间:120分钟满分:150分一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.一元二次方程x²=x 的根是( )A.x1=0,x2=1B.x1=0,x2=-1C.x1=x2=0D.x1=x2=12.一次函数y=(k-2)x+3的函数值y随x的增大而增大,则k 的取值范围是( )A.k>0B.k<0C.k>2D.k<23.如图,∠A=40°,∠B=55°,∠C=25°,则∠ADC的度数是( )A.115°B.120°C.125°D.130°4.函数y=x2-4x+3与x轴的交点有几个( )A.0个B.1个C.2个D.无法确定5.已知四边形ABCD是平行四边形,若AC⊥BD,要使得四边形ABCD是正方形,则需要添加条件( )A.AB=BCB.∠ABC=90°C.∠ADB=30°D.AC=AB6.如图,在△ABC中,∠C=90°,AC=6,∠B=30°,点P是BC边上的动点,则AP的长不可能是( )A.6B.8C.10D.137.学校组织音乐社团学生进行“青春旋律,你我飞翔”钢琴演奏比赛,全校共有18名同学进入决赛,他们的决赛成绩如下表:成绩(分)9.49.59.69.79.89.9人数324342则这些学生决赛成绩的中位数是( )A.9.75B.9.70C.9.65D.9.608.在体育选项报考前,某九年级学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为y=,由此可知该生此次实心球训练的成绩为( )A.6米B.10米C.12米D.15米9.已知二次函数y=ax²+(b-1)x+c+1的图象如图所示,则在同一坐标系中y 1=ax²+bx+1与y 2=x-c 的图象可能是( )35x 32x 1212++-10.如图,矩形ABCD 中,AB=8,AD=4,点E 、F 分别是AB 、DC 上的动点,EF//BC ,则 AF+CE 的最小值是( )A.8B.12C.8D.16二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:(+1)(-1)= 。

城都市郫都区2022级阶段性检测(一)理科数学试题

城都市郫都区2022级阶段性检测(一)理科数学试题

郫都区高2020级阶段性检测(一)数学(理)命题人:孙卉审题人:钟易生、陈俊龙本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页.满分150分,考试时间120分钟.考生作答时,必须将答案答在答题卡上,在本试卷、草稿纸上答题无效.考试结束后,只将答题卡交回.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}03A xx =≤≤∣,{}0,1,3,4B =,则A B = ()A .{}0,1B .{}0,1,3C .{}0,1,4D .{}0,3,42.已知2i z =+,则(i)z z -=()A .2i -B .12i +C .62i -+D .62i-3.中国古代科举制度始于隋而成于唐,兴盛于明、清两朝。

明代会试分南卷、北卷、中卷,按11:7:2的比例录取,若某年会试录取人数为100,则中卷录取人数为()A .10B .35C .55D .754.函数()()1ln f x x x =-的图象可能是()A B CD 5.在ABC 中,60A =︒,1b =a 等于()A .4BC D6.执行如图所示的程序框图,则输出i 的值为()A .3B .4C .5D .67.函数()sin()f x A x ωϕ=+的部分图象如图所示,则()f x =()A .2sin 23x π⎛⎫+ ⎪⎝⎭B .22sin 23x π⎛⎫+ ⎪⎝⎭C 634x π⎛⎫+ ⎪⎝⎭D 3634x π⎛⎫+ ⎪⎝⎭8.若从0,1,2,3,4,5这六个数字中选3个数字,组成没有重复数字的三位数,则这样的三位偶数一共有()A .20个B .48个C .52个D .120个9.已知定义在R 上的函数()f x 在[)1,-+∞上单调递增,若()20f =,且函数()1f x -为偶函数,则不等式()0xf x >的解集为()A .()2,+∞B .()()4,10,--⋃+∞C .()4,-+∞D .()()4,02,-⋃+∞10.在5(12)(1)x x --的展开式中,3x 的系数为()A .10B .10-C .30D .30-11.在曲线2y x =上有两个动点,,(1,0)P Q E ,且满足EP EQ ⊥,则EP QP ⋅的最小值为()A .14B .21C .34D .112.若对任意()0,x ∞∈+,不等式()2e 2ln x x x ax x -+≥-恒成立,则实数a 的最大值为()A .1+e2eB .32ln28+C .14D .21第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题;每小题5分,共20分,把答案填在题中横线上.13.若x ,y 满足约束条件2,24,0,x y x y y +≥⎧⎪+≤⎨⎪≥⎩则2z x y =-的最大值是________.14.圆1O :2220x y x +-=和圆2O :2240x y y m +++=外切,则实数m 的值为______.15.若2πθπ<<,tan 3θ=-=_________.16.在三棱锥P ABC -中,PA ⊥平面ABC ,60BAC ∠=︒,AB AC ==2PA =,则三棱锥P ABC -外接球的表面积为____________.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或推演步骤.17.(本小题满分12分)为切实加强新时代儿童青少年近视防控工作,经国务院同意发布了《综合防控儿童青少年近视实施方案》.为研究青少年每天使用手机的时长与近视率的关系,某机构对某校高一年级的1000名学生进行无记名调查,得到如下数据:有40%的同学每天使用手机超过1h ,这些同学的近视率为40%,每天使用手机不超过1h 的同学的近视率为25%.(1)从该校高一年级的学生中随机抽取1名学生,求其近视的概率;(2)请完成2×2列联表,通过计算判断能否有99.9%的把握认为该校学生每天使用手机的时长与近视率有关联.每天使用超过1h每天使用不超过1h 合计近视不近视合计1000附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.()20P K k ≥0.150.100.050.0250.0100.00lk 2.072 2.706 3.841 5.024 6.63510.82818.(本小题满分12分)已知等差数列{}n a 的前n 项和为357,3,12n S a a a =+=.(1)求n a 及n S ;(2)令12n nb S =,求证:数列{}2n n b +的前n 项和12n n T +<.19.(本小题满分12分)如图,在直三棱柱111ABC A B C -中,,D E 分别为1,AB CC 的中点.(1)证明:直线DE 平面11AB C ;(2)若1,2AB BC AB BC BB ⊥===,求平面11AB C 与平面DBE 所成锐二面角的余弦值.20.(本小题满分12分)已知椭圆C :()012222>>=+b a by a x 324.(1)求椭圆C 的方程;(2)若过点()1,0P 的直线交椭圆C 于,A B 两点,求OB OA ⋅的取值范围.21.(本小题满分12分)已知函数()e xf x x =,()1g x ax =+,a R ∈.(1)若曲线()y f x =在点()()00f ,处的切线与直线()y g x =垂直,求a 的值;(2)若方程()()0f x g x -=在()22-,上恰有两个不同的实数根,求a 的取值范围;(3)若对任意[]122x ∈-,,总存在唯一的()22x ∈-∞,,使得()()21f x g x =,求a 的取值范围.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为,14x t y t =⎧⎪⎨=-+⎪⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin ρθ=.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)设10,4P ⎛⎫- ⎪⎝⎭,直线l 与曲线C 的交点为M ,N ,线段MN 的中点为Q ,求PQ .。

山东济南莱芜第一中学2024年高二上学期第一次阶段性测数学试题(原卷版)

山东济南莱芜第一中学2024年高二上学期第一次阶段性测数学试题(原卷版)

64级高二上学期第一次阶段性检测数学试题一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知点()2,1,1A −关于z 轴的对称点为B ,则AB 等于( ) AB. C. 2D. 2. 直线:l 2310x y +-=的一个方向向量为( )A. ()2,3−B. (−3,2)C. (2,3)D. ()3,23. 在空间四边形ABCD 中,E ,F 分别为BC ,CD 的中点,则1()2AF AB AC −+= ( ) A. EF −B. BDC. EFD. BD − 4. 已知点(),3,5A a −,()0,,2B b ,()2,7,1C −,若A ,B ,C 三点共线,则a ,b 的值分别是( )A. 2−,3B. 1−,2C. 1,3D. 2−,25. “1a =”是“直线()()321480a x a y ++−+=与直线()()52470a x a y −++−=垂直”的( ) A. 充要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分也不必要条件6. 在所有棱长均为2的平行六面体1111ABCD A B C D −中,1160A AB A AD BAD ∠=∠=∠=°,则1AC 的长为( )A.B.C. D. 67. 数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知ABC 的顶点为()0,0A ,()5,0B ,()2,4C ,则该三角形的欧拉线方程为( ) A. 1522y x =−+ B. 1126y x =+ C 210y x =−+ D. 210y x =− 8. 已知一对不共线向量a ,b 的夹角为θ,定义a b × 为一个向量,其模长为sin a b a b θ×=⋅ ,其方向同时与向量a ,b 垂直(如图1所示).在平行六面体OACB O A C B ′−′′′中(如图2所示),下列结论..的错误的是( )A. 12OAB S OA OB =× B. 当π0,2AOB ∠∈ 时,tan OA OB OA OB AOB ×=⋅∠ C. 若2OA OB == ,2OA OB ⋅= ,则OA OB ×=D. 平行六面体OACB O A C B ′−′′′的体积()V OO OA OB =×′⋅ 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知直线l :10mx y ++=, 1,0A ,()3,1B ,则下列结论正确的是( ) A 直线l 恒过定点()0,1B. 当m =1时,直线lC. 当m =0时,直线l 的斜率不存在D. 当m =2时,直线l 与直线AB 垂直10. 已知向量()()1,2,2,25,,1a m m b m m =−=− ,则下列结论正确的是( )A. 若a ∥b ,则3m =B. 若a b ⊥ ,则25m =− C. a的最小值为 D. a的最大值为4 11. 已知四面体ABCD 满足1AB CD ==,BC AD BD AC ====) A. 直线AC 与BD 所成的角为30°B. 直线AB 与CD 所成的角为90°C. 点M 为直线AD 上的动点,M 到BCD. 二面角C AB D −−平面角的余弦值为57.三、填空题:本题共3小题,每小题5分,共15分.12. 在正方体ABCD A B C D −′′′′中,点E 是上底面A B C D ′′′′的中心,若AE xAD y AB z AA ′=++ ,则实数x y z ++=________.13. 已知a ∈R ,设直线1l :()12x a y a ++=−,2l :28ax y +=−,若12l l ∥,则a =______. 14. 在如图所示的试验装置中,两个正方形框架ABCD ,ABEF 的边长都是1,且它们所在的平面互相垂直.活动弹子M ,N 分别在正方形对角线AC 和BF 上移动,且CM 和BN的长度保持相等,记(0CM BN a a ==<<,当MN 的长最小时,平面MNA 与平面MNB 夹角的正弦值为_______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15. 菱形ABCD 的顶点,A C 的坐标分别为()()4,7,6,5,A C BC −−边所在直线过点()4,1P −. (1)求,BC AD 边所在直线的方程;(2)求对角线BD 所在直线的方程.16. 如图,在正四棱柱1111ABCD A B C D −中,13AA =,2AB =,E ,F 分别为1BB ,1CC 的中点.(1)证明:1//A F 平面CDE .(2)求1A E 与平面CDE 所成角正弦值.17. 已知直线:120(R)l kx y k k −+−=∈.(1)求证:直线l 经过一个定点;(2)若直线l 交x 轴的正半轴于点A ,交y 轴的正半轴于点B ,O 为坐标原点,设AOB 的面积为S ,求S 的最小值及此时直线l 的方程.的18. 如图,直角梯形 ACDE 中, 145,2,2A ED CD AC B ∠==== 、M 分别为AC 、ED 边的中点,将△ABE 沿BE 边折起到△A 'BE 的位置,N 为边A 'C 的中点.(1)证明:MN ∥平面A 'BE ;(2)当三棱锥A BEN ′−A BE C ′−−为锐二面角时,求平面 NBM 与平面BEDC 夹角的正切值.19. 如图,在三棱台ABC DEF −中,2AB BC AC ===,1AD DF FC ===,N 为DF 的中点,二面角D AC B −−的大小为θ.(1)求证:AC BN ⊥;(2)若π2θ=,求三棱台ABC DEF −的体积;(3)若A 到平面BCFE ,求cos θ的值.。

湖南省长沙市2025届高三上学期阶段性检测(一)数学试题含答案

湖南省长沙市2025届高三上学期阶段性检测(一)数学试题含答案

长沙市2024—2025学年度高三阶段性检测(一)数学试卷(答案在最后)时量:120分钟总分:150分一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}1A x x =<,集合{B x y ==,则A B = ()A.()1,1- B.()0,1 C.[)0,1 D.()1,+∞【答案】C 【解析】【分析】求解绝对值不等式和函数定义域解得集合,A B ,再求交集即可.【详解】根据题意,可得{}{}11,0A x x B x x =-<<=≥,故{01}[0,1)A B x x ⋂=≤<=.故选:C .2.已知复数z 满足i 12i =-+z ,则复数z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D 【解析】【分析】根据复数的除法运算法则、结合共轭复数的定义、复数在复平面内对应点的特征进行求解即可.【详解】i 12i =-+z 212i (12i)i2i i iz -+-+⋅⇒===+2i z ⇒=-,所以复数z 在复平面内对应的点位于第四象限,故选:D3.已知一个古典概型,其样本空间中共有12个样本点,其中事件A 有6个样本点,事件B 有4个样本点,事件A B +有8个样本点,则()P AB =()A.23B.12C.13D.16【答案】D 【解析】【分析】依题意计算可得()12P A =,()13P B =,()23P A B +=,再由概率的加法公式计算即可得1()6P AB =.【详解】根据概率公式计算可得()61122P A ==,()41123P B ==,()82123P A B +==;由概率的加法公式可知()()()()P A B P A P B P AB +=+-,代入计算可得1()6P AB =故选:D4.已知等差数列{}n a 的前5项和535S =,且满足5113a a =,则等差数列{a n }的公差为()A.-3B.-1C.1D.3【答案】D 【解析】【分析】根据题意得到5151035S a d =+=,511413a a d a =+=,解得答案.【详解】5151035S a d =+=;511413a a d a =+=,解得3d =,11a =.故选:D5.已知()512my x y x ⎛⎫+- ⎪⎝⎭的展开式中24x y 的系数为80,则m 的值为()A.2- B.2C.1- D.1【答案】A 【解析】【分析】根据题意可得55511(2)(2)(2)my x y x y my x y x x ⎛⎫+-=-+-⎪⎝⎭,利用二项式展开式的通项公式1C r n r rr n T ab -+=求出24x y 的项的系数,进而得出结果.【详解】55511(2)(2)(2)my x y x y my x y x x ⎛⎫+-=-+- ⎪⎝⎭,在51(2)x y x-的展开式中,由155455(2)()(1)2r r r r r r r r x C x y C x y -----=-⋅,令424r r -=⎧⎨=⎩,得r 无解,即51(2)x y x -的展开式没有24x y 的项;在5(2)my x y -的展开式中,由555155(2)()(1)2rrr r r r r r myC x y mC x y ---+-=-⋅,令5214r r -=⎧⎨+=⎩,解得r =3,即5(2)my x y -的展开式中24x y 的项的系数为35335(1)240mC m --⋅=-,又5(2)()x my x y +-的展开式中24x y 的系数为80,所以4080m -=,解得2m =-.故选:A.6.如图,正方形ABCD 中,2,DE EC P = 是直线BE 上的动点,且(0,0)AP x AB y AD x y =+>>,则11x y+的最小值为()A. B. C.43+ D.4【答案】C 【解析】【分析】根据给定图形,用,AB AE 表示向量AD,再利用共线向量定理的推论,结合“1”的妙用求解即得.【详解】正方形ABCD 中,2DE EC =,则2233AD AE ED AE CD AE AB =+=+=- ,而AP xAB y AD =+ ,则(22)()33A B x AE A x P AB y AB y E y A --=++=,又点,,B P E 共线,于是2()13x y y -+=,即13y x +=,而0,0x y >>,因此313111)(444()333x y x x y y x y x y ++=+=+++≥+,当且仅当3x y y x =,即3332y -==时取等号,所以当33,22x y ==时,11x y +取得最小值43+.故选:C 7.设3103a =,ln1.03b =,0.03e 1=-c ,则下列关系正确的是()A.a b c >>B.b a c >>C.c b a >>D.c a b>>【答案】C 【解析】【分析】构造函数()()e 1,0xf x x x =--≥.利用导数判断单调性,证明出0.03e 10.03->.构造函数()()()ln 1,0g x x x x =+-≥.利用导数判断单调性,证明出ln1.030.03<,得到c b >;构造函数()()()ln 1,01xh x x x x =+-≥+.利用导数判断单调性,证明出3ln1.03103>,即为b a >.即可得到答案.【详解】记()()e 1,0xf x x x =--≥.因为()e 1xf x '=-,所以当0x >时,()0f x '>,所以()f x 在0,+∞上单调递增函数,所以当0x >时,()()00f x f >=,即1x e x ->,所以0.03e 10.03->.记()()()ln 1,0g x x x x =+-≥.因为()11011x g x x x-'=-=<++,所以在0,+∞上单调递增函数,所以当0x >时,()()00g x g <=,即()ln 1x x +<,所以ln1.030.03<.所以c b >.记()()()ln 1,01xh x x x x=+-≥+.因为()()()2211111x h x x x x '=-=+++,所以当0x >时,()0h x '>,所以()h x 在0,+∞上单调递增函数,所以当0x >时,()()00h x h >=,即()ln 11x x x +>+,所以0.033ln1.0310.03103>=+.所以b a >.综上所述:c b a >>.故选:C8.已知()1tan 1tan tan 622tan 2⎛⎫⎪--⎡⎤-+-=⎪⎢⎥-⎣⎦ ⎪⎝⎭αβαβαβαβ,tan tan 32⎛⎫-= ⎪⎝⎭παβ,则()cos 44+=αβ()A.7981-B.7981C.4981-D.4981【答案】A 【解析】【分析】结合二倍角公式和两角和差公式化简即可求得.【详解】()1tan 1tan tan 622tan 2⎛⎫ ⎪--⎡⎤-+-= ⎪⎢⎥-⎣⎦ ⎪⎝⎭αβαβαβαβ,222612tan 2tan 21tan1tan 22αβαβαβαβ--⎛⎫ ⎪+= ⎪-- ⎪-⎝⎭-.()()2221tan 2tan 2cos 2261n2si ta n αβαβαβαβαβ--⎛⎫-+ ⎪-= ⎪-- ⎪-⎝⎭,()()221tan 2cos 21s 6ta i 2n n αβαβαβαβ-⎛⎫+ ⎪-= ⎪-- ⎪-⎝⎭,()()()2cos 16c sin os αβαβαβ-⨯=--,()1sin 3αβ-=,1sin cos cos sin 3αβαβ-=,又因为tan tan 32⎛⎫-=⎪⎝⎭παβ,所以sin cos 3cos sin αβαβ=,则11cos sin ,sin cos 62αβαβ==,所以()2sin sin cos cos sin 3αβαβαβ+=+=()()241cos 12sin 129922αβαβ=-=-⨯=++.()()2179cos 442cos 221218181αβαβ+=+-=⨯-=-.故选:A二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.尽管目前人类还无法准确预报地震,但科学家经过研究,已经对地震有所了解,例如,地震时释放的能量E (单位:焦耳)与地震里氏震级M 之间的关系为lg E =4.8+1.5M ,则下列说法正确的是()A.地震释放的能量为1015.3焦耳时,地震里氏震级约为七级B.八级地震释放的能量约为七级地震释放的能量的6.3倍C.八级地震释放的能量约为六级地震释放的能量的1000倍D.记地震里氏震级为n (n =1,2,···,9,10),地震释放的能量为a n ,则数列{a n }是等比数列【答案】ACD 【解析】【分析】根据所给公式,结合指对互化原则,逐一分析各个选项,即可得答案.【详解】对于A :当15.310E =时,由题意得15.3lg10 4.8 1.5M =+,解得7M =,即地震里氏震级约为七级,故A 正确;对于B :八级地震即8M =时,1lg 4.8 1.5816.8E =+⨯=,解得16.8110E =,所以16.81.5115.3101010 6.310E E ==>≠,所以八级地震释放的能量约为七级地震释放的能量的 1.510倍,故B 错误;对于C :六级地震即6M =时,2lg 4.8 1.5613.8E =+⨯=,解得13.8210E =,所以16.83113.821010100010E E ===,即八级地震释放的能量约为六级地震释放的能量的1000倍,故C 正确;对于D :由题意得lg 4.8 1.5n a n =+(n =1,2,···,9,10),所以 4.81.510n n a +=,所以 4.81.5(1)6.31.511010n n n a ++++==所以6.31.5 1.51 4.81.5101010nn n n a a +++==,即数列{a n }是等比数列,故D 正确;故选:ACD10.已知双曲线2222:1x y C a b-=()0,0a b >>的左、右焦点分别为1F ,2F ,点P 在双曲线的右支上,现有四个条件:①120PF PF ⋅=;②1260F F P ∠=︒;③PO 平分12F PF ∠;④点P 关于原点对称的点为Q ,且12PQ F F =,能使双曲线C的离心率为1+)A.①②B.①③C.②③D.②④【答案】AD 【解析】【分析】对各个选项进行分析,利用双曲线的定义找到a,c 的等量关系,从而确定离心率.【详解】③PO 平分12F PF ∠且PO 为中线,可得12PF PF =,点P 在双曲线的右支上,所以不成立;若选①②:120PF PF ⋅=,1260F F P ∠=︒,122F F c =可得2PF c =,1PF =,2c a -=,即离心率为1c e a ===+,成立;若选②④:1260F F P ∠=︒,点P 关于原点对称的点为Q ,且12PQ F F =,可得四边形12F QF P 为矩形,即12PF PF ⊥,122F F c =可得2PF c =,1PF =,2c a -=,即离心率为1c e a ===+,成立;故选:AD11.如图,ABCD 是底面直径为2高为1的圆柱1OO 的轴截面,四边形1OO DA 绕1OO 逆时针旋转()0θθπ≤≤到111OO D A ,则()A.圆柱1OO 的侧面积为4πB.当0θπ<<时,11DD AC ⊥C.当3πθ=时,异面直线1A D 与1OO 所成的角为4πD.1A CD 【答案】BC 【解析】【分析】对于A ,由圆柱的侧面积公式可得;对于B ,由线面垂直的判定定理和性质定理可得;对于C ,由题知,11DO D 为正三角形,根据异面直线所成的角的定义计算得解;对于D ,作1D E DC ⊥,由线面垂直的判定定理和性质定理得1A E DC ⊥.在11Rt A D E 中,1A E ==≤=【详解】对于A ,圆柱1OO 的侧面积为2112ππ⨯⨯=,A 错误;对于B ,因为0θπ<<,所以11DD D C ⊥,又111DD A D ⊥,所以1DD ⊥平面11A D C ,所以11DD AC ⊥,B 正确;对于C ,因为111//A D OO ,所以11DA D ∠就是异面直线1A D 与1OO 所成的角,因为113DO D π∠=,所以11DO D 为正三角形,所以1111DD A D ==,因为111A D DD ⊥,所以114DA D π∠=,C 正确;对于D ,作1D E DC ⊥,垂足为E ,连接1A E ,所以DC ⊥平面11A D E ,所以1A E DC ⊥.在11Rt A D E 中,1A E ==≤=1111222A CD S DC A E =⨯⨯≤⨯= ,所以()1maxA CD S = ,D 错误.故选:BC.三、填空题(本题共3小题,每小题5分,共15分)12.如图,某景区共有,,,,A B C D E 五个景点,相邻景点之间仅设置一个检票口供出入,共有7个检票口,工作人员为了检测检票设备是否正常,需要对每个检票口的检票设备进行检测.若不重复经过同一个检票口,依次对所有检票口进行检测,则共有____________种不同的检测顺序.【答案】32【解析】【分析】将5个景区抽象为5个点,见7个检票口抽象为7条路线,将问题化归为不重复走完7条路线,即一笔画问题,分析可得只能从B 或E 处出发才能不重复走完7条路线,再用列举法列出所有可能结果,即可得解.【详解】如图将5个景区抽象为5个点,见7个检票口抽象为7条路线,将问题化归为不重复走完7条路线,即一笔画问题,从B 或E 处出发的线路是奇数条,其余是偶数条,可以判断只能从B 或E 处出发才能不重复走完7条路线,由于对称性,只列出从B 处出发的路线情形即可.①走BA 路线:3126547,3126745,3147526,3147625,3156247,3157426,共6种;②走BC 路线:4137526,4137625,4265137,4267315,4562137,4573126,共6种;③走BE 路线:7513426,7543126,7621345,7624315,共4种;综上,共有()266432⨯++=种检测顺序.故答案为:3213.已知函数()()sin f x x ωω=∈R 在π7π,212⎛⎫ ⎪⎝⎭上是增函数,且π3π244f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,则π12f ⎛⎫- ⎪⎝⎭的取值的集合为______.【答案】11,2⎧⎫⎨⎬⎩⎭【解析】【分析】由π3π244f f ⎛⎫⎛⎫-=⎪ ⎪⎝⎭⎝⎭可得2π42n T ω==+,由函数在π7π,212⎛⎫ ⎪⎝⎭上是增函数可得12ω≤,然后对ω的取值逐一验证,然后可得π12f ⎛⎫- ⎪⎝⎭取值.【详解】由π3π244f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭可知,3πππ2442T nT +=-=,得π,21T n n =∈+Z ,所以2π42n Tω==+,又函数()()sin f x x ωω=∈R 在π7π,212⎛⎫⎪⎝⎭上是增函数,所以7πππ212212T ≥-=,即6πT ≥,所以12ω≤,所以,ω的可能取值为2,6,10±±±.当0ω>时,由ππ2π2π22k x k ω-+≤≤+解得π2ππ2π,22k k x k ωωωω-+≤≤+∈Z ,经检验,2,6,10ω=时不满足题意;当0ω<时,由ππ2π2π22k x k ω-+≤≤+解得π2ππ2π,22k k x k ωωωω+≤≤-+∈Z ,经检验,2,6ω=--时满足题意.所以,12f π⎛⎫-⎪⎝⎭的可能取值为ππ1ππsin ,sin 11262122f f ⎛⎫⎛⎫-==-== ⎪ ⎪⎝⎭⎝⎭.故答案为:11,2⎧⎫⎨⎬⎩⎭【点睛】本题综合考查了三角函数的单调性、最值、周期之间的关系,关键在于能从已知中发现周期的所满足的条件,然后根据周期确定ω的可能取值,再通过验证即可求解.14.斜率为1的直线与双曲线2222:1x y E a b-=(0,0a b >>)交于两点,A B ,点C 是曲线E 上的一点,满足AC BC ⊥,OAC 和OBC △的重心分别为,P Q ,ABC V 的外心为R ,记直线OP ,OQ ,OR 的斜率为1k ,2k ,3k ,若1238k k k =-,则双曲线E 的离心率为______.【解析】【分析】根据直线与双曲线的性质,得出二级结论斜率之积为定值22b a ,取,AC BC 的中点,M N ,得到2122AC BC b k k k k a ⋅=⋅=,再由AC BC ⊥,22OR b k a=,结合所以1238k k k =-,求得b a =c e a ==.【详解】若直线y kx m =+与双曲线22221x ya b-=有两个交点,G H ,设,G H 的中点为K ,联立方程组22221y kx mx y a b =+⎧⎪⎨-=⎪⎩,整理得222222222()20b a k x a kmx a m a b ----=,可得22222G H a km x x b a k +=-,则22222G H K x x a kmx b a k+==-,又由(,)K K K x y 在直线y kx m =+上,可得22222222K a km b my m b a k b a k=+=--,所以22K OKK y b k x ka ==,所以22GH OK b k k a⋅=,即直线l 与双曲线相交线的中点与原点的连线的斜率与直线l 的斜率之积为定值22b a,如图所示,取,AC BC 的中点,M N ,因为OAC 的重心P 在中线OM 上,OBC △的重心Q 在中线ON 上,所以1OP OM k k k ==,2OQ ON k k k ==,可得22OM AC ON BCb k k k k a⋅=⋅=,即2122AC BCb k k k k a⋅=⋅=,又由AC BC ⊥,可得1AC BCk k ⋅=-,可得22122()b k k a⋅=-因为AC BC ⊥,且ABC V 的外心为点R ,则R 为线段AB 的中点,可得22OR ABb k k a ⋅=,因为1AB k =,所以22OR b k a=,所以2321238()b k ak k =-=-,所以b a =,所以c e a ===.【点睛】知识方法:求解圆锥曲线的离心率的常见方法:1、定义法:通过已知条件列出方程组,求得,a c 得值,根据离心率的定义求解离心率e ;2、齐次式法:由已知条件得出关于,a c 的二元齐次方程或不等式,然后转化为关于e 的一元二次方程或不等式,结合离心率的定义求解;3、特殊值法:根据特殊点与圆锥曲线的位置关系,利用取特殊值或特殊位置,求出离心率问题.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.设函数()()2ln f x x ax x a =-++∈R .(1)若1a =,求函数()f x 的单调区间;(2)设函数()f x 在1,e e ⎡⎤⎢⎥⎣⎦上有两个零点,求实数a 的取值范围.(其中e 是自然对数的底数)【答案】(1)单调递增区间为()0,1,单调递减区间为()1,+∞(2)e11,e ⎛⎤- ⎥⎝⎦【解析】【分析】(1)根据题意,求导可得()f x ',即可得到结果;(2)根据题意,由条件可得ln x a x x =-,构造函数()ln x g x x x =-,其中1,e e x ⎡⎤∈⎢⎥⎣⎦,转化为最值问题,即可求解.【小问1详解】当1a =时,()()2ln ,f x x x x f x =-++的定义域为()0,∞+,()212121x x f x x x x-++=-++=',令()0f x '>,则2210x x --<,解得01x <<,令()0f x '<,则2210x x -->,解得1x >.∴函数()f x 的单调递增区间为()0,1,单调递减区间为()1,+∞.【小问2详解】令()2ln 0f x x ax x =-++=,则ln xa x x=-.令()ln x g x x x =-,其中1,e e x ⎡⎤∈⎢⎥⎣⎦,则()2221ln ln 11x x x x x g x x x ⋅-+-=-='.令()0g x '>,解得1e x <≤,令()0g x '<,解得11ex ≤<.()g x ∴的单调递减区间为1,1e ⎡⎫⎪⎢⎣⎭,单调递增区间为(]1,e ,()min ()11g x g ∴==.又()111e ,e e e e e g g ⎛⎫=+=- ⎪⎝⎭,函数()f x 在1,e e ⎡⎤⎢⎥⎣⎦上有两个零点,a ∴的取值范围是e 11,e ⎛⎤-⎥⎝⎦.16.如图,已知四棱柱1111ABCD A B C D -的底面ABCD 为平行四边形,四边形11CC D D 为矩形,平面11CC D D ⊥平面,ABCD E 为线段1CD 的中点,且BE CE =.(1)求证:AD ⊥平面11BB D D ;(2)若4,2AB AD ==,直线1A E 与平面11BB D D 所成角的正弦值为155,求二面角1D AB D --的余弦值.【答案】(1)证明见解析(2)55【解析】【分析】(1)先根据直角三角形的性质和平行线的性质得到1D B BC ⊥,再根据面面垂直和线面垂直的性质定理结合平面11CC D D ⊥平面ABCD 得到1AD D D ⊥,最后根据线面垂直的判定定理证明即可.(2)建立空间直角坐标系,设()10DD t t =>,利用已知条件和线面角的坐标公式求出t ,再利用面面角的坐标公式求解即可.【小问1详解】在1BCD 中,E 为线段1CD 的中点,且BE CE =,所以1D E CE BE ==,所以112BE CD =,1BCD 为直角三角形,且190CBD ∠=︒,所以1D B BC ⊥,因为底面ABCD 为平行四边形,AD BC ∥,所以1AD D B ⊥,又因为四边形11CC D D 为矩形,所以1D D DC ⊥,因为平面11CC D D ⊥平面ABCD ,平面11CC D D 平面1,ABCD DC D D =⊂平面11CC D D ,所以1D D ⊥平面ABCD ,因为AD ⊂平面ABCD ,所以1AD D D ⊥,因为11111,,D D D B D D D D B =⊂ 平面11BB D D ,所以AD ⊥平面11BB D D .【小问2详解】因为AD ⊥平面11,BB D D BD ⊂平面11BB D D ,所以AD BD ⊥,由(1)知11,D D AD D D ⊥⊥平面ABCD ,又BD ⊂平面ABCD ,所以1D D BD ⊥,所以1,,DA DB DD 两两垂直,以D 为坐标原点,DA 所在直线为x 轴,DB 所在直线为y 轴,1DD 所在直线为z 轴,建立如图所示的空间直角坐标系,在Rt ADB △中,4,2AB AD ==,所以DB ==,设()10DD t t =>,则()()()()10,0,0,2,0,0,2,0,,,0,2t D A A t E B ⎛⎫- ⎪⎝⎭,所以()1,2,2t A E AB ⎛⎫=--=- ⎪⎝⎭,易知平面11BB D D 的一个法向量为D =2,0,0,设直线1A E 与平面11BB D D 所成的角为θ,则111sin cos ,5A E DAA E DA A E DAθ⋅====,解得t =,所以((110,0,,2,0,D AD =-,设平面1ABD 的法向量为 =s s ,则12020AB m x AD m x ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,令x =)m = ,易知平面ABCD 的一个法向量为()0,0,1n = ,则cos,5m nm nm n⋅===,易知二面角1D AB D--是锐角,故二面角1D AB D--的余弦值为5.17.软笔书法又称中国书法,是我国的国粹之一,琴棋书画中的“书”指的正是书法.作为我国的独有艺术,软笔书法不仅能够陶冶情操,培养孩子对艺术的审美还能开发孩子的智力,拓展孩子的思维与手的灵活性,对孩子的身心健康发展起着重要的作用.近年来越来越多的家长开始注重孩子的书法教育.某书法培训机构统计了该机构学习软笔书法的学生人数(每人只学习一种书体),得到相关数据统计表如下:书体楷书行书草书隶书篆书人数2416102010(1)该培训机构统计了某周学生软笔书法作业完成情况,得到下表,其中60a≤.认真完成不认真完成总计男生5a a女生总计60若根据小概率值0.10α=的独立性检验可以认为该周学生是否认真完成作业与性别有关,求该培训机构学习软笔书法的女生的人数.(2)现从学习楷书与行书的学生中用分层随机抽样的方法抽取10人,再从这10人中随机抽取4人,记4人中学习行书的人数为X,求X的分布列及数学期望.参考公式及数据:()()()()()22,n ad bcn a b c da b c d a c b dχ-==+++++++.α0.100.050.01xα2.7063.841 6.635【答案】(1)20(2)分布列见解析,()85E X=【解析】【分析】(1)由已知数据完成列联表,根据独立性检验的结论列不等式求出a 的值,可得女生人数;(2)由分层抽样确定两组人数,根据X 的取值计算相应的概率,得分布列,计算数学期望.【小问1详解】根据题意,完成列联表如下:认真完成不认真完成总计男生45a5a a女生4605a -205a -80a-总计602080由题意可得()()2244802060555516 2.7066020801580a a a a a a a a χ⎡⎤⎛⎫⎛⎫⨯--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦==≥⨯⨯⨯--,得57.38a >.易知a 为5的倍数,且60a ≤,所以60a =,所以该培训机构学习软笔书法的女生有806020-=(人).【小问2详解】因为学习软笔书法的学生中学习楷书与行书的人数之比为24:163:2=,所以用分层随机抽样的方法抽取的10人中,学习楷书的有310632⨯=+(人),学习行书的有210432⨯=+(人),所以X 的所有可能取值为0,1,2,3,4,()46410C 1510C 21014P X ====,()3164410C C 8081C 21021P X ====,()2264410C C 9032C 2107P X ====,()1364410C C 2443C 21035P X ====,()44410C 14C 210P X ===.X 的分布列为:X01234P114821374351210所以()1834180123414217352105E X =⨯+⨯+⨯+⨯+⨯=.18.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为()12,,2,3F F A 为椭圆C 上一点,且到1F ,2F 的距离之和为8.(1)求椭圆C 的标准方程;(2)设B 为A 关于原点O 的对称点,斜率为k 的直线与线段AB (不含端点)相交于点Q ,与椭圆C 相交于点,M N ,若2MNAQ BQ⋅为常数,求AQM V 与AQN △面积的比值.【答案】(1)2211612x y +=(2)1【解析】【分析】(1)根据题意,列出关于,,a b c 的方程,代入计算,即可得到结果;(2)根据题意,表示出直线MN 的方程,联立与椭圆的方程,结合韦达定理代入计算,然后代入弦长公式,即可得到结果.【小问1详解】由椭圆的定义得1228AF AF a +==,所以4a =.又()2,3A 为椭圆C 上一点,所以22491a b+=,将4a =代入,得212b =,所以椭圆C 的标准方程为2211612x y +=.【小问2详解】因为B 为A 关于原点O 的对称点,所以()2,3B --,直线AB 的方程为32y x =.设()()2,311Q t t t -<<,则直线MN 的方程为()32y t k x t -=-,联立得()221161232x y y t k x t ⎧+=⎪⎨⎪-=-⎩,可得()()()222243832432480k x kt k x t k ++-+--=,由点Q 在椭圆内,易知Δ0>,不妨令()()1122,,,M x y N x y ,则()12282343kt k x x k -+=+,()221224324843t k x x k --⋅=+,所以()()()()()()()2222222221212122248116123211443k k t k MNkx x k x x x x k ⎡⎤++--⎣⎦⎡⎤=+-=++-=⎣⎦+.又()()()()()2222222332233131AQ BQ t t t t t ⋅=-+-+++=-,所以()()()()2222222248116123213431k k t k MN AQ BQ k t ⎡⎤++--⎣⎦=⋅+-为常数,则需满足()22221612321k t k t+---为常数,(此式为与t 无关的常数,所以分子与分母对应成比例)即()22161232k k +=-,解得12k =-.将12k =-代入()12282343kt k x x k -+=+,可得124x x t +=,得1222x x t +=,所以Q 为MN 的中点,所以1AQM AQNS MQ S NQ== .【点睛】关键点睛:本题主要考查了直线与椭圆相交问题,以及椭圆中三角形面积问题,难度较大,解答本题的关键在于结合弦长公式以及将面积比转化为边长比.19.设满足以下两个条件的有穷数列12,,,n a a a ⋅⋅⋅为()2,3,4,n n =⋅⋅⋅阶“曼德拉数列”:①1230n a a a a +++=⋅⋅⋅+;②1231n a a a a +++⋅⋅⋅+=.(1)若某()*2k k ∈N阶“曼德拉数列”是等比数列,求该数列的通项na(12n k ≤≤,用,k n 表示);(2)若某()*21k k +∈N阶“曼德拉数列”是等差数列,求该数列的通项na (121n k ≤≤+,用,k n 表示);(3)记n 阶“曼德拉数列”{}n a 的前k 项和为()1,2,3,,k S k n =⋅⋅⋅,若存在{}1,2,3,,m n ∈⋅⋅⋅,使12m S =,试问:数列{}()1,2,3,,i S i n =⋅⋅⋅能否为n 阶“曼德拉数列”?若能,求出所有这样的数列;若不能,请说明理由.【答案】(1)()1112n n a k -=-或()1112n n a k-=--(2)()()*1,211n na n n k k k k ∴=-∈≤++N 或()()*1,211n n a n n k k k k=-+∈≤++N (3)不能,理由见解析【解析】【分析】(1)结合曼德拉数列的定义,分公比是否为1进行讨论即可求解;(2)结合曼德拉数列的定义,首先得120,k k a a d ++==,然后分公差是大于0、等于0、小于0进行讨论即可求解;(3)记12,,,n a a a ⋅⋅⋅中非负项和为A ,负项和为B ,则0,1A B A B +=-=,进一步()11,2,3,,2k S k n ≤=⋅⋅⋅,结合前面的结论以及曼德拉数列的定义得出矛盾即可求解.【小问1详解】设等比数列()1232,,,,1k a a a a k ⋅⋅⋅≥的公比为q .若1q ≠,则由①得()21122101kk a q a a a q-++⋅⋅⋅+==-,得1q =-,由②得112a k =或112a k=-.若1q =,由①得,120a k ⋅=,得10a =,不可能.综上所述,1q =-.()1112n n a k -∴=-或()1112n n a k-=--.【小问2详解】设等差数列()12321,,,,1k a a a a k +⋅⋅⋅≥的公差为d ,123210k a a a a ++++⋅⋅⋅+= ,()()11221210,02k k dk a a kd +∴++=+=,即120,k k a a d ++=∴=,当0d =时,“曼德拉数列”的条件①②矛盾,当0d >时,据“曼德拉数列”的条件①②得,()23211212k k k k a a a a a a +++++⋅⋅⋅+==-+++ ,()1122k k kd d -∴+=,即()11d k k =+,由10k a +=得()1101a k k k +⋅=+,即111a k =-+,()()()()*1111,21111n n a n n n k k k k k k k ∴=-+-⋅=-∈≤++++N .当0d <时,同理可得()1122k k kd d -+=-,即()11d k k =-+.由10k a +=得()1101a k k k -⋅=+,即111a k =+,()()()()*1111,21111n n a n n n k k k k k k k ∴=--⋅=-+∈≤++++N .综上所述,当0d >时,()()*1,211n n a n n k k k k ∴=-∈≤++N ,当0d <时,()()*1,211n n a n n k k k k =-+∈≤++N .【小问3详解】记12,,,n a a a ⋅⋅⋅中非负项和为A ,负项和为B ,则0,1A B A B +=-=,得12A =,12B =-,1122k B S A -=≤≤=,即()11,2,3,,2k S k n ≤=⋅⋅⋅.若存在{}1,2,3,,m n ∈⋅⋅⋅,使12m S =,由前面的证明过程知:10a ≥,20a ≥,⋅⋅⋅,0m a ≥,10m a +≤,20m a +≤,⋅⋅⋅,0n a ≤,且1212m m n a a a ++++⋅⋅⋅+=-.若数列{}()1,2,3,,i S i n =⋅⋅⋅为n 阶“曼德拉数列”,记数列{}()1,2,3,,i S i n =⋅⋅⋅的前k 项和为k T ,则12k T ≤.1212m m T S S S ∴=++⋅⋅⋅+≤,又12m S =,1210m S S S -∴==⋅⋅⋅==,12110,2m m a a a a -∴==⋅⋅⋅===.又1212m m n a a a ++++⋅⋅⋅+=-,1m S +∴,2m S +,⋅⋅⋅,0n S ≥,123123n n S S S S S S S S ∴+++⋅⋅⋅+=+++⋅⋅⋅+,又1230n S S S S +++⋅⋅⋅+=与1231n S S S S +++⋅⋅⋅+=不能同时成立,∴数列{}()1,2,3,,i S i n =⋅⋅⋅不为n 阶“曼德拉数列”.【点睛】关键点点睛:第三问的关键是得到10a ≥,20a ≥,⋅⋅⋅,0m a ≥,10m a +≤,20m a +≤,⋅⋅⋅,0n a ≤,且1212m m n a a a ++++⋅⋅⋅+=-,由此即可顺利得解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年初中毕业学业水平考试·数学阶段性检测卷(一)(第一章~第二章)(时间:120分钟 分值:120分)一、选择题(每小题3分,共36分) 1.2012·四川南充计算:2-(-3)的结果是( )A .5B .1C .-1D .-5 答案:A 2.2012·四川德阳使代数式x2x -1有意义的x 的取值范围是( )A .x≥0B .x≠12 C .x≥0且x≠12 D .一切实数 答案:C 3.2012·湖北黄冈下列实数中是无理数的是( )A. 4C .π0 D. 2 答案:D 4.2012·福建泉州把不等式x +1≥0的解集在数轴上表示出来,则正确的是( )图1-1答案:B5.2012·四川攀枝花下列运算正确的是()A.3-8=-2 B.9=±3C.(ab)2=ab2D.(-a2)3=a6答案:A6.2012·湖南衡阳2012年我省各级政府将总投入594亿元教育经费用于“教育强省”战略.将594亿用科学记数法(保留两个有效数字)表示为()A.5.94×1010B.5.9×1010C.5.9×1011D.6.0×1010答案:B7.2012·山东枣庄如图1-2,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的小正方形(a>0),剩余部分沿虚线剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()图1-2A.(2a2+5a)cm2B.(3a+15)cm2C .(6a +9)cm 2D .(6a +15)cm 2 答案:D8.2012·浙江义乌一个正方形的面积是15,估计它的边长大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间 答案:B 9.2012·贵州黔西南州三角形的两边分别为2和6,第三边是方程x 2-10x +21=0的解.则第三边的长为( ) A .7 B .3 C .7或3 D .无法确定 答案:A10.2012·湖北荆州若x -2y +9与|x -y -3|互为相反数,则x +y 的值为( )A .3B .9C .12D .27 答案:D 11.2012·内蒙古呼和浩特已知:x 1,x 2是一元二次方程x 2+2ax +b=0的两根,且x 1+x 2=3,x 1x 2=1.则a ,b 的值分别是( ) A .a =-3,b =1 B .a =3,b =1 C .a =-32,b =-1 D .a =-32,b =1 答案:D12.2012·江苏盐城已知整数a 1,a 2,a 3,a 4…满足下列条件:a 1=0,a 2=-|a 1+1|,a 3=-|a 2+2|,a 4=-|a 3+3|…依此类推,则a 2012的值为( ) A .-1005 B .-1006 C .-1007 D .-2012 答案:B二、填空题(每小题3分,共24分) 13.2012·江苏泰州如图1-3,数轴上的点P 表示的数是-1,将点P向右移动3个单位长度得到点P′,则点P′表示的数是__________.图1-3答案:214.2012·贵州黔西南州已知-2xm -1y 3与12x n y m +n是同类项,那么(n -m)2012=______. 答案:115.2012·吉林长春学校购买了一批图书,共a 箱,每箱有b 册.将这批图书的一半捐给社区,则捐给社区的图书为________册(用含a ,b 的代数式表示). 答案:ab 216.2012·贵州毕节不等式组⎩⎨⎧x +12≤11-2x <4的整数解是______________. 答案:-1,0,1 17.2012·湖南岳阳关于x 的一元二次方程kx 2+(2k +1)x +(k -1)=0有实数根,则k 的取值范围是__________. 答案:k≥-18且k≠018.计算:8+13-212=________.答案:2+3319.2012·四川宜宾分解因式:3m 2-6mn +3n 2=________. 答案:3(m -n)2 20.2012·四川巴中已知a ,b ,c 是△ABC 的三边长,且满足关系式+|a -b|=0,则△ABC 的形状为__________.答案:等腰直角三角形 三、解答题(共60分)21.(本题满分5分)2012·湖南岳阳3-3+(13)-1-(2012-π)0+2cos30°答案:解:原式=3-3+3-1+3=5.22.(本题满分5分)2012·广西贵港解分式方程:2x +1+4x 2-1=1答案:解:方程两边同时乘以(x +1)(x -1)得:2 (x -1)+4=x 2-1, x 2-2x -3=0, (x -3)(x +1)=0, x 1=3,x 2=-1.经检验:x 1=3是原方程的解. 当x 2=-1时,(x +1)(x -1)=0. 所以原方程的解为:x =3.23.(每小题6分,共12分)先化简,再求值:(1)2012·湖南邵阳x(x +1)-(x +1)(x -1),其中x =2012. 答案:解:原式=x 2+x -(x 2-1) =x 2+x -x 2+1 =x +1, 当x =2012时, 原式=2012+1=2013.(2)2012·江苏南通[1+2x -4(x +1)(x -2)]÷x +3x 2-1,其中x =6.答案:解:[1+2x-4x+1x-2()()]÷x +3x 2-1=[x 2-x -2+2x -4(x +1)(x -2)]÷x +3x 2-1,=[x 2+x -6(x +1)(x -2)]÷x +3x 2-1=[(x +3)(x -2)(x +1)(x -2)]×(x +1)(x -1)x +3=x -1. 当x =6时,原式=6-1=5.24.(本题满分8分)2012·广东观察下列等式:第1个等式:a 1=11×3=12×(1-13); 第2个等式:a 2=13×5=12×(13-15); 第3个等式:a 3=15×7=12×(15-17); 第4个等式:a 4=17×9=12×(17-19); …请解答下列问题:(1)按以上规律列出第5个等式:a 5=____________=____________________;(2)用含n 的代数式表示第n 个等式:a n =__________(n 为正整数); (3)求a 1+a 2+a 3+a 4+…+a 100的值.答案:解:(1)19×11,12×(19-111);(2)1(2n -1)×(2n +1),12×(12n -1-12n +1);(3)a 1+a 2+a 3+a 4+…+a 100=12×(1-13)+12×(13-15)+12×(15-17)+12×(17-19)+…+12×(1199-1201)=12×[(1-13)+(13-15)+(15-17)+(17-19)+…+(1199-1201)]=12×(1-13+13-15+15-17+17-19+…+1199-1201)=12×(1-1201)=12×200201=100201.25.(本题满分8分)2012·湖南长沙以“开放崛起,绿色发展”为主题的第七届“中博会”已于2012年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省外境内投资合作项目多51个.(1)求湖南省签订的境外、省外境内的投资合作项目分别有多少个?(2)若境外、省外境内投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元.求在这次“中博会”中,东道主湖南省共引进资金多少亿元?答案:解:(1)解法一:设湖南省签订的境外投资合作项目有x个,则湖南省签订的省外境内的投资合作项目有(348-x)个.由题意得:2x-(348-x)=51,解得x=133,∴348-x=348-133=215.答:境外投资合作项目为133个,省外境内投资合作项目为215个.解法二:设湖南省签订的境外投资合作项目有x个,省外境内的投资合作项目有y个.由题意得⎩⎨⎧x +y =348,2x -y =51.解得⎩⎨⎧x =133,y =215.答:境外投资合作项目为133个,省外境内投资合作项目为215个. (2)133×6+215×7.5=798+1612.5=2410.5.答:在这次“中博会”中,东道湖南省共引进资金2410.5亿元.26.(本题满分10分)2012·江苏南京某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的售价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元;月底厂家根据销售量一次性返利给销售公司,销售10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为多少万元? (2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利) 答案:解:(1)27-0.3=26.7;(2)设需要销售出x 部汽车可盈利12万元.①当销售10部以内(含10部)时,依题可得[28-27+0.1(x -1)]x +0.5x =12.可化为x 2+14x -120=0解得: x 1=-20(不合题意,舍去),x 2=6.当销售6部汽车时,当月可盈利12万元.②当销售10部以上时,依题可得[28-27+0.1(x -1)]x +x =12. 可化为x 2+19x -120=0,解得x 1=5,x 2=-24,均不合题意,应舍去. 答:当销售6部汽车时,当月可盈利12万元.27.(本题满分12分)2012·广东深圳“节能环保,低碳生活”是我们倡导的一种生活方式.某家电商场计划用11.8万元购进节能型电视机、洗衣机和空调共40台,三种家电的进价和售价如下表所示:(1)在不超出现有资金前提下,若购进电视机的数量和洗衣机的数量相同,空调的数量不超过电视机数量的3倍,请问商场有几种进货方案? (2)在“2012·年消费促进月”促销活动期间,商家针对这三种节能型产品推出“现金每购满1000元送50元家电消费券一张,多买多送”的活动.在(1)的条件下,若三种电器在活动期间全部售出,商家预估最多送出消费券多少张?答案:解:(1)设购进电视机x 台,则洗衣机为x 台、空调为(40-2x)台,⎩⎨⎧5000x +2000x +2400(40-2x )≤118000,40-2x≤3x.解得:8≤x≤10,答:共有3种方案:①电视机8台,洗衣机8台,空调24台;②电视机9台,洗衣机9台,空调22台;③电视机10台,洗衣机10台,空调20台.(2)设售出的总额为S 元,S =5500x +2160x +2700(40-2x)=2260x +10800, ∵8≤x≤10,∴当x =10的时候,W 取得最大值为130600.∴消费券张数为:1306001000=130.6. ∵购满1000元才赠券,∴共送出130张券.。

相关文档
最新文档