长方体和正方体的体积 4
长方体的知识总结长方体和正方体的知识点整理

长方体的知识总结长方体和正方体的知识点整理长方体和正方体知识整理一、【概念】1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。
在一个长方体中,相对面完全相同,相对的棱长度相等。
2、两个面相交的边叫做棱。
三条棱相交的点叫做顶点。
相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
正方体有12条棱,它们的长度都相等,所有的面都完全相同。
长方体正方体 4、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
5、长方体有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
正方体有6个面,每个面都是正方形,每个面的面积都相等,有12条棱,每条的棱的长度都相等。
长方体的棱长总和=(长+宽+高)×4L=(a+b+h)×4 长=棱长总和÷4-宽-高a=L÷4-b-h 宽=棱长总和÷4-长-高b=L÷4-a-h 高=棱长总和÷4-长-宽h=L÷4-a-b 正方体的棱长总和=棱长×12L=a×12 正方体的棱长=棱长总和÷12 a=L÷12 6、长方体或正方体的长、宽、高同时扩大几倍,棱长总和会扩大相同的倍数。
(如长、宽、高各扩大2倍,棱长总和就会扩大到原来的2倍)。
二、【长方体和正方体的表面积】1、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)无底(或无盖)长方体表面积=长×宽+(长×高+宽×高)×2 S=2(ab+ah+bh)-ab S=2(ah+bh)+ab 无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah+bh)正方体的表面积=棱长×棱长×6 S=a×a×6=6a22、表面积的常用单位有:平方米、平方分米、平方厘米相邻两个面积单位之间的进率是1001m2 =100dm21 dm2 =100 cm21m2 =10000 cm2 3、生活实际油箱、罐头盒等都是6个面;游泳池、鱼缸、粉刷教室等都只有5个面;水管、烟囱等都只有4个面。
五年级数学《长方体和正方体的体积》教案【优秀6篇】

五年级数学《长方体和正方体的体积》教案【优秀6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!五年级数学《长方体和正方体的体积》教案【优秀6篇】在教学工作者开展教学活动前,通常需要用到教学设计来辅助教学,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。
长方体、正方体表面积、体积所有计算公式

长方体:
1、长方体的棱长和=(长+宽+高)×4
包装礼盒用的绳子=长×2+宽×2+高×4+绳头长
2、长方体的表面积= 长×宽×2+长×高×2+宽×高×2
(没有盖的)长方体的表面积=长×宽+长×高×2+宽×高×2 (上下面不计算)长方体的表面积=长×高×2+宽×高×2
3、通风管的表面积=长×宽×4(长与宽相等)
通风管的面积=长×宽×2+宽×高×2(长与宽不相等)4、长方体的体积=长×宽×高
长方体的体积=底面积×高
正方体:
1、正方体的棱长和=棱长×12
2、正方体的表面积= 棱长×棱长×6
(没有盖的)正方体的表面积= 棱长×棱长×5
(上下面不计算)正方体的表面积=棱长×棱长×4
3、正方体的体积=棱长×棱长×棱长
正方体的体积=底面积×高。
实用文档之长方体正方体体积

实用文档之"长方体与正方体体积"知识点:1、物体所占空间的大小叫做物体的体积。
长方体的体积=长×宽×高 V=abh长=体积÷宽÷高 a=V÷b÷h宽=体积÷长÷高b=V÷a÷h高=体积÷长÷宽 h= V÷a÷b2.正方体的体积=棱长×棱长×棱长V=a×a×a=a3读作“a的立方”表示3个a相乘,(即a·a·a)长方体或正方体底面的面积叫做底面积。
长方体(或正方体)的体积=底面积×高用字母表示:V=S h(横截面积相当于底面积,长相当于高)。
3、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。
固体一般就用体积单位,计量液体的体积,如水、油等。
常用的容积单位有升和毫升也可以写成L和ml。
1升=1立方分米 1毫升=1立方厘米 1升=1000毫升(1 L = 1 dm3 1 ml = 1 cm3)注意:1、长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。
(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。
2、*形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。
排水法的公式:V 物体 =V 现在-V 原来也可以 V 物体 =S ×(h 现在- h 原来)V 物体 = S ×h 升高3、【体积单位换算】 大单位 小单位 小单位 大单位 进率: 1立方米=1000立方分米=1000000立方厘米 (立方相邻单位进率1000)1立方分米=1000立方厘米=1升=1000毫升1立方厘米=1毫升1平方米=100平方分米=10000平方厘米1平方千米=100公顷=1000000平方米注意:长方体与正方体关系把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。
长方体正方体表面积和体积ppt(共21张PPT)

长方体的体积=长×宽×高
=底面积×高
V=Sh
正方体的体积=长×宽×高 =棱长×棱长×棱长
V=a3
长=a
高=h 宽=b
第三节 长方体正方体的体积
习题:
1、求下列图形的体积。
3
第长二方节 体上面(长或方下体面正)方的体面的积表=面长积×宽
长做方一体 个或如正图方所体示6的个长面方的体总纸面盒积,,长叫6厘做米它,的宽表5面厘积米。,高4 厘米,至少要用多少平方厘米硬纸板?
4面第5×积三24、是 节=2_0光_(_平_明方_长_厘纸_3方_米_体盒_)正__厂方__体生__的_产_体_;积一1 种正方形1纸2 板箱,棱长是8分米,体积是多少立方分米?
=棱上长面是积1d+m下的面正积方+前体面,积体+积后是面1积d+m左3 面;积+右面积=30 ×2 +24 ×2 +20 ×2 =148(平方厘米)
第三节
长方体正方体的体积
需要引入的概念
计算体积,常用到的体积单位:立方厘米,立方分米,立方米,也可以写成:cm3,dm3,m3
棱长是1cm的正方体,体积是1 cm3 ;
棱长是1m的正方体,体积是1m3
一个手指尖的体积大约是1 cm3
可以用3根1m的木条做成一个互 成直角的架子,放到墙角,看看 体积为1 m3 是多大哦!
4cm 5 第棱二长节 是1dm的长正方方体体正,方体体积的是表1面d积m3 ;
dm
8cm 第5×一4节=20(平方回厘米顾)
第做三一节 个如图所长示方的体长正方方体体纸的盒体,积长6厘米,宽5厘米,高4 厘米,至少要用多少平方厘米硬纸板?
【典型习题系列】人教版小学数学五年级下册典型习题系列之第三单元长方体和正方体的体积部分(原卷版)

五年级数学下册典型例题系列之第三单元长方体和正方体的体积部分(原卷版)编者的话:《2021-2022学年五年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。
典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。
专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。
本专题是第三单元长方体和正方体的体积部分。
本部分内容考察长方体和正方体的体积,编排从易到难,考点划分较多,共划分为十个考点,建议作为本章重点内容进行讲解,欢迎使用。
【考点一】直接求长方体和正方体的体积及反求。
【方法点拨】1.长方体的体积= 长×宽×高 V=abh长= 体积÷宽÷高 a=V÷b÷h宽= 体积÷长÷高 b=V÷a÷h高= 体积÷长÷宽 h= V÷a÷b2.正方体的体积= 棱长×棱长×棱长 V=a×a×a = a³读作“a的立方”表示3个a相乘,(即a·a·a)3.长方体或正方体底面的面积叫做底面积。
(横截面积相当于底面积,长相当于高)。
4.长方体的体积= 长×宽×高 = 底面积×高5.正方体的体积= 棱长×棱长×棱长=底面×棱长6.长(正)方体的体积用字母表示:V=Sh【典型例题1】某纸盒厂生产一种正方体纸板箱,棱长40厘米,它的体积是多少立方分米?【典型例题2】一个长2分米,宽4分米,高5分米的长方体木块,这个木块的体积是多少立方分米?【对应练习1】一个正方体玻璃容器的棱长是15厘米,体积是多少立方厘米?【对应练习2】希望小学有一间长10米,宽6米,高3.5米的教室。
《长方体和正方体》必背概念知识点整理

第一单元《长方体和正方体》知识点一、长方体和正方体的特征:1.长方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。
2.正方体的特征:正方体有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。
3.长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
4.长方体的棱长总和=(长+宽+高)×4 用字母表示:(a+b+h)×4正方体的棱长总和= 棱长×12 用字母表示:12a二、长方体和正方体的表面积的计算1.什么叫表面积:长方体或正方体6个面的总面积叫做它的表面积。
2.长方体的表面积=(长×宽+长×高+宽×高)×2用字母表示:S=(ab+ah+bh)×23.正方体的表面积= 棱长×棱长×6 用字母表示:S=6a24.常用的面积单位:平方厘米、平方分米、平方米5.面积单位间的进率:1m2 =100dm2 1dm2 =100cm2三、长方体和正方体的体积的计算1.什么叫体积:物体所占空间的大小叫做物体的体积。
2.长方体的体积= 长×宽×高用字母表示:V=abh3.正方体的体积= 棱长×棱长×棱长用字母表示:V=a34.常用的体积单位:立方厘米、立方分米和立方米5.体积单位间的进率:1m3=1000dm3 1dm3=1000cm3 1m3=100 0000cm36.长方体和正方体的体积统一公式:长方体或正方体的体积=底面积×高用字母表示:V=Sh7.体积单位的互化:把高级单位化成低级单位,用高级单位数乘进率;------大乘小把低级单位聚成高级单位,用低级单位数除以进率。
-----------小除以大8.容积:容器所能容纳物体的体积。
五年级数学《长方体和正方体的体积》教案

五年级数学《长方体和正方体的体积》教案五年级数学《长方体和正方体的体积》教案作为一名老师,总不可避免地需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。
如何把教案做到重点突出呢?下面是小编为大家整理的五年级数学《长方体和正方体的体积》教案,希望能够帮助到大家。
五年级数学《长方体和正方体的体积》教案1教学内容教科书第51--52页的例1、例2,课堂活动及练习十二的1--3题。
教学目标1.知识与技能:引导学生通过实验发现并探究出长方体和正方体体积的计算公式,理解长方体和正方体体积的计算方法。
2.过程与方法:会运用公式正确计算长方体和正方体的体积。
3.情感、态度与价值观:渗透"猜测--实验探究--验证"的学习方法,发挥学生的主体性,为今后学习其他立体图形体积的计算打下基础。
教具学具学生准备12个体积是1cm3的小正方体木块。
教师准备多媒体课件,及表格一和表格二。
教学重点1.理解长方体和正方体的体积公式的推导过程。
2.会计算长方体和正方体的体积。
教学难点长方体、正方体的体积计算的推导过程。
教学过程一、问题引入1.师:小朋友,你们喜欢搭积木游戏吗?这是老师用1cm3的正方体拼成的积木,(课件出示)你能说说它们的体积吗?师:你是怎样想的?教师:我们要计量一个物体的体积,就要看这个物体中含有多少个体积单位。
2.师(出示一个长方体模型):要知道它的体积是多少,你有什么办法?生1:可以将这个长方体切成小的体积单位,看它包含着多少个这样的体积单位,就可以知道它的体积是多少。
生2:将这个长方体浸没在水中,根据水面上升的刻度读出长方体的体积。
生3:量出长方体的长、宽、高,用长×宽×高。
教师:比较一下,哪种方法更适用呢?在生活中,有许多长方体是不能切开来数的。
把什么物体都浸没在水中,看水面上升的刻度也比较麻烦。
那么,生3的方法是否成立?这就是我们这节课要学习的内容。
(板书课题:长方体和正方体的体积计算)[简评:从学生熟悉的搭积木游戏开始,沟通学生已有知识连接点:要计量一个物体的体积,就要看这个物体中含有多少个体积单位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1瓶矿泉水是 550mL。
1L水原来有 这么多。
二、探索新知
(3)说一说,哪些物品上标有毫升、升。
二、探索新知
容积单位和体积单位 有这样的关系。
1L=1dm3 1mL=1cm3
长方体或正方体容器容积的计算方法,跟体积的计算方法相同。 但要从容器里面量长、宽、高。
二、探索新知
一种小汽车上的长方体油箱,里面长5dm、宽4dm、高2dm。这 个油箱可以装汽油多少升?
二、探索新知
箱子、油桶、仓库等所能容纳物体的体积,通常叫做 它们的容积。 计量容积,一般就用体积单位。计量液体的体积,如水、 油等,常用容积单位升和毫升,也可以写成L和mL。
1L=1000mL
二、探索新知
10mL
250mL 1L
二、探索新知
可以用量筒或量杯度量液 体的体积。
二、探索新知
小组活动: (1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯。 (2)估计一下,一纸杯水大约有多少毫升,几杯水大约是1L。
四、布置作业
作业:第33页练习七,第8题、第9题、 第11题。
拾万实验学校集体备课课件
拾万实验学校集体备课课件
课题名称:长方体和正方体的体积4 课 时:第3单元第8课
主备课人:胡林洪 备 课 组:五年级数学
审核人签字:
个人课件
长方体和正方体
长方体和正方体的体积
一、复习旧知
物体所占空间的大小叫做物体的( 体积 )。
长方体的体积= 长×宽×高 V= a b h 正方体的体积= 棱长×棱长×棱长 V= a 3
5×4×2=40(dm3) 40dm3=40L
答: 这个油箱可以装汽油40L。
三、知识应用
在横线上填上合适的容积单位。
一瓶墨水约 mL 50____
一桶色拉油 Lห้องสมุดไป่ตู้约5____
“神舟五号”载人航天 飞船返回舱的容积为 m3 6____
泡泡液约 mL 100____
三、知识应用
一种微波炉,产品说明书上标明:炉腔内部尺寸 400×225×300(单位:mm)。这个微波炉的容积是多少升? 400mm=4dm 225mm=2.25dm 300mm=3dm 4×2.25×3=27(dm3) 27dm3=27L 答:这个微波炉的容积是27L。