2017年湖南省常德市高考数学一模试卷与解析word(文科)
2017年全国统一高考新课标版Ⅰ卷全国1卷文科数学试卷及参考答案与解析

2017年全国统一高考新课标版Ⅰ卷全国1卷文科数学试卷及参考答案与解析一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3-2x>0},则( )A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,xn的平均数 B.x1,x2,…,xn的标准差C.x1,x2,…,xn的最大值 D.x1,x2,…,xn的中位数3.(5分)下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A. B. C. D.5.(5分)已知F是双曲线C:x2-=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为( )A. B. C. D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )A. B. C. D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为( )A.0B.1C.2D.38.(5分)函数y=的部分图象大致为( )A. B. C.D.9.(5分)已知函数f(x)=lnx+ln(2-x),则( )A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n-2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC-cosC)=0,a=2,c=,则C=( )A. B. C. D.12.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是( )A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
2017年湖南高考数学试题(含详解)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,学科网然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}AB x x =>D .AB =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A.13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.下面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共4小题,每小题5分,共20分。
(完整版)2017年湖南高考数学试题(含详解)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,学科网然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π43.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A.13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.下面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共4小题,每小题5分,共20分。
2017年普通高等学校招生全国统一考试数学卷(湖南.文)含答案 精品

2017年普通高等学校招生全国统一考试(湖南卷)数学(文史类)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.不等式2x x >的解集是( ) A .(0)-∞,B .(01),C .(1)+∞,D .(0)(1)-∞+∞ ,,2.若O E F ,,是不共线的任意三点,则以下各式中成立的是( )A .EF OF OE =+B .EF OF OE =-C .EF OF OE =-+D .EF OF OE =--3.设2:40p b ac ->(0a ≠),:q 关于x 的方程20ax bx c ++=(0a ≠)有实数,则p 是q的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件4.在等比数列{}n a (n ∈N *)中,若11a =,418a =,则该数列的前10项和为( ) A .4122-B .2122-C .10122-D .11122-5.在(1)n x +(n ∈N *)的二次展开式中,若只有3x 的系数最大,则n =( ) A .8B .9C .10D .116.如图1,在正四棱柱1111ABCD A BC D -中,E F ,分别是1AB ,1BC 的中点,则以下结论中不成立...的是( ) A .EF 与1BB 垂直 B .EF 与BD 垂直 C .EF 与CD 异面D .EF 与11AC 异面7.根据某水文观测点的历史统计数据,得到某条河流水位的频率分布直方图(如图2).从图中可以看出,该水文观测点平均至少一百年才遇到一次的洪水的最低水位是( ) A .48米 B .49米 C .50米 D .51米8.函数2441()431x x f x x x x -⎧=⎨-+>⎩, ≤,的图象和函数2()log g x x =的图象的交点个数是( )A .1B .2C .3D .49.设12F F ,分别是椭圆22221x y a b+=(0a b >>)的左、右焦点,P(c 为半焦距)的点,且122||||F F F P =,则椭圆的离心率是( )AB .12CD.210.设集合{123456}M =,,,,,, 12k S S S ,,,都是M 的含两个元素的子集,且满足:对任意的{}i i i S a b =,,{}j j j S a b =,(i j=,{123}i j k ∈ 、,,,,),都有min min j j i i i i j j a b a b b a b a ⎧⎫⎧⎫⎪⎪≠⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭,,(min{}x y ,表示两个数x y ,中的较小者),则k 的最大值是( )图2AB C1A 1C1D1BDE FA .10B .11C .12D .13二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上. 11.圆心为(11),且与直线4x y -=相切的圆的方程是 .12.在ABC △中,角A B C ,,所对的边分别为a b c ,,,若1a =,c =π3C =,则A = .13.若0a >,2349a =,则14log a = .14.设集合{()||2|0}A x y y x x =-,≥,≥,{()|}B x y y x b =-+,≤,A B =∅ , (1)b 的取值范围是 ;(2)若()x y A B ∈ ,,且2x y +的最大值为9,则b 的值是 .15.棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,则球O 的表面积是 ;设E F ,分别是该正方体的棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知函数2πππ()12sin 2sin cos 888f x x x x ⎛⎫⎛⎫⎛⎫=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.求: (I )函数()f x 的最小正周期; (II )函数()f x 的单调增区间.17.(本小题满分12分)某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. (I )任选1名下岗人员,求该人参加过培训的概率;(II )任选3名下岗人员,求这3人中至少有2人参加过培养的概率.18.(本小题满分12分)如图3,已知直二面角PQ αβ--,A PQ ∈,B α∈,C β∈,CA CB =,45BAP ∠=,直线CA 和平面α所成的角为30.(I )证明BC PQ ⊥;(II )求二面角B AC P --的大小.19.(本小题满分13分)已知双曲线222x y -=的右焦点为F ,过点F 的动直线与双曲线相交于A B ,两点,点C 的坐标是(10),. (I )证明CA ,CB为常数;(II )若动点M 满足CM CA CB CO =++(其中O 为坐标原点),求点M 的轨迹方程.20.(本小题满分13分)设n S 是数列{}n a (n ∈N *)的前n 项和,1a a =,且22213n n n S na S -=+,0na ≠,234n = ,,,. (I )证明:数列2{}n n a a +-(2n ≥)是常数数列;(II )试找出一个奇数a ,使以18为首项,7为公比的等比数列{}n b (n ∈N *)中的所有项都是数列{}n a 中的项,并指出n b 是数列{}n a 中的第几项. 21.(本小题满分13分) 已知函数3211()32f x x ax bx =++在区间[11)-,,(13],内各有一个极值点. ABCQαβ P(I )求24a b -的最大值;(II )当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式.2007年普通高等学校招生全国统一考试(湖南卷)数学(文史类)参考答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.D 2.B 3.A 4.B 5.C 6.D 7.C 8.C 9.D 10.B 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上. 11.22(1)(1)2x y -+-=12.π613.314.(1)[2)+∞,(2)9215.3π三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.解:ππ()cos(2)sin(2)44f x x x =+++πππ))2442x x x =++=+=. (I )函数()f x 的最小正周期是2ππ2T ==; (II )当2ππ22πk x k -≤≤,即πππ2k x k -≤≤(k ∈Z)时,函数()f x x 是增函数,故函数()f x 的单调递增区间是π[ππ]2k k -,(k ∈Z ).17.解:任选1名下岗人员,记“该人参加过财会培训”为事件A ,“该人参加过计算机培训”为事件B ,由题设知,事件A 与B 相互独立,且()0.6P A =,()0.75P B =. (I )解法一:任选1名下岗人员,该人没有参加过培训的概率是1()()()0.40.250.1P P A B P A P B ===⨯=所以该人参加过培训的概率是1110.10.9P -=-=.解法二:任选1名下岗人员,该人只参加过一项培训的概率是2()()0.60.250.40.750.45P P A B P A B =+=⨯+⨯=该人参加过两项培训的概率是3()0.60.750.45P P A B ==⨯= . 所以该人参加过培训的概率是230.450.450.9P P +=+=.(II )解法一:任选3名下岗人员,3人中只有2人参加过培训的概率是22430.90.10.243P C =⨯⨯=.3人都参加过培训的概率是330.90.729P ==. 所以3人中至少有2人参加过培训的概率是450.2430.7290.972P P +=+=. 解法二:任选3名下岗人员,3人中只有1人参加过培训的概率是1230.90.10.027C ⨯⨯=.3人都没有参加过培训的概率是30.10.001=.所以3人中至少有2人参加过培训的概率是10.0270.0010.972--=. 18.解:(I )在平面β内过点C 作CO PQ ⊥于点O ,连结OB . 因为αβ⊥,PQ αβ= ,所以CO α⊥, 又因为CA CB =,所以OA OB =.而45BAO ∠=,所以45ABO ∠=,90AOB ∠=,从而BO PQ ⊥,又CO PQ ⊥, 所以PQ ⊥平面OBC .因为BC ⊂平面OBC ,故PQ BC ⊥.(II )解法一:由(I )知,BO PQ ⊥,又αβ⊥,PQ αβ= ,BO α⊂,所以BO β⊥. 过点O 作OH AC ⊥于点H ,连结BH ,由三垂线定理知,BH AC ⊥.故BHO ∠是二面角B AC P --的平面角.由(I )知,CO α⊥,所以CAO ∠是CA 和平面α所成的角,则30CAO ∠=,不妨设2AC =,则AO =sin 30OH AO ==在Rt OAB △中,45ABO BAO ∠=∠=,所以BO AO == 于是在Rt BOH △中,tan 2BOBHO OH∠===. 故二面角B AC P --的大小为arctan 2.解法二:由(I )知,OC OA ⊥,OC OB ⊥,OA OB ⊥,故可以O 为原点,分别以直线OB OA OC ,,为x 轴,y 轴,z 轴建立空间直角坐标系(如图).因为CO a ⊥,所以CAO ∠是CA 和平面α所成的角,则30CAO ∠=.不妨设2AC =,则AO =1CO =.在Rt OAB △中,45ABO BAO ∠=∠=,所以BO AO =则相关各点的坐标分别是(000)O ,,,0)B ,,(0A ,(001)C ,,.所以AB =,(0AC = .设1n {}x y z =,,是平面ABC 的一个法向量,由1100n AB n AC ⎧=⎪⎨=⎪⎩,得00z =+=⎪⎩, 取1x =,得1n =.易知2(100)n =,,是平面β的一个法向量.设二面角B AC P --的平面角为θ,由图可知,12n n θ=<> ,.所以1212cos ||||n n n n θ===AB CQαβ P OHQ故二面角B AC P --的大小为19.解:由条件知(20)F ,,设11()A x y ,,22()B x y ,.(I )当AB 与x 轴垂直时,可设点A B ,的坐标分别为(2,(2,此时(11CA CB ==-.当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±. 代入222x y -=,有2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是212121212(1)(1)(1)(1)(2)(2)CA CB x x y y x x k x x =--+=--+--2221212(1)(21)()41k x x k x x k =+-++++2222222(1)(42)4(21)4111k k k k k k k +++=-++-- 22(42)411k k =--++=-. 综上所述,CA CB为常数1-.(II )解法一:设()M x y ,,则(1)CM x y =-,,11(1)CA x y =- ,, 22(1)CB x y =- ,,(10)CO =-,,由CM CA CB CO =++ 得: 121213x x x y y y -=+-⎧⎨=+⎩,即12122x x x y y y+=+⎧⎨+=⎩,于是AB 的中点坐标为222x y +⎛⎫⎪⎝⎭,. 当AB 不与x 轴垂直时,121222222yy y y x x x x -==+---,即1212()2y y y x x x -=--. 又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(2)()x x x y y y -+=-.将1212()2yy y x x x -=--代入上式,化简得224x y -=. 当AB 与x 轴垂直时,122x x ==,求得(20)M ,,也满足上述方程. 所以点M 的轨迹方程是224x y -=.解法二:同解法一得12122x x x y y y +=+⎧⎨+=⎩,……………………………………①当AB 不与x 轴垂直时,由(I ) 有212241k x x k +=-.…………………②21212244(4)411k ky y k x x k k k ⎛⎫+=+-=-= ⎪--⎝⎭.………………………③由①②③得22421k x k +=-.…………………………………………………④241ky k =-.……………………………………………………………………⑤ 当0k ≠时,0y ≠,由④⑤得,2x k y+=,将其代入⑤有2222244(2)(2)(2)1x y x yy x x yy +⨯+==++--.整理得224x y -=. 当0k =时,点M 的坐标为(20)-,,满足上述方程.当AB 与x 轴垂直时,122x x ==,求得(20)M ,,也满足上述方程.故点M 的轨迹方程是224x y -=.20.解:(I )当2n ≥时,由已知得22213n n n S S n a --=.因为10n n n a S S -=-≠,所以213n n S S n -+=. …………………………① 于是213(1)n n S S n ++=+. …………………………………………………② 由②-①得:163n n a a n ++=+.……………………………………………③ 于是2169n n a a n +++=+.……………………………………………………④ 由④-③得:26n n a a +-=.…………………………………………………⑤ 即数列2{}n n a a +-(2n ≥)是常数数列. (II )由①有2112S S +=,所以2122a a =-. 由③有1215a a +=,所以332a a =+,而⑤表明:数列2{}k a 和21{}k a +分别是以2a ,3a 为首项,6为公差的等差数列.所以22(1)6626k a a k k a =+-⨯=-+,213(1)6623k a a k k a +=+-⨯=+-,k ∈N *. 由题设知,1187n n b -=⨯.当a 为奇数时,21k a +为奇数,而n b 为偶数,所以n b 不是数列21{}k a +中的项,n b 只可能是数列2{}k a 中的项.若118b =是数列2{}k a 中的第n k 项,由18626k a =-+得036a k =-,取03k =,得3a =,此时26k a k =,由2n k b a =,得11876n k -⨯=,137n k -=⨯∈N *,从而n b 是数列{}n a 中的第167n -⨯项.(注:考生取满足36n a k =-,n k ∈N*的任一奇数,说明n b 是数列{}n a 中的第126723n a-⨯+-项即可)21.解:(I )因为函数3211()32f x x ax bx =++在区间[11)-,,(13],内分别有一个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],内分别有一个实根, 设两实根为12x x ,(12x x <),则21x x -=2104x x <-≤.于是04<,20416a b <-≤,且当11x =-,23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16.(II )解法一:由(1)1f a b '=++知()f x 在点(1(1))f ,处的切线l 的方程是 (1)(1)(1)y f f x '-=-,即21(1)32y a b x a =++--,因为切线l 在点(1())A f x ,处空过()y f x =的图象, 所以21()()[(1)]32g x f x a b x a =-++--在1x =两边附近的函数值异号,则 1x =不是()g x 的极值点.而()g x 321121(1)3232x ax bx a b x a =++-++++,且 22()(1)1(1)(1)g x x ax b a b x ax a x x a '=++-++=+--=-++.若11a ≠--,则1x =和1x a =--都是()g x 的极值点.所以11a =--,即2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--. 解法二:同解法一得21()()[(1)]32g x f x a b x a =-++-- 2133(1)[(1)(2)]322a x x x a =-++-+. 因为切线l 在点(1(1))A f ,处穿过()y f x =的图象,所以()g x 在1x =两边附近的函数值异号,于是存在12m m ,(121m m <<).当11m x <<时,()0g x <,当21x m <<时,()0g x >; 或当11m x <<时,()0g x >,当21x m <<时,()0g x <. 设233()1222a a h x x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭,则 当11m x <<时,()0h x >,当21x m <<时,()0h x >; 或当11m x <<时,()0h x <,当21x m <<时,()0h x <. 由(1)0h =知1x =是()h x 的一个极值点,则3(1)21102ah =⨯++=, 所以2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--.。
2017届高考数学仿真卷:文科数学试卷(2)(含答案解析)

2017高考仿真卷·文科数学(二)(考试时间:120分钟试卷满分:150分)第Ⅰ卷选择题(共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知i是虚数单位,则复数=()A.-2+iB.iC.2-iD.-i2.已知集合M={x|x2-4x<0},N=,则M∪N=()A.[-2,4)B.(-2,4)C.(0,2)D.(0,2]3.采用系统抽样的方法从1 000人中抽取50人做问卷调查,为此将他们随机编号为1,2,3,…,1 000,适当分组后,在第一组中采用简单随机抽样的方法抽到的号码为8.若编号落入区间[1,400]上的人做问卷A,编号落入区间[401,750]上的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为()A.12B.13C.14D.154.已知命题p:函数y=ln(x2+3)+的最小值是2;命题q:“x>2”是“x>1”的充分不必要条件.则下列命题是真命题的是()A.p∧qB.( p)∧( q)C.( p)∧qD.p∧( q)5.已知点A是抛物线C1:y2=2px(p>0)与双曲线C2:=1(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的焦点的距离为p,则双曲线C2的离心率等于()A. B. C. D.6.某产品的广告费用x(单位:万元))的统计数据如下表:根据表中数据求得回归直线方程为=9.5x+,则等于()A.22B.26C.33.6D.19.57.设a,b,c分别是△ABC的内角A,B,C所对边的边长,则直线sin A·x-ay-c=0与bx+sin B·y+sin C=0的位置关系是()A.平行B.重合C.垂直D.相交但不垂直8.如图,正四棱锥P-ABCD底面的四个顶点A,B,C,D在球O的同一个大圆上,点P在球面上,若V =,则球O的表面积是()正四棱锥P-ABCDA.4πB.8πC.12πD.16π9.已知变量x,y满足线性约束条件若目标函数z=kx-y仅在点(0,2)处取得最小值,则k的取值范围是()A.k<-3B.k>1C.-1<k<1D.-3<k<110.某几何体的三视图如图所示,当a+b取最大值时,这个几何体的体积为()A. B. C. D.11.已知M是△ABC内一点(不含边界),且=2,∠BAC=30°.若△MBC,△MCA,△MAB的面积分别为x,y,z,记f(x,y,z)=,则f(x,y,z)的最小值为()A.26B.32C.36D.4812.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“商高线”.给出下列四个集合:①M=;②M={(x,y)|y=sin x+1};③M={(x,y)|y=log2x};④M={(x,y)|y=e x-2}.其中是“商高线”的序号是()A.①②B.②③C.①④D.②④第Ⅱ卷非选择题(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.执行如图所示的程序框图,若输入x=0.1,则输出的m的值是.14.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=3x+m(m为常数),则f(-log35)的值为.15.关于函数f(x)=2(sin x-cos x)cos x的下列四个结论:①函数f(x)的最大值为;②把函数f(x)=sin 2x-1的图象向右平移个单位后可得到函数f(x)=2(sin x-cos x)·cos x的图象;③函数f(x)的单调递增区间为,k∈Z;④函数f(x)的图象的对称中心为,k∈Z.其中正确的结论有个.16.已知数列{a n}满足a1=,a n-1-a n=(n≥2),则该数列的通项公式为.三、解答题(本大题共6小题,满分70分,解答须写出文字说明、证明过程或演算步骤)17.(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知A=,sin B=3sin C.(1)求tan C的值;(2)若a=,求△ABC的面积.18.(本小题满分12分)国家教育部要求高中阶段每学年都要组织学生进行“国家学生体质健康数据测试”,方案要求以学校为单位组织实施.某校对高一(1)班的同学按照“国家学生体质健康数据测试”的项目进行了测试,并对测试成绩进行统计,其频率分布直方图如图所示,若分数在[90,100]上的人数为2.(1)请求出分数在[70,80)内的人数;(2)现根据测试成绩从第一组和第五组(从低分段到高分段依次分为第一组,第二组,…,第五组)中任意选出2人,形成搭档小组.若选出的2人成绩差大于30,则称这2人为“互补组”,试求选出的2人为“互补组”的概率.19.(本小题满分12分)如图,在正方体ABCD-A1B1C1D1中,E,F分别为AB,BB1的中点.(1)求证:EF⊥平面A1D1B;(2)若AA1=2,求三棱锥D1-DEF的体积.20.(本小题满分12分)已知椭圆C的中心在原点,焦点在x轴上,长轴长为4,且点在椭圆C上.(1)求椭圆C的方程;(2)设P是椭圆C长轴上的一个动点,过P作斜率为的直线l交椭圆C于A,B两点,求证:|P A|2+|PB|2为定值.21.(本小题满分12分)设函数f(x)=.(1)求证:f(x)在(0,1)和(1,+∞)内都是增函数;(2)若在函数f(x)的定义域内,不等式af(x)>x恒成立,求a的取值范围.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一题评分.22.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C:ρcos2θ=2a sin θ(a>0),过点P(-4,-2)的直线l的参数方程为(t为参数),直线l与曲线C分别交于点M,N.(1)写出C的直角坐标方程和l的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求a的值.23.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x-1|+|x+1|.(1)求不等式f(x)≥3的解集;(2)若关于x的不等式f(x)>a2-x2+2x在R上恒成立,求实数a的取值范围.参考答案2017高考仿真卷·文科数学(二)1.B解析(方法一)=i.(方法二)=i.2.A解析∵M={x|0<x<4},N={x|-2≤x≤2},∴M∪N=[-2,4).3.A解析若采用系统抽样的方法从1 000人中抽取50人做问卷调查,则需要分为50组,每组20人.若第一组抽到的号码为8,则以后每组抽取的号码分别为28,48,68,88,108,…,所以编号落入区间[1,400]上的有20人,编号落入区间[401,750]上的有18人,所以做问卷C的有12人.4.C解析因为命题p为假命题,命题q为真命题,所以( p)∧q为真命题.5.C解析因为点A到抛物线C1的焦点的距离为p,所以点A到抛物线准线的距离为p.所以点A的坐标为.所以双曲线的渐近线方程为y=±2x.所以=2,所以b2=4a2.又b2=c2-a2,所以c2=5a2.所以双曲线的离心率为.6.B解析由题意知=2,=45.又由公式,得=26,故选B.7.C解析因为,所以两条直线斜率的乘积为=-1,所以这两条直线垂直.8.D解析连接PO,由题意知,PO⊥底面ABCD,PO=R,S正方形ABCD=2R2.因为V正四棱锥P-ABCD=,所以·2R2·R=,解得R=2,所以球O的表面积是16π.9.D解析如图,作出不等式组所表示的平面区域.由z=kx-y得y=kx-z,要使目标函数z=kx-y 仅在点A(0,2)处取得最小值,则阴影部分区域在直线y=kx+2的下方,故目标函数线的斜率k 满足-3<k<1.10.D解析由该几何体的三视图可得其直观图为如图所示的三棱锥,且从点A出发的三条棱两两垂直,AB=1,PC=,PB=a,BC=b.可知P A2+AC2=a2-1+b2-1=6,即a2+b2=8.故(a+b)2=8+2ab≤8+2,即a+b≤4,当且仅当a=b=2时,a+b取得最大值,此时P A=,AC=.所以该几何体的体积V=×1×.11.C解析由=2,∠BAC=30°,可得S△ABC=1,即x+y+z=1.故(x+y+z)=1+4+9+≥14+4+6+12=36,当且仅当x=,y=,z=时等号成立.因此,f(x,y,z)的最小值为36.12.D解析若对于函数图象上的任意一点M(x1,y1),在其图象上都存在点N(x2,y2),使OM⊥ON,则函数图象上的点的集合为“商高线”.对于①,若取M(1,1),则不存在这样的点;对于③,若取M(1,0),则不存在这样的点.②④都符合.故选D.13.0解析若输入x=0.1,则m=lg 0.1=-1.因为m<0,所以m=-1+1=0.所以输出的m的值为0.14.-4解析因为f(x)是定义在R上的奇函数,所以f(0)=1+m=0.所以m=-1.所以f(-log35)=-f(log35)=-(-1)=-4.15.2解析因为f(x)=2sin x·cos x-2cos2x=sin 2x-cos 2x-1=sin-1,所以其最大值为-1.所以①错误.因为函数f(x)=sin 2x-1的图象向右平移个单位后得到函数f(x)=sin-1=sin-1的图象,所以②错误.由-+2kπ≤2x-+2kπ,k∈Z,得函数f(x)的单调递增区间为,k∈Z,即为,k'∈Z.故③正确.由2x-=kπ,k∈Z,得x=,k∈Z,故④正确.16.a n=解析因为a n-1-a n=(n≥2),所以,所以.所以,…,.所以.所以.所以a n=(n≥2).经检验,当n=1时也适合此公式.所以a n=.17.解(1)∵A=,∴B+C=.∴sin=3sin C.∴cos C+sin C=3sin C.∴cos C=sin C.∴tan C=.(2)由,sin B=3sin C,得b=3c.在△ABC中,由余弦定理得a2=b2+c2-2bc cos A=9c2+c2-2×(3c)×c×=7c2.∵a=,∴c=1,b=3.∴△ABC的面积为S=bc sin A=.18.解(1)由频率分布直方图可知分数在[50,60)内的频率为0.1,[ 60,70)内的频率为0.25,[80,90)内的频率为0.15,[90,100]上的频率为0.05.故分数在[70,80)内的频率为1-0.1-0.25-0.15-0.05=0.45.因为分数在[90,100]上的人数为2,频率为0.05,所以参加测试的总人数为=40.所以分数在[70,80)内的人数为40×0.45=18.(2)因为参加测试的总人数为=40,所以分数在[50,60)内的人数为40×0.1=4.设第一组[50,60)内的同学为A1,A2,A3,A4;第五组[90,100]上的同学为B1,B2,则从中选出2人的选法有(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),(A3,B2),( A4,B1),(A4,B2),(B1,B2),共15种,其中2人成绩差大于30的选法有(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2),共8种,则选出的2人为“互补组”的概率为.19.(1)证明如图,连接AB1.因为E,F分别为AB与AB1的中点,所以EF∥AB1.因为AB1⊥A1B,所以EF⊥A1B.又因为D1A1⊥平面ABB1A1,平面ABB1A1⊃EF,所以D1A1⊥EF.又因为A1B∩D1A1=A1,所以EF⊥平面A1D1B.(2)解如图,连接DB.因为BB1∥DD1,所以.所以=S△DEB·DD1=×2=.20.(1)解因为2a=4,所以a=2.又因为焦点在x轴上,所以设椭圆方程为=1.将点代入椭圆方程得b2=1,所以椭圆方程为+y2=1.(2)证明设点P(m,0)(-2≤m≤2),可得直线l的方程是y=,由方程组消去y得2x2-2mx+m2-4=0.(*)设A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个根.所以x1+x2=m,x1x2=.所以|P A|2+|PB|2=(x1-m)2++(x2-m)2+=(x1-m)2+(x1-m)2+(x2-m)2+(x2-m)2=[(x1-m)2+(x2-m)2]=-2m(x1+x2)+2m2]=[(x1+x2)2-2m(x1+x2)-2x1x2+2m2]=[m2-2m2-(m2-4)+2m2]=5.所以|P A|2+|PB|2为定值.21.(1)证明由题意可得f'(x)==(x>0,x≠1).令g(x)=2ln x-,则g'(x)=.当0<x<1时,g'(x) <0,g(x)是减函数,g(x)>g(1)=0.于是f'(x)=g(x)>0,故f(x)在(0,1)内为增函数.当x>1时,g'(x)>0,g(x)是增函数,g(x)>g(1)=0,于是f'(x)=g(x)>0,故f(x)在(1,+∞)内为增函数.(2)解af(x)-x=-x=.令h(x)=-ln x(x>0),则h'(x)=.令φ(x)=ax2-x+a,当a>0,且Δ=1-4a2≤0,即a≥时,此时φ(x)=ax2-x+a>0在(0,1),(1,+∞)内恒成立,所以当a≥时,h'(x)>0在(0,1),(1,+∞)内恒成立,故h(x)在(0,1),(1,+∞)内是增函数,若0<x<1,则h(x)< h(1)=0,所以af(x)-x=h(x)>0;若x>1,则h(x)>h(1)=0,所以af(x)-x=h(x)>0,所以当x>0,x≠1时都有af(x)>x成立.当0<a<时,h'(x)<0,解得<x<,所以h(x)在内是减函数,h(x)<h(1)=0.故af(x)-x=h(x)<0,不符合题意.当a≤0时,x∈(0,1)∪(1,+∞),都有h'(x)<0,故h(x)在(0,1),(1,+∞)内为减函数,同理可知,在(0,1),(1,+∞)内,af(x)-x=h(x)<0,不符合题意.综上所述,a≥,即a的取值范围是.22.解(1)曲线C的直角坐标方程为x2=2ay(a>0),直线l的普通方程为x-y+2=0.(2)将直线l的参数方程与C的直角坐标方程联立,得t2-2(4+a)t+8(4+a)=0.(*)由Δ=8a(4+a)>0,可设点M,N对应的参数分别为t1,t2,且t1,t2是方程(*)的根,则|PM|=|t1|,|PN|=|t2|,|MN|=|t1-t2|.由题设得(t1-t2)2=|t1t2|,即(t1+t2)2-4t1t2=|t1t2|.由(*)得t1+t2=2(4+a),t1t2=8(4+a)>0.则有(4+a)2-5(4+a)=0,解得a=1或a=-4.因为a>0,所以a=1.23.解(1)原不等式等价于解得x≤-或x≥.故原不等式的解集为.(2)令g(x)=|x-1|+|x+1|+x2-2x,则g(x)=当x∈(-∞,1]时,g(x)单调递减;当x∈[1,+∞)时,g(x)单调递增.故当x=1时,g(x)取得最小值1.因为不等式f(x)>a2-x2+2x在R上恒成立,所以a2<1,解得-1<a<1.所以实数a的取值范围是(-1,1).。
湖南省常德市高三上学期检测考试(期末)数学(文)试题Word版含答案

常德市2017-2018学年度上学期高三检测考试数学(文科试题卷)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.)A2.)A.第一象限 B.第二象限 C.第三象限 D.第四象限3.两本史书,则选出的两本史书编号相连的概率为()A4.元朝著名数学家朱世杰《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”其意思为:“诗人带着装有一倍分酒的壶去春游,先遇到酒店就将酒添加一倍,后遇到朋友饮酒一斗,如此三次先后遇到酒店和朋友,壶中酒恰好饮完,问壶中原有多少酒?”用程序框图表达如图所示,即)A5.()A6.圆表面积为()A.7.法不正确的是()AD8.)A9.某四棱锥的三视图如图所示,则该四棱锥的侧面积为()A10.,则下列选项正确的是()AC.11.)A12.取最小值时,双曲线的离心率为( )A第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.处的切线的方程为 .14.的最小值为.15.,经过对这些数据的处理,得到如下数据信息:千元时,则可预测销售额约为 万元.16.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(1(2行业务培训,现按年龄(单位:岁)进行分组统计:(1).的前提下认为裁判员属于不同的组别(青年组或中年组)与性别有关系?(2)若将同时被选择的概率;19..(1(2.20.(1(2).21. .(1(2.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程,以原点为极.(1(2. 23.选修4-5:不等式选讲(1(2.试卷答案一、选择题1-5:ADCBD 6-10:BCCAB 11、12:DB二、填空题13.三、解答题17.解:(1(218.(1故不能(青年组或中年组)与性别由关系”.(2..分别从这三组各抽取一人有19.解:(1(220. 解:(1(2.21.解:(1(i)(ii(iii).(2)由(1)知,(i.(ii22.解:(1(223.解:(1(2。
2017年高考湖南文科数学

绝密★启用前2017年普通高等学校招生全国统一考试(湖南卷)数学(文科)本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分。
一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知()21jz-=1+i(i为虚数单位),则复数z=2.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图1所示若将运动员按成绩由好到差编为1-35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动人数是A.3B.4C.5D.63.设x∈R,则”x>1”是”3x>1”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.若变量x,y满足约束条件错误!未找到引用源。
则z=2x-y的最小值为A.-1B.0C.1D.25.执行如图2所示的程序框图,如果输入n=3,则输出的S=A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
6.若双曲线22221x y a b-=的一条渐近线经过点(3,-4),则此双曲线的离心率为A.3B.54C.43D.537.若实数a,b 满足12a b+=ab 的最小值为B.2 D.4 8.设函数()ln(1)ln(1)f x x x =+--,则()f x 是A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数9.已知点A ,B ,C 在圆221y χ+=上运动,且AB ⊥BC ,若点P 的坐标为(2,0),则||PA PB PC ++的最大值为A.6B.7C.8D.910.某工件的三视图如图3所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件的利用率为(材料的利用率= 新工件的体积/原工件的体积)A.89πB.827πC.)3241πD.)381π二.填空题:本大题共5小题,每小题5分,共25分11.已知集合U={1,2,3,4},A={1,3},B={1,3,4},则A⋃(C B⋃)=________12.在直角坐标系xOyz中,以坐标原点为极点,x轴的正半轴建立极坐标系,若曲线C的极坐标方程为ρ=3sinθ,则曲线C的直角坐标方程为______13.若直线3x-4y+5=0与圆x²+y²=r²(r>0)相交于A,B两点,且∠AOB=120°(O为坐标原点),则r=___________.14.若函数f(x)=|2x-2|-b有两个零点,则实数b的取值范围是___________15.已知w>0,在函数y=2sin wx余y=2 cos wx 的图像的交点,距离最短的两个交点的距离为则w=________.三、解答题:本大题共6小题,共75分。
2017年全国统一高考数学试卷(文科)全国卷1(详解版)

2017年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)(2017•新课标Ⅰ)已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)(2017•新课标Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)(2017•新课标Ⅰ)下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)(2017•新课标Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)(2017•新课标Ⅰ)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x 轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.6.(5分)(2017•新课标Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.7.(5分)(2017•新课标Ⅰ)设x,y满足约束条件,则z=x+y的最大值为()A.0B.1C.2D.38.(5分)(2017•新课标Ⅰ)函数y=的部分图象大致为()A.B.C.D.9.(5分)(2017•新课标Ⅰ)已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)(2017•新课标Ⅰ)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.(5分)(2017•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=()A.B.C.D.12.(5分)(2017•新课标Ⅰ)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年湖南省常德市高考数学一模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={﹣3,﹣2,﹣1},N={x|(x+2)(x﹣3)<0},则M∩N=()A.{﹣1}B.{﹣2,﹣1}C.{﹣2,﹣1}D.{﹣3,3}2.(5分)设i是虚数单位,则复数z=的虚部为()A.4i B.4 C.﹣4i D.﹣43.(5分)“x>3”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分又不必要条件4.(5分)已知y=f(x)是定义在R上的奇函数,且当x>0时,f(x)=2x﹣1,则f(﹣2)等于()A.3 B.﹣3 C.﹣ D.﹣5.(5分)已知某几何体的三视图如图所示,则该几何体的表面积为()A.12 B.8+2C.12+2D.12+46.(5分)已知双曲线C:=1(a>0,b>0)的渐近线方程为y=±x,则双曲线C的离心率为()A.B.C.D.7.(5分)执行如图所示程序框图,则输出的S的值为()A.4 B.8 C.﹣20 D.﹣48.(5分)在△ABC中,内角A,B,C所对应的边分别为a,b,c,若c2=(a﹣b)2+6,C=,则△ABC的面积()A.3 B.C.D.39.(5分)实数x,y满足,若x﹣2y≥m恒成立,则实数m的取值范围是()A.(﹣∞,﹣3]B.(﹣∞,﹣4]C.(﹣∞,6]D.[0,6]10.(5分)把函数f(x)=cos2x﹣sin2x的图象向右平移个单位得到函数y=g(x)的图象,则函数y=g(x)在下列哪个区间是单调递减的()A.[﹣,0]B.[﹣π,0]C.[﹣,]D.[0,]11.(5分)《张邱建算经》是中国古代数学史上的杰作,该书中有首古民谣记载了一数列问题:“南山一棵竹,竹尾风割断,剩下三十节,一节一个圈.头节高五寸①,头圈一尺三②.逐节多三分③,逐圈少分三④.一蚁往上爬,遇圈则绕圈.爬到竹子顶,行程是多远?”(注释:①第一节的高度为0.5尺;②第一圈的周长为1.3尺;③每节比其下面的一节多0.03尺;④每圈周长比其下面的一圈少0.013尺)问:此民谣提出的问题的答案是()A.72.705尺B.61.395尺C.61.905尺D.73.995尺12.(5分)设函数f(x)=|x2﹣2x﹣1|,若m>n>1,且f(m)=f(n),则(m ﹣1)(n﹣1)的取值范围为()A.(0,2) B.(0,2]C.(1,2) D.(1,2]二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中对应题号后的横线上.13.(5分)已知向量=(k,k+1),=(1,﹣2)且∥,则实数k等于.14.(5分)若同时掷两颗均匀的骰子,则所得点数之和大于4的概率等于.15.(5分)已知直线y=k(x﹣1)+1与圆C:x2﹣4x+y2+1=0交于A,B两点,则|AB|的最小值为.16.(5分)在△ABC中,已知AB=4,且tanAtanB=,则△ABC的面积的最大值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)已知数列{a n}满足a1=﹣2,a n+1=2a n+4.(I)求证{a n+4}是等比数列,并求数列{a n}的通项公式;(II)求数列{a n}的前n项的和S n.18.(12分)某网络营销部门为了统计某市网友2016年12月12日的网购情况,从该市当天参与网购的顾客中随机抽查了男女各30人,统计其网购金额,得到如下频率分布直方图:若网购金额超过2千元的顾客称为“网购达人”,网购金额不超过2千元的顾客称为“非网购达人”.(I)根据频率分布直方图估计网友购物金额的平均值;(II)若抽取的“网购达人”中女性占12人,请根据条件完成上面的2×2列联表,并判断是否有99%的把握认为“网购达人”与性别有关?(参考公式:,其中n=a+b+c+d)19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD是梯形,AB∥CD,PD⊥平面ABCD,BD⊥DC,PD=BD=DC=AB,E为PC中点.(I)证明:平面BDE⊥平面PBC;=,求点A到平面PBC的距离.(II)若V P﹣ABCD20.(12分)已知椭圆C:+=1(a>b>0)的离心率为,过左焦点F且垂直于x轴的弦长为1.(I)求椭圆C的标准方程;(Ⅱ)点P(m,0)为椭圆C的长轴上的一个动点,过点P且斜率为的直线l 交椭圆C于A,B两点,问:|PA|2+|PB|2是否为定值?若是,求出这个定值并证明,否则,请说明理由.21.(12分)已知函数f(x)=lnx﹣ax2+(1﹣a)x+1,a∈R.(I)求函数f(x)的单调区间;(Ⅱ)令g(x)=f(x)+ax﹣,若a=2,正实数x1,x2满足g(x1)+g(x2)+x1x2=0,求x1+x2的最小值.请考生在第22,23题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.[选修4-4:坐标系与参数方程]22.(10分)直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为,直线l的参数方程为(t为参数),直线l与曲线C1交于A,B两点.(Ⅰ)求|AB|的长度;(Ⅱ)若曲线C2的参数方程为(α为参数),P为曲线C2上的任意一点,求△PAB的面积的最小值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|,x∈R(Ⅰ)求不等式|f(x)﹣3|≤4的解集;(Ⅱ)若f(x)+f(x+3)≥m2﹣2m恒成立,求实数m的取值范围.2017年湖南省常德市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={﹣3,﹣2,﹣1},N={x|(x+2)(x﹣3)<0},则M∩N=()A.{﹣1}B.{﹣2,﹣1}C.{﹣2,﹣1}D.{﹣3,3}【解答】解:N={x|(x+2)(x﹣3)<0}={x|﹣2<x<3},∵M={﹣3,﹣2,﹣1},∴M∩N={﹣1},故选:A2.(5分)设i是虚数单位,则复数z=的虚部为()A.4i B.4 C.﹣4i D.﹣4【解答】解:∵z==,∴复数z=的虚部为﹣4.故选:D.3.(5分)“x>3”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分又不必要条件【解答】解:“x>3”⇒“”;反之不成立,例如取x=﹣1.因此“x>3”是“”的充分不必要条件.故选:A.4.(5分)已知y=f(x)是定义在R上的奇函数,且当x>0时,f(x)=2x﹣1,则f(﹣2)等于()A.3 B.﹣3 C.﹣ D.﹣【解答】解:根据题意,当x>0时,f(x)=2x﹣1,则f(2)=22﹣1=3,又由函数f(x)为R上的奇函数,则f(﹣2)=﹣f(2)=﹣3;故选:B.5.(5分)已知某几何体的三视图如图所示,则该几何体的表面积为()A.12 B.8+2C.12+2D.12+4【解答】解:根据题意,由三视图分析可得,原几何体为三棱柱,其上下底面为边长为2的正三角形,其高为2,则其表面积S=2×(×2×)+(2+2+2)×2=12+2,故选:C.6.(5分)已知双曲线C:=1(a>0,b>0)的渐近线方程为y=±x,则双曲线C的离心率为()A.B.C.D.【解答】解:根据题意,双曲线C的方程为=1,其焦点在x轴上,其渐近线方程为y=±x,则有=,则其离心率e2===1+=,即e=,故选:D.7.(5分)执行如图所示程序框图,则输出的S的值为()A.4 B.8 C.﹣20 D.﹣4【解答】解:模拟程序的运行,可得S=10,i=1t=2满足条件i<4,执行循环体,S=8,i=2,t=4满足条件i<4,执行循环体,S=4,i=3,t=8满足条件i<4,执行循环体,S=﹣4,i=4,t=16不满足条件i<4,退出循环,输出S的值为﹣4.故选:D.8.(5分)在△ABC中,内角A,B,C所对应的边分别为a,b,c,若c2=(a﹣b)2+6,C=,则△ABC的面积()A.3 B.C.D.3【解答】解:∵c2=(a﹣b)2+6,∴c2=a2﹣2ab+b2+6,即a2+b2﹣c2=2ab﹣6,∵C=,∴cos===,解得ab=6,则三角形的面积S=absinC==,故选:C9.(5分)实数x,y满足,若x﹣2y≥m恒成立,则实数m的取值范围是()A.(﹣∞,﹣3]B.(﹣∞,﹣4]C.(﹣∞,6]D.[0,6]【解答】解:x,y满足的平面区域如图:设z=x﹣2y,则y=x﹣z当经过图中的A时z最小,由得到A(2,3),所以z的最小值为2﹣2×3=﹣4;所以实数m的取值范围是(﹣∞,﹣4];故选:B.10.(5分)把函数f(x)=cos2x﹣sin2x的图象向右平移个单位得到函数y=g(x)的图象,则函数y=g(x)在下列哪个区间是单调递减的()A.[﹣,0]B.[﹣π,0]C.[﹣,]D.[0,]【解答】解:函数f(x)=cos2x﹣sin2x=2cos(2x+),向右平移个单位得到2cos(2(x))=2cos2x=g(x),由y=cosx的一个单调递减区间为[0,π],∴g(x)=2cos2x的一个单调递减区间为[0,],故选D11.(5分)《张邱建算经》是中国古代数学史上的杰作,该书中有首古民谣记载了一数列问题:“南山一棵竹,竹尾风割断,剩下三十节,一节一个圈.头节高五寸①,头圈一尺三②.逐节多三分③,逐圈少分三④.一蚁往上爬,遇圈则绕圈.爬到竹子顶,行程是多远?”(注释:①第一节的高度为0.5尺;②第一圈的周长为1.3尺;③每节比其下面的一节多0.03尺;④每圈周长比其下面的一圈少0.013尺)问:此民谣提出的问题的答案是()A.72.705尺B.61.395尺C.61.905尺D.73.995尺【解答】解:∵每竹节间的长相差0.03尺,设从地面往长,每节竹长为a1,a2,a3,…,a30,∴{a n}是以a1=0.5为首项,以d′=0.03为公差的等差数列,由题意知竹节圈长,后一圏比前一圏细1分3厘,即0.013尺,设从地面往上,每节节圈长为b1,b2,b3,…,b30,由{b n}是以b1=1.3为首项,d=﹣0.013为公差的等差数列,∴一蚁往上爬,遇圈则绕圈.爬到竹子顶,行程是:S30=(30×0.5+×0.03)+[30×1.3+×(﹣0013)]=61.395.故选:B.12.(5分)设函数f(x)=|x2﹣2x﹣1|,若m>n>1,且f(m)=f(n),则(m ﹣1)(n﹣1)的取值范围为()A.(0,2) B.(0,2]C.(1,2) D.(1,2]【解答】解:解方程x2﹣2x﹣1=0得x=1±,∴当1﹣<x<1+时,x2﹣2x﹣1<0,当x或x时,x2﹣2x﹣1>0,∴f(x)=.作出f(x)的函数图象如图所示:∵m>n>1,且f(m)=f(n),∴1,m,∴(m﹣1)(n﹣1)>0,f(n)=﹣n2+2n+1,f(m)=m2﹣2m﹣1,∵f(m)=f(n),∴m2﹣2m﹣1+n2﹣2n﹣1=0,即(m﹣1)2+(n﹣1)2=4,又(m﹣1)2+(n﹣1)2>2(m﹣1)(n﹣1),∴(m﹣1)(n﹣1)<[(m﹣1)2+(n﹣1)2]=2,∴0<(m﹣1)(n﹣1)<2.故选:A.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中对应题号后的横线上.13.(5分)已知向量=(k,k+1),=(1,﹣2)且∥,则实数k等于.【解答】解:根据题意,向量=(k,k+1),=(1,﹣2),若∥,则有(﹣2)×k=k+1,解可得k=;故答案为:.14.(5分)若同时掷两颗均匀的骰子,则所得点数之和大于4的概率等于.【解答】解:同时掷两颗均匀的骰子,基本事件总数n=6×6=36,所得点数之和大于4的对立事件是所得点数之和不大于4,所得点数之和不大于4包含的基本事件有:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6个,∴所得点数之和大于4的概率p=1﹣=.故答案为:.15.(5分)已知直线y=k(x﹣1)+1与圆C:x2﹣4x+y2+1=0交于A,B两点,则|AB|的最小值为2.【解答】解:圆C:x2﹣4x+y2+1=0的圆心C(2,0),半径r==,圆心C(2,0)到直线y=k(x﹣1)+1的距离d==,|AB|=2=2==≥2.当且仅当k=1时取等号,∴|AB|的最小值为2.故答案为:2.16.(5分)在△ABC中,已知AB=4,且tanAtanB=,则△ABC的面积的最大值为2.【解答】解:在△ABC中,已知tanAtanB=,tanA>0,tanB>0,∴tanC=﹣tan(A+B)=﹣=﹣4(tanA+tanB)≤﹣8=﹣4,当且仅当tanA=tanB=时,取等号,∴cosC=﹣,由16=a2+b2﹣2ab×(﹣)≥2ab+ab,解得:ab≤7,可得:S=absinC≤7×=2.△ABC故答案为:2.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)已知数列{a n}满足a1=﹣2,a n+1=2a n+4.(I)求证{a n+4}是等比数列,并求数列{a n}的通项公式;(II)求数列{a n}的前n项的和S n.=2a n+4,变形为a n+1+4=2(a n+4).﹣﹣﹣﹣﹣﹣﹣【解答】解:(Ⅰ)证明:a n+1﹣﹣﹣﹣﹣﹣﹣(2分)又∵a1=﹣2,∴a1+4=2∴数列{a n+4}为以2为首项,2为公比的等比数列﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(II )由(Ⅰ)可知,∴S n=2+22+…+2n﹣4n,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)18.(12分)某网络营销部门为了统计某市网友2016年12月12日的网购情况,从该市当天参与网购的顾客中随机抽查了男女各30人,统计其网购金额,得到如下频率分布直方图:若网购金额超过2千元的顾客称为“网购达人”,网购金额不超过2千元的顾客称为“非网购达人”.(I)根据频率分布直方图估计网友购物金额的平均值;(II)若抽取的“网购达人”中女性占12人,请根据条件完成上面的2×2列联表,并判断是否有99%的把握认为“网购达人”与性别有关?(参考公式:,其中n=a+b+c+d)【解答】解:(Ⅰ)计算平均值为=0.25×0.1+0.75×0.2+1.25×0.15+1.75×0.3+2.25×0.15+2.75×0.1=1.5千元;…(6分)(Ⅱ)根据题意,填写列联表如下:计算K2==7.2>6.635,所以有99%的把握认为“网购达人”与性别有关.…(12分)19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD是梯形,AB∥CD,PD⊥平面ABCD,BD⊥DC,PD=BD=DC=AB,E为PC中点.(I)证明:平面BDE⊥平面PBC;(II)若V P=,求点A到平面PBC的距离.﹣ABCD【解答】证明:(I)PD⊥平面ABCD,CD⊂平面ABCD,BD⊂平面ABCD,∴PD⊥CD,PD⊥DB,又BD⊥DC,PD=DC=DB,∴PC=PB=BC,∵E是PC的中点,∴PC⊥DE,PC⊥BE,又DE∩BE=E,∴PC⊥平面BDE,又PC⊂平面PBC,∴平面BDE⊥平面PBC.(Ⅱ)设PD=CD=BD==a,==a2,∴S四边形ABCD===,∴a=.则V P﹣ABCD∴PC=PD=BC=a=2,==,∴S△PBC==2,∴V P﹣ABC==,又S△ABC==.设A到平面PBC的距离为h,则V A﹣PBC=V A﹣PBC,∴h=,∵V P﹣ABC解得h=.20.(12分)已知椭圆C:+=1(a>b>0)的离心率为,过左焦点F且垂直于x轴的弦长为1.(I)求椭圆C的标准方程;(Ⅱ)点P(m,0)为椭圆C的长轴上的一个动点,过点P且斜率为的直线l交椭圆C于A,B两点,问:|PA|2+|PB|2是否为定值?若是,求出这个定值并证明,否则,请说明理由.【解答】解:(I)由过左焦点F且垂直于x轴的弦长为1,可知椭圆C过点,∴,又∵e==,a2=b2+c2;三式联立解得,∴椭圆的方程为+y2=1;(II)设P(m,0)(且﹣2≤m≤2),由已知,直线l的方程是y=(x﹣m),由,消去y得,2x2﹣2mx+m2﹣4=0,(*)设A(x1,y1),B(x2,y2),则x1、x2是方程(*)的两个根,所以有,x1+x2=m,x1x2=,所以,|PA|2+|PB|2=(x1﹣m)2+y12+(x2﹣m)2+y22=(x1﹣m)2+(x1﹣m)2+(x2﹣m)2+(x2﹣m)2=[(x1﹣m)2+(x2﹣m)2]=[x12+x22﹣2m(x1+x2)+2m2]=[(x1+x2)2﹣2m(x1+x2)﹣2x1x2+2m2]=[m2﹣2m2﹣(m2﹣4)+2m2]=5(为定值);所以,|PA|2+|PB|2为定值.21.(12分)已知函数f(x)=lnx﹣ax2+(1﹣a)x+1,a∈R.(I)求函数f(x)的单调区间;(Ⅱ)令g(x)=f(x)+ax﹣,若a=2,正实数x1,x2满足g(x1)+g(x2)+x1x2=0,求x1+x2的最小值.【解答】(本小题满分12分)解:(Ⅰ)∵f(x)=lnx﹣ax2+(1﹣a)x+1,a∈R,∴,…(1分)当a≤0时,∵x>0,∴f′(x)>0.∴f(x)在(0,+∞)上是递增函数,即f(x)的单调递增区间为(0,+∞),无递减区间.…(3分)当a>0时,=﹣,令f′(x)=0,得.∴当时,f′(x)>0;当时,f′(x)<0.∴f(x)在上是增函数,在()上是减函数.∴f(x)的单调递增区间为(0,),单调递减区间为().…(5分)综上,当a≤0时,f(x)的单调递增区间为(0,+∞),无递减区间;当a>0时,f(x)的单调递增区间为(0,),单调递减区间为(,+∞).…(6分)(Ⅱ)当a=﹣2时,,x>0.由g(x1)+g(x2)+x1x2=0,即,从而(x1+x2)2+(x1+x2)﹣11=x1x2﹣ln(x1x2),…(8分)令t=x1x2,则由ϕ(t)=t﹣lnt得:,可知,ϕ(t)在区间(0,1)上单调递减,在区间(1,+∞)上单调递增.∴ϕ(t)≥ϕ(1)=1,…(10分)∴(x 1+x2)2+(x1+x2)﹣11≥1,∴(x1+x2+4)(x1+x2﹣3)≥0又∵x1>0,x2>0,∴x1+x2≥3.=时取等号.…(11分)当且仅当x1,2则x1+x2的最小值是3.…(12分)请考生在第22,23题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.[选修4-4:坐标系与参数方程]22.(10分)直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为,直线l的参数方程为(t 为参数),直线l与曲线C1交于A,B两点.(Ⅰ)求|AB|的长度;(Ⅱ)若曲线C2的参数方程为(α为参数),P为曲线C2上的任意一点,求△PAB的面积的最小值.【解答】解:(Ⅰ)∵,ρ2=2ρsinθ+2ρcosθ,∴x2+y2=2x+2y,即曲线C1的直角坐标系方程为(x﹣1)2+(y﹣1)2=2…(2分)直线l的直角坐标系方程为x+y﹣1=0…(3分)圆心C1到直线l的距离为d==,…(4分)∴…(5分)(Ⅱ)曲线C2的直角坐标系方程为(x﹣3)2+(y﹣4)2=2…(6分)P到直l的最小距离为,…(8分)又,﹣1≤m≤3,∴△PAB的面积的最小值为…(10分)[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|,x∈R(Ⅰ)求不等式|f(x)﹣3|≤4的解集;(Ⅱ)若f(x)+f(x+3)≥m2﹣2m恒成立,求实数m的取值范围.【解答】解:(I)由|f(x)﹣3|≤4 知﹣4≤f(x)﹣3≤4,即﹣1≤f(x)≤7.又f(x)≥0,故0≤f(x)≤7,∴0≤|x﹣1|≤7,﹣7≤x﹣1≤7,∴﹣6≤x≤8,∴所求不等式的解集为{x|﹣6≤x≤8}.(II)由f(x)+f(x+3)≥m2﹣2m,即|x﹣1|+|x+2|≥m2﹣2m恒成立.令g(x)=|x﹣1|+|x+2|,则g(x)的最小值为|(x﹣1)﹣(x+2)|=3,∴m2﹣2m≤3,求得﹣1≤m≤3,∴m的取值范围是{m|﹣1≤m≤3}.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。