数学新课标人教A版必修1教学课件:1.2.1函数的概念

合集下载

1.2.1 函数的概念 课件(人教A必修1)

1.2.1 函数的概念 课件(人教A必修1)

栏目 导引
第一章
集合与函数概念
解:要使函数解析式有意义,
x+1≥0, (1)由 解得 x≥-1 且 x≠2, x-2≠0,
所以函数定义域为{x|x≥-1 且 x≠2}.
栏目 导引
第一章
集合与函数概念
x+3≠0, (2) -x≥0, x+4≥0,
且 x≠-3,
x≠-3, 即 x≤0, x≥-4,
1 x≥0 |x| (4)f(x)= ,g(x)= . x -1x<0
栏目 导引
第一章
集合与函数概念
【解 】 (1)f(x)的定义 域为 R,g(x)的 定义域为 {x|x≠2}. 由于定义域不同, f(x)与 g(x)不是相等 故 函数. (2)f(x)的定义域为 R,g(x)的定义域为 R,即定义 域相同. 由于 f(x)与 g(x)解析式不相同,则 f(x)与 g(x)不是 相等函数. (3)g(x)= x2=|x|=f(x),是相等函数.
栏目 导引
第一章
集合与函数概念
1 【解】 (1)∵f(x)= , 1+x 1 1 ∴f(2)= = ; 1+2 3 ∵g(x)=x2+2, ∴g(2)=22+2=6 1 1 (2)f(g(2))=f(6)= = 1+6 7
1 (3)f(x)= 的定义域为{x|x≠-1}, x+1 ∴值域是(-∞,0)∪(0,+∞) g(x)=x2+2 的定义域为 R,最小值为 2. ∴值域是[2,+∞)
集合与函数概念
变式训练
1.判断下列对应关系f是否为从集合A到集合 B的一个函数:
(1)A = {1,2,3} , B = {7,8,9} , f(1) = f(2) = 7 ,
f(3)=8; (2)A=Z,B={-1,1},n为奇数时, f(n)=-1,n为偶数时,f(n)=1; (3)A=B={1,2,3},f(x)=2x-1.

高中数学第一章集合与函数概念121函数的概念课件新人教A版必修1

高中数学第一章集合与函数概念121函数的概念课件新人教A版必修1

A.11
B.12
C.13
D.10
【答案】C
【解析】f[f(1)]=f(3)=9+3+1=13.
4.下列各组函数中,表示同一个函数的是( )
A.y=x-1 和 y=xx2+-11
B.y=x0 和 y=1
C.f(x)=x2 和 g(x)=(x+1)2
D.f(x)=
xx2和 g(x)=
x x2
【答案】D
【答案】B 【解析】根据函数的存在性和唯一性(定义)可知,B不 正确.
2.函数 f(x)= xx--21的定义域为(
)
A.[1,2)∪(2,+∞) B.(1,+∞)
C.[1,2)
D.[1,+∞)
【答案】A 【解析】由题意可知,要使函数有意义,需满足xx--21≠≥00,,
即 x≥1 且 x≠2.
3.已知f(x)=x2+x+1,则f[f(1)]的值是( )
休息时间到啦
同学们,下课休息十分钟。现在是休息时间,你们休 睛,
看看远处,要保护好眼睛哦~站起来动一动,久坐对 哦~
2.(1)y=x+x+120; (2)y= 2x+3- 21-x+1x. 【解析】(1)由于 00 无意义,故 x+1≠0,即 x≠-1. 又 x+2>0,x>-2,所以 x>-2 且 x≠-1. 所以函数 y=x+x+120的定义域为{x|x>-2 且 x≠-1}.
求函数的定义域
【例 2】求下列函数的定义域: (1)y=2x+3;(2)f(x)=x+1 1; (3)y= x-1+ 1-x;(4)y=xx2+-11. 【解题探究】求函数的定义域,即是求使函数有意义的那 些自变量 x 的取值集合.
【解析】(1)函数 y=2x+3 的定义域为{x|x∈R}. (2)要使函数有意义,即分式有意义,则 x+1≠0,x≠-1. 故函数的定义域为{x|x≠-1}. (3)要使函数有意义,则1x--1x≥≥00,, 即xx≥≤11,, 所以 x=1, 从而函数的定义域为{x|x=1}. (4)因为当 x2-1≠0,即 x≠±1 时,xx2+-11有意义,所以原函 数的定义域是{x|x≠±1}.

人教版必修1数学课件1.2.1 函数的概念精选ppt课件

人教版必修1数学课件1.2.1 函数的概念精选ppt课件

(1)判断一个集合 A 到集合 B 的对应关系是不是函数关系的 方法:①A,B 必须都是非空数集;②A 中任意一个数在 B 中 必须有并且是唯一的实数和它对应.
[注意] A 中元素无剩余,B 中元素允许有剩余. (2)函数的定义中“任意一个 x”与“有唯一确定的 y”说明函 数中两变量 x,y 的对应关系是“一对一”或者是“多对一”,而不 能是“一对多”.
符号 (-∞,+∞) _[_a_,__+__∞__) (_a_,__+__∞_) (_-__∞_,__a_] (_-__∞_,__a_)
1.判断(正确的打“√”,错误的打“×”) (1) 函 数 值 域 中 的 每 一 个 数 都 有 定 义 域 中 的 数 与 之 对 应.(√ ) (2)函数的定义域和值域一定是无限集合.( × ) (3)定义域和对应关系确定后,函数值域也就确定了.( √ ) (4)若函数的定义域只有一个元素,则值域也只有一个元 素.( √ ) (5)区间表示数集,数集一定能用区间表示.( × ) (6)数集{x|x<-3},其区间表示为(-∞,-3).( √ )
2.函数 y= 1-x+ x的定义域为( D )
A.{x|x≤1}
B.{x|x≥0}
C.{x|x≥1,或 x≤0} D.{x|0≤x≤1}
3.已知 f(x)=x2+1,则 f(f(-1))=( D )
A.2
B.3
C.4
D.5
4.已知 f(x)=2x1+1,x∈{0,1,2},则函数 f(x)的值函数符号,f 表示对应关系,f(x)表示 x 对应的函 数值,绝对不能理解为 f 与 x 的乘积.在不同的函数中 f 的具 体含义不同,对应关系可以是解析式、图象、表格等(下节讲函 数这三种表示).函数除了可用符号 f(x)表示外,还可用 g(x), F(x)等表示.

人教版高一数学必修一函数的概念课件PPT

人教版高一数学必修一函数的概念课件PPT
3.定义域指的是什么?
例1. f (x)的定义域为[0,5],求f (2x 1)的定义域
例2. f (2x 1)的定义域为[0,5], 求f (x)的定义域 例3. f (x 2)的定义域为[0,5], 求f (4x 3)的定义域
目标升华
1.对同一f,括号内作为整体,范围相同
2.定义域一定指x的取值集合
抽象函数定义域的求法
目标引领
掌握抽象函数定义域的求法
独立自学
已知函数f (x) (1)f (2)
(2) f (a) (3) f (2a 1) (4) f (2x 1)
x 1,求:
引导探究
1.在独立自学4个小题中,括号内的数整 体上有什么共同特征?
2.f(2x+1)与f(x)是否为同一函数?
课程 在这里,我想讲几点最关键的策略,以帮助教师在课堂上合理安排学 生活动。今天,我们的主题简短、明确并易于实践。 目标如下: (1)帮助教师了解当学生没有事情可做时,会出现什么状况; (2)给教师提供几个规划课堂的好方法首先,以这几个问题开始
●你是否曾经在给学生布置任务时,要求所有人在同样的时间里 完成? 你是否曾注意到,布置任务时要求的时间越长,有些学生磨蹭的时间 就越长?
4.每次在课堂上给学生布置任务时,要事先想好如何应对 那些很快就完成任务的学生。同时,要注意提醒那些动作 缓慢,迟迟没有动手的学生。
5.做好准备。备课时就要准备妤课堂材料。这样,在讲 课的时候,才能顺利地从一个主题过渡到下一个主题,不会 因冷场而出现空闲时间。
3.定义域指的是什么?
例1. f (x)的定义域为[0,5],求f (2x 1)的定义域
例2. f (2x 1)的定义域为[0,5], 求f (x)的定义域 例3. f (x 2)的定义域为[0,5], 求f (4x 3)的定义域

高中数学新课标人教A版必修一:1.2.1 函数的概念 课件 (共16张PPT)

高中数学新课标人教A版必修一:1.2.1 函数的概念 课件 (共16张PPT)

3 两个函数相同:当且仅当三要素相同。
例1 y= x 3 + 2 x 是函数吗?
——函数的定义域和值域均为非空的数集
例2 y=± x 是函数吗?
——对于函数定义域中每一个x,值域中都有 唯一确定的y和它对应。(不是函数)
练习:下列图形哪个可以表示函数的图象?
y
0x
A
y
0x
B
y
0x
C
四、如何求函数的定义域
想 f(1)表示什么意思? 一 想 f(1)与f(x)有什么区别?
一般地,f(a)表示当x=a时的函数值,是一个常量。 f(x)表示自变量x的函数,一般情况下是变量。 14
例:已知函数f(x)=3x2-5x+2.求f(0),f(a)和 f(a+1)
想一想 f[f(0)]等于多少?
练习:f(x)=|x+1|,则f(-1) +f(1)等于多少?
六、小结
1 函数的概念
2 定义域的求法 3 对函数符号y=f(x)的理解
七、布置作业
一、复习回顾
初中时学过函数的概念,它是怎样叙述的? 设在一个变化过程中,有两个变量x和y,
如果对于x的每一个值,y都有唯一的值与 它对应.那么就说y是x的函数. 其中x叫做 自变量,y是函数值。
想一想
y=1(x∈R)是函数吗?
Go to 13
研究函数y 1 x
为了研究的方便,取几组特殊的x值和对应的y值
当x=1时,y=1
当x=2时,y
1 2
当xБайду номын сангаас3时,y 1
3
A
B
y1
x
1
1
1
2
2

人教版高中数学必修一1.2.1函数的的概念_ppt课件

人教版高中数学必修一1.2.1函数的的概念_ppt课件

题型三 求函数的定义域 【例3】 求下列函数的定义域:
(1)y=xx+ +112- 1-x; (2)y= 2x+5+x- 1 1; (3)y= x2-1+ 1-x2; (4)y=1+ 1 1x.
解:(1)要使函数有意义,自变量 x 的取值必须满
足x1+ -1x≠ ≥00 ,即xx≠ ≤- 1 1 , 所以函数定义域为{x|x≤1 且 x≠-1}. (2)要使函数有意义,需满足
解析:y=f(x)与y=f(t)定义域,对应关系都相同,故①正确;f(x)
=1,x∈R,而g(x)=x0,x≠0,故不是同一函数;y=x,x∈[0,1],与
=x2,x∈[0,1]的定义域、值域都相同,但不是同一个函数.
答案:B
3.函数 y= x3+-12x0 的定义域是________.
解析:要使函数有意义, 需满足x3+ -12≠ x>00 ,即 x<32且 x≠-1. 答案:(-∞,-1)∪-1,32
(3)由x|x+ |-1x≠≠00 ,得|xx≠ |≠-x 1 , ∴x<0 且 x≠-1, ∴原函数的定义域为{x|x<0 且 x≠-1}.
误区解密 因求函数定义域忽视对二次项 系数的讨论而出错
【例 4】 已知函数 y=k2x22+ kx3-kx8+1的定义域为 R,求实数 k 的值.
x≠0 1+1x≠0
,即 xx≠ +
0 1≠
0
.
即 x≠0 且 x≠-1,
∴原函数定义域为{x|x≠0 且 x≠-1}.
点评:求函数定义域的原则:(1)分式的分母不等于零;(2)偶次根 式的被开方数(式)为非负数;(3)零指数幂的底数不等于零等.
3.求下列函数的定义域:
(1)f(x)=x2-36x+2;

人教版高中数学必修一(1.2.1-1函数的概念)ppt课件

人教版高中数学必修一(1.2.1-1函数的概念)ppt课件

定义域
f:x 2x1
值域
函数解析式:f(x)=2x+1或y=2x+1
-3
-5
-2
-3
-1
-1 f(x)2x1
0
1
1
3
2
5
3
7 对应法则
对应法则施
加的运算对
f ( 3 ) 2 ( 3 ) 象 1 5
对应法 则
运算对象
运算内容:乘以2加一
象,即y的值
-3 -2 -1 0 1 2 3
f(a )f,(a 1 )
练习:
g(x) 2x3 5x2 3x2,求g(3),
h(x) | 4x|,求h(8),h(a) x2
1 r(x) 3
x5,求r(3),r(6)
x
已知函数
x 2
f
(x)


x
2

2
x
(1)求 f ( 2 ) , f的( 1值);
2
集合B中有唯一元素和A中某个元素对应
开平方
B
A
3
300
-3
2
450
-2 1
600
-1
900
求正弦
A
一对多不是映射
求平方
B
1
1
-1
一对一是映射
A
乘以2
1
2
4
-2
2
3 -3
9
3
多对一是映射
一对一是映射
集合A中任何一个元素都在B中有对应
乘以2加1
A
1
3
5
1B
2 3 4 5 6 7
集合A中的元素5在集合B中没有元素与之对 应,不能称为映射。

人教A版2003课标版高中数学 必修1第一章1.2.1 函数的概念(共42张PPT)

人教A版2003课标版高中数学 必修1第一章1.2.1 函数的概念(共42张PPT)
对于数集A中的任意一个时间t,按照对应关系(*),在数集 B中都有唯一的高度h和它对应.
函数的概念----疑中求解
实例分析2
下图中的曲线显示了南极上空臭氧层 空洞的面积从1979~2001年的变化情况.
S/106km2
30 26 25 20 15 10 5 0 1979 81 83 85 87 89 91 93 95
A t 1979 t 2001 B S 0 S 26
t/年 对于数集A中的每一个时刻t,按照图中的曲线,在 数集B中都有惟一确定的臭氧层空洞面积S和它对应.
97 99 2001
函数的概念----疑中求解
实例分况
时间 (年) 19911992 1993 1994 19951996 19971998 1999 2000 2001
函数的概念----导中求疑 问题1 回忆
y 930(0 x 70) 是函数吗?
用初中函数定义,难于判断!
请同学们回忆初中函数的定义是什么?
(用运动变化的观点定义函数)
函数的概念----导中求疑
应用集合与对应的知识来研究
函数的概念
二、教学情境设计说明
2. 疑中求解(自发解惑, 形成概念) 【教学安排】通过分析三个实例中变量之间的关系的共 同特点, 抽象概括出函数的概念 【设计意图】通过生活中的实例,引导学生分析和归纳 三个实例中变量之间的关系的共同特点,让学生在已有 认知结构的基础上建构新知识,从而达到概念的自然形 成,并建立数学概念,进而从数学的外部到数学的内部 ,启发学生运用概念探究新问题。目的是充分发挥学生 的学习主动性,经历和体验概念的建立过程。
函数的概念----导中求疑
“9.3”阅兵,扬国威.振人心
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档