九年级数学下册第3章投影与三视图测试题浙教版
浙教版九年级下册第3章《投影与三视图》测试卷(含答案)

九年级下册第3章《投影与三视图》(3.4-综合)测试卷满分100分,考试时间90分钟一、选择题(每小题3分,共30分)1.下面四个图形中,是三棱柱的平面展开图的是()A B C D2.如图是一个不完整的正方体平面展开图,需再添上一个面,折叠后才能围成一个正方体.下面是四位同学补画的情况(图中阴影部分),其中正确的是()第2题图 A B C D3.已知圆柱的底面半径为2 cm,高为5 cm,则圆柱的侧面积是()A.20 cm2B.20π cm2C.10π cm2D.5π cm2A.15π cm2B.30π cm2C.60π cm2D.391 cm25.如图是一个工件的三视图,图中标有尺寸,则这个工件的体积是()A.13πcm3 B.17πcm3 C.66πcm3 D.68πcm3第5题图6.与如图所示的三视图对应的几何体是()第6题图7.如图,从左面看圆柱,则图中圆柱的投影是( ) A .圆 B .矩形 C .梯形D .圆柱第7题图8.将一个圆心角是90°的扇形围成圆锥的侧面,则该圆锥的侧面积侧S 和底面积底S 的关系为( )A .侧S =底SB .侧S =2底SC .侧S =3底SD .侧S =4底S 9.如图,如果从半径为9 cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为( ) A .6 cm B .3 5 cm C .8 cm D .5 3 cm第9题图10.如图,圆柱的底面周长为6 cm ,AC 是底面圆的直径,高BC =6 cm ,点P 是母线BC 上一点且PC =23B C .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是( )A .⎝⎛⎭⎫4+6π cm B .5 cm C .3 5 cm D .7 cm第10题图二、填空题(每小题3分,共30分)11.如图,该图形经过折叠可以围成一个正方体形,折好以后,与“静”字相对的字是 .第11题图12.如图所示为一个无盖长方体盒子的展开图(重叠部分不计),根据图中数据,可知该无盖长方体的容积为.第12题图13.一个长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是cm2.4 43 2第13题图14.若圆柱的底面半径2cm,侧面积为12πcm2,则它的高是cm.15.一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是.16.已知圆锥底面圆的半径为6cm,它的侧面积为60πcm,则这个圆锥的高是cm.17.圆锥底面圆的半径为3 cm,母线长为9 cm,则这个圆锥的全面积为cm2.18.如图,把一个半径为12 cm的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是cm.第18题图19.如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是.第19题图20.四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1-S2|= .第20题图三、解答题(共40分)21.(6分)如图,画出该物体的三视图.22.(6分)下图是一个食品包装盒的表面展开图.(1)请写出包装盒的几何体名称;(2)根据图中所标尺寸,用a、b表示这个几何体的全面积S(侧面积与底面积之和),并计算当a=1,b=4时,S的值.23.(6分)已知扇形的圆心角为120°,面积为300πcm2.(1)求扇形的弧长;(2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面面积为多少?24.(6分)要在如图所示的一个机器零件(尺寸单位:mm)表面涂上防锈漆,请你帮助计算一下这个零件的表面积.25.(6分)一个圆柱体形零件,削去了占底面圆的四分之一部分的柱体(如图),现已画出了主视图与俯视图.(1)请画出此零件的左视图;(2)若此零件底面圆的半径r=2cm,高h=3cm,求此零件的表面积.26.(10分)下面给出的正多边形的边长都是20 cm.请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据,并作简要说明.(1)将图1中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等;(2)将图2中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等;(3)将图3中的正五边形纸片剪拼成一个底面是正五边形的直五棱柱模型,使它的表面积与原正五边形的面积相等.九年级下册第3章《投影与三视图》(3.4-综合)测试卷1.A2.B3.B4.B5.B6.B7.B8.D9.B10.B11.着12.613.614.315.180°16.817.36π18.419.620.4π21.如图所示.22.(1)长方体;(2)S=2ab×2+2×2a×a+2×a×b=4ab+4a2+2ab=6ab+4a2.当a=1,b=4时,S=6×1×4+4×12=28.(2)将图2中三个角上的3个四边形剪下,拼成一个正三角形,作为直三棱柱的一个底面.(3)将图3中五个角上的5个四边形剪下,拼成一个正五边形,作为直五棱柱的一个底面.。
第三章 投影与三视图数学九年级下册-单元测试卷-浙教版(含答案)

第三章投影与三视图数学九年级下册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,是一个正方体的表面展开图,那么原正方体中与“祝”字所在的面相对的面上标的字是()A.考B.试C.顺D.利2、如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )A. B. C. D.3、将某正方体的表面沿着某些棱剪开,展开图如图所示,其中和“强”字所在面相对的面上的字是()A.文B.主C.明D.民4、下列展开图不能折成正方体的是()A. B. C. D.5、下列几何体的主视图、左视图、俯视图的图形完全相同的是()A.三棱锥B.长方体C.三棱柱D.球体6、如图是由5个大小相同的小正方体摆成的立体图形,它的主视图是A. B. C. D.7、若一个几何体的主视图、左视图、俯视图是直径相等的圆,则这个几何体是()A.正方体B.圆锥C.圆柱D.球8、如图是几何体的三视图及相关数据,则下列判断错误的是()A. B. C. D.9、如图,下列立体图形的左视图是圆的是()A. B. C. D.10、如图所示的三棱柱,其俯视图的内角和为()A. B. C. D.11、如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )A. B. C. D.12、一个几何体的三视图如图所示,那么这个几何体是()A. B. C.D.13、下列水平放置的几何体中,俯视图是矩形的是()A.圆柱B.长方体C.三棱柱 D.圆锥14、做一节圆柱形的通风管要用多少铁皮,是求它的()A.侧面积B.表面积C.体积D.容积15、有6个相同的小正方体搭成的几何体如图所示,则它的俯视图是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,从直径是2米的圆形铁皮上剪出一个圆心角是90°的扇形ABC(A、B、C三点在⊙O上),将剪下来的扇形围成一个圆锥的侧面,则该圆锥的底面圆的半径是________米.17、一个圆锥的侧面展开图是一个圆心角为216°,面积为60π的扇形,则这个圆锥的母线长是________.18、一个小立方体的六个面分别标有数字1、2. 3、4、5、6,从三个不同的方向看到的情形如图所示,则数字6的对面是________.19、正方体的六个面分别标有1,2,3,4,5,6六个数字,如图是其三种不同的放置方式,与数字“2”相对的面上的数字是________.20、小莉身高,在阳光下的影子长为,在同一时刻站在阳光下,小林的影长比小莉长,则小林的身高为________ .21、若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为________ cm2.22、如图,把一个半径为12cm的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是________ cm.23、如图,是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图折成正方体后,相对面上的两个数互为相反数,则填在B内的数为________.24、如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r =2,扇形的圆心角θ=120°,则该圆锥母线l的长为________.25、如图,小明同学站在离墙(BC)5米的A处,发现小强同学在离墙(BC)20米远且与墙平行的一条公路l上骑车,已知墙BC长为24米,小强骑车速度10米/秒,则小明看不见小强的时间为________ 秒.三、解答题(共5题,共计25分)26、如图是一个正方体的平面展开图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和均为5,求x+y+z的值.27、画出从三个方向看如图所示的几何体的形状.28、如图,现有一圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),求该圆锥底面圆的面积.(结果保留π)29、如图,是一个几何体的侧面展开图.(1)请写出这个几何体的名称;(2)请根据图中所标的尺寸,计算这个几何体的侧面积.30、画出下面这个几何体(前后只有两排)的三种视图.参考答案一、单选题(共15题,共计45分)1、D2、A3、A4、D5、D6、A7、D8、D9、D10、A11、D12、C13、B14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。
第三章 投影与三视图数学九年级下册-单元测试卷-浙教版(含答案)

第三章投影与三视图数学九年级下册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图是由若干个小正方体所搭成的几何体,那么从左边看这个几何体时,所看到的几何图形是()A. B. C. D.2、下列四个几何体中,主视图是三角形的是()A. B. C. D.3、下列几何体中,主视图和俯视图都为矩形的是( )A. B. C. D.4、有一个正方体原料,挖去一个小正方体,得到如图所示的零件,则这个零件的主视图是( )A. B. C. D.5、如图是某个几何体的三视图,该几何体是()A.长方体B.圆锥C.圆柱D.三棱柱6、已知一个正棱柱的俯视图和左视图如图所示,则其主视图为( )A. B. C. D.7、如图是由一些相同的小正方体搭成的几何体从正面、左面、上面看到的形状图,则搭成这个几何体的小正方体的个数是()A.4B.5C.6D.78、一个几何体由若干大小相同的小立方块搭成,图2分别是从它的正面、上面看到的形状图,则搭成该几何体的小立方块至少需要()A.5块B.6块C.7块D.8块9、下列立体图形中,主视图和左视图不一样的是()A. B. C. D.10、如图是一个圆台,它的主视图是()A. B. C. D.11、正如我们小学学过的圆锥体积公式(表示圆周率,r表示圆锥的底面半径,h表示圆锥的高)一样,许多几何量的计算都要用到.祖冲之是世界上第一个把计算到小数点后第7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内,即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习。
浙教版九年级下册数学第三章 投影与三视图含答案解析

浙教版九年级下册数学第三章投影与三视图含答案一、单选题(共15题,共计45分)1、如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A. B. C. D.2、用半圆围成一个几何体的侧面,则这个几何体的左视图是()A.钝角三角形B.等腰直角三角形C.等边三角形D.圆3、小明看到了“实验楼”三个字,而且能看到该楼所有的门窗,则小明看到的图是()A.俯视图B.左视图C.主视图D.都有可能4、如图,下面几何体的俯视图不是圆的是()A. B. C.D.5、如图所示,该几何体的俯视图为()A. B. C. D.6、一扇形的半径为24cm,若此扇形围成的圆锥的底面半径为10cm,那么这个扇形的面积是()A.120πcm 2B.240πcm 2C.260πcm 2D.480πcm 27、若干桶方便面放在桌面上,如图是从正面、左面、上面看到的结果,则这一堆方便面共有()A.7桶B.8桶C.9桶D.10桶8、圆锥的底面半径为8,母线长为9,则该圆锥的侧面积为().A.36πB.48πC.72πD.144π9、如图,是一个由5个相同的正方体组成的立体图形,它的左视图是()A. B. C. D.10、如图1所示,一只封闭的圆柱形容器内盛了一半水(容器的厚度忽略不计),圆柱形容器底面直径为高的2倍,现将该容器竖起后如图2所示,设图1、图2中水所形成的几何体的表面积分别为S1、S2,则S1与S2的大小关系是()A.S1≤S2B.S1<S2C.S1>S2D.S1=S211、下列图形中,能围成一个正方体的是()A. B. C. D.12、一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是().A.1B.C.D.13、如图,从左面看该几何体得到的形状是()A. B. C. D.14、下面四个图形中,经过折叠能围成如图只有三个面上印有图案的正方体纸盒的是()A. B. C.D.15、如图所示是一天中不同时刻直立的灯杆在阳光下形成的影长,规定各图向右为正东方向,将各图按时间顺序排列正确的是()A.②④①③B.①④③②C.②④③①D.①③②④二、填空题(共10题,共计30分)16、某班数学活动小组的同学用纸板制作长方体包装盒,其平面展开图和相关尺寸如下,其中阴影部分为内部粘贴角料,(单位:).则此长方体包装盒的体积是________.17、如图所示,甲乙两建筑物在太阳光的照射下的影子的端点重合在C处,若BC=20m,CD=40m,乙的楼高BE=15m,则甲的楼高AD=________m.18、如图,长方体的长为15,宽为10,高为20,点离点的距离为5,一只蚂蚁如果要沿着长方体的表面从点爬到点,需要爬行的最短距离是________.19、一张桌子上重叠摆放了若干枚面值一元的硬币,从三个不同方向看它得到的平面图形如下:那么桌上共有________枚硬币.20、已知扇形的圆心角为120°,半径等于6,则用该扇形围成的圆锥的底面半径为________.21、有底面为正方形的直四棱柱容器A和圆柱形容器B,容器材质相同,厚度忽略不计.如果它们的主视图是完全相同的矩形,那么将B容器盛满水,再将水全部倒入A容器,结果为________.(填“溢出”“刚好”或“未装满”)22、一个圆锥的底面半径为3cm,母线长为5cm,则圆锥的侧面积为________cm2 .23、如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是________.24、已知扇形AOB的半径为6cm,圆心角的度数为1200,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为________cm2 .25、几个完全相同的小正方体搭成如图的几何体,从上面拿掉一个或者几个小正方体(不能直接拿掉被压在下面的小正方体)而不改变几何体的三视图的方法有________种.三、解答题(共5题,共计25分)26、小名准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,你能在图中的拼接图形上再接一个正方形画出阴影,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子吗?请在下面的图①和图②中画出两种不同的补充方法.27、如图所示,分别是两棵树及其影子的情形(1)哪个图反映了阳光下的情形?哪个图反映了路灯下的情形.(2)请画出图中表示小丽影长的线段.(3)阳光下小丽影子长为1.20m树的影子长为2.40m,小丽身高1.88m,求树高.28、如图,路灯(P点)距地面8米,身高1.6米的小明从距离路灯的底部(O 点)20米的A点,沿OA所在的直线行走14米到B点(B点在A点的左边)时,身影的长度是变长了还是变短了?变长或变短了多少米?29、学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为1.6m的小明(AB)的影子BC长是3m,而小颖(EH)刚好在路灯灯泡的正下方H点,并测得HB=6m.(1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G;(2)求路灯灯泡的垂直高度GH.30、一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面、左面看到的这个几何体的形状图.参考答案一、单选题(共15题,共计45分)1、C2、C3、C5、C6、B7、C8、C9、B10、C11、C12、C13、B14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、29、30、。
第三章 投影与三视图数学九年级下册-单元测试卷-浙教版(含答案)

第三章投影与三视图数学九年级下册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、一个正方体六个面上分别写着1,2,3,4,5,6,从三个不同角度看正方体如图所示,请判断:1对面的数字是( )A.2B.3C.4D.52、一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为()A.11B.12C.13D.143、下列图形中是正方体表面展开图的是()A. B. C. D.4、如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.5、某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“抗”字所在面相对的面上的汉字是()A.一B.定C.胜D.利6、用圆心角为120°,半径为3 cm的扇形纸片卷成一个圆锥形无底纸冒(如图所示),则这个纸冒的高是()A.3 cmB.2 cmC.3 cmD.4 cm7、如图,有一内部装有水的直圆柱形水桶,桶高20公分;另有一直圆柱形的实心铁柱,柱高30公分,直立放置于水桶底面上,水桶内的水面高度为12公分,且水桶与铁柱的底面半径比为2:1.今小贤将铁柱移至水桶外部,过程中水桶内的水量未改变,若不计水桶厚度,则水桶内的水面高度变为多少公分?()A.4.5B.6C.8D.98、如图,若用半径为9,圆心角为120的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是()A.1.5B.2C.3D.69、把图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是()A.五棱锥B.五棱柱C.六棱锥D.六棱柱10、右图是某个几何体的三视图,则这个几何体是()A.圆锥B.圆柱C.长方体D.三棱锥11、已知一个圆锥的底面直径为20cm,母线长20cm,则这个圆锥的表面积是( )cm²(结果保留)A.100πB.200πC.300πD.400π12、如图,是一个正方体的展开图,若在其中的三个正方形、、内分别填入适当的数,使得折叠成正方体后,相对面上的两个数互为相反数,则填入正方形中、、内的三个数依次是()A.0,-1,2B.0,2,-1C.2,-1,0D.-1,0,213、下面四个几何体中,俯视图是圆的几何体共有()A.1个B.2个C.3个D.4个14、下列投影一定不会改变△ABC的形状和大小的是()A.中心投影B.平行投影C.正投影D.当△ABC平行投影面时的平行投影15、在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的大小的变化情况是().A.越来越小B.越来越大C.大小不变D.不能确定二、填空题(共10题,共计30分)16、如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径,扇形的圆心角,则该圆锥的母线长为________ .17、已知圆锥的底面半径是,高为,则其侧面积为________ .18、一个正方体的每个面上都写有一个有理数,且相对两个面的两个有理数的和都相等,这个正方体的表面展开图如图所示,则的值是________.19、《孙子算经》是我国古代重要的数学著作,成书于约一千五百年前,其中有道歌谣算题:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问杆长几何?”歌谣的意思是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五,同时立一根一尺五的小标杆,它的影长五寸(提示:仗和尺是古代的长度单位,1丈=10尺,1尺=10寸),可以求出竹竿的长为________尺.20、下图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形可能是________。(把下图中正确的立体图形的序号都填在横线上)。21、(1)侧面可以展开成一长方形的几何体有________;(2)圆锥的侧面展开后是一个________;(3)各个面都是长方形的几何体是________;22、“魔术塑料积木”可以开发智力、发挥想像空间.如图是小明用六个棱长为1的立方块组成的一个几何体,其俯视图的面积是________23、若圆锥的母线长为3 cm,底面半径为2 cm,则圆锥的侧面展开图的面积是________ 。
第三章 投影与三视图数学九年级下册-单元测试卷-浙教版(含答案)

第三章投影与三视图数学九年级下册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、某三棱锥的三视图如图所示,该三棱锥的体积是()A. B.4 C.2 D.2、如图,小正方形的边长均为1,扇形OAB是某圆锥的侧面展开图,则这个圆锥的底面周长为()A.πB. πC.2 πD.3π3、如图所示的立体图形是由几个小正方体组成的一个几何体,这个几何体从上面看到的形状图是()A. B. C. D.4、由若干个相同的小正方体搭成一个几何体,从上面看,它的形状图如图所示,小正方形中的数字表示该位置上的小正方体的个数,则从左面看这个几何体的形状是()A. B. C. D.5、如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是()A. B. C. D.6、有一正方体,六个面上分别写有数字1,2,3,4,5,6,有三个人从不同的角度观察的结果如图.如果记6的对面的数字为a,2的对面的数字为b,那么a+b的值为()A.3B.7C.8D.117、一个棱长为1m的立方体箱子中可以放下的最长的木棒(粗细忽略不计)长度为()A.1 mB. mC. mD.2 m8、下图是由五个相同的小正方体搭成的一个几何体,从左面看到的几何体的形状图是().A. B. C. D.9、如图是一个圆台,它的主视图是()A. B. C. D.10、若-个圆锥的侧面展开图是半径为lOcm,圆心角为120°的扇形,则该圆锥的底面半径是( )A. cmB. cmC. cmD. cm11、如图,由4个同样大小的正方体摆成的几何体,将正方体①移走后,所得几何体()A.主视图不变,左视图改变B.主视图不变,左视图不变C.主视图改变,左视图不变D.主视图改变,左视图改变12、如图是某个几何体的三视图,该几何体是()A.长方体B.正方体C.三棱柱D.圆柱13、如图所示的几何体的俯视图是()A. B. C. D.14、由四个大小相同的正方体组成的几何体如左图所示,从上往下看到的图形是()A. B. C. D.15、某几何体的三视图如图,则该几何体是()A.长方体B.圆柱C.球D.正三棱柱二、填空题(共10题,共计30分)16、如图,一个几何体由大小相同、棱长为1的正方体搭成,则其左视图的面积为________.17、一个正方体的每个面上都写有一个汉字,其平面展开图如图所示,那么在该正方体中和“文”相对的字是________18、如图,扇形的半径OA=20厘米,∠AOB=135°,用它做成一个圆锥的侧面,则此圆锥底面的半径为________.19、己知为等要直角三角形,斜边,将浇轴旋转一周,可得到一个立体图形,则该立体图形的表面积是________ (结果保留).20、某几何体的三视图如图所示,则这个几何体的名称是________.21、小亮和他弟弟在阳光下散步,小亮的身高为1.75米,他的影子长2米.若此时他的弟弟的影子长为1.6米,则弟弟的身高为________米.22、一个几何体由几个大小相同的小立方块搭成,从上面和从左面看到的这个几何体的形状如图所示,则这个几何体中小正方体的个数最少是________个.23、一个几何体由若干大小相同的小正方体搭成,从上面看到的这个几何体的形状如图所示,其中小正方形中的数字表示在该位置小正方体的个数.在不破坏原几何体的前提下,再添加一些小正方体,使其搭成一个大正方体,则至少还需要添加________个这样的小正方体.24、由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是________个.25、圆锥的底面半径为1,它的侧面展开图的圆心角为180°,则这个圆锥的侧面积为________.三、解答题(共5题,共计25分)26、如图是一个正方体的平面展开图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和均为5,求x+y+z的值.27、如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)求此几何体表面展开图的面积.28、如图①是山东舰徽的构图,采用航母度破浪而出的角度,展现山东舰作为中国首艘国产舰母横空出世的气势,将舰徽中第一条波浪抽象成几何图形,则是一条长为的弧,若该弧所在的扇形是高为的圆锥侧面展开图(如图②),则该圆锥的母线长为多少?29、如图,用一张长为2π米、宽为2米的铁皮制作一个圆柱形管道,如果制作中不考虑材料损耗,试求可围成管道的最大体积.30、下图是个正方体纸盒的表面展开图,请把数分别填入六个小正方形,使得按连线折成正方体后相对面上的两个数互为相反数.参考答案一、单选题(共15题,共计45分)1、B2、B3、C4、A5、D6、B7、C8、A9、B10、B12、C13、B14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
浙教版九年级下册数学第三章 投影与三视图含答案(必考题)

浙教版九年级下册数学第三章投影与三视图含答案一、单选题(共15题,共计45分)1、如图,正方形的边长为4,以点A为圆心,为半径画圆弧得到扇形(阴影部分,点E在对角线上).若扇形正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A. B.1 C. D.2、如图,下列水平放置的几何体,从正面看外框不是长方形的是()A. B. C. D.3、如图1是由大小相同的小正方体搭成的几何体,将它左侧的小正方体移动后得到图2.关于移动前后的几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同4、如图是由6个大小相同的小正方体叠成的几何体,则它的主视图是( )A. B. C. D.5、图中是一个少数名族手鼓的轮廓图,其主视图是()A. B. C. D.6、如图所示正三棱柱的主视图是()A. B. C. D.7、用半径为6的半圆围成一个圆锥的侧面,则圆锥的底面半径等于A.3B.C.2D.8、如图,⊙O中,半径OA=4,∠AOB=120°,用阴影部分的扇形围成的圆锥底面圆的半径长是()A.1B.C.D.29、小明为了鼓励芦山地震灾区的学生早日走出阴影,好好学习,制作了一个正方体礼盒(如图).礼盒每个面上各有一个字,连起来组成“芦山学子加油”,其中“芦”的对面是“学”,“加”的对面是“油”,则它的平面展开图可能是()A. B. C.D.10、一个空间几何体的主视图和左视图都是边长为4的正三角形,俯视图是一个半径为2的圆,那么这个几何体的全面积是( )A.8 πcm 2B.10 πcm 2C.12 πcm 2D.16 πcm 211、如图所示的直角三角形ABC绕直角边AC旋转一周,所得几何体从正面看是()A. B. C. D.12、如图所示放置的几何体,它的俯视图是( )A. B.C. D.13、如图,在下面的四个几何体中,从它们各自的正面和左面看,不相同的是()A. B. C. D.14、将一个正方体沿某些棱展开后,能够得到的平面图形是()A. B. C. D.15、在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为()A.逐渐变长B.逐渐变短C.影子长度不变D.影子长短变化无规律二、填空题(共10题,共计30分)16、已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是________.17、如图是某正方体的展开图,则原正方体相对两个面上的数字和的最大值是________.18、如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积是________.19、已知一个圆锥底面圆的半径为6cm,高为8cm,则圆锥的侧面积为________ cm2. (结果保留π)20、将图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?说出所有可能的情况.________.21、一个底面直径是80 cm,母线长为90 cm的圆锥的侧面展开图的圆心角的度数为________22、如图,①~④展开图中,能围成三棱柱的是________.23、已知圆锥的底面半径为6,母线长为8,圆锥的侧面积为________.24、某同学利用半径为40cm的扇形纸片制作成一个圆锥形纸帽(接缝忽略不计),若圆锥底面半径为10cm,那么这个圆锥的侧面积是________.25、从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是________.三、解答题(共5题,共计25分)26、现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计)求该圆锥底面圆的半径.27、小明用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;(2)若图中的正方形边长6cm,长方形的长为8cm,宽为6cm,请求出修正后所折叠而成的长方体的表面积。
第三章 投影与三视图数学九年级下册-单元测试卷-浙教版(含答案)

第三章投影与三视图数学九年级下册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图所示的几何体,其左视图是()A. B. C. D.2、经过折叠不能围成一个正方体的图形是()A. B. C. D.3、下列图形能折叠成正方体的是( )A. B. C. D.4、如图,是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为倒数,则的值为()A.0B.-1C.-2D.15、如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A. B. C. D.6、某正方体的每个面上都有一个汉字,它的一个展开图如图说是,正原正方体中,与“考”字所在面相对的面上的汉字是()A.祝B.你C.成D.功7、下列几何体中,同一个几何体的三视图完全相同的是()A.球B.圆锥C.圆柱D.三棱柱8、将如图绕AB边旋转一周,所得几何体的俯视图为()A. B. C. D.9、如图是一个由5个相同的小正方体组成的立体图形,其左视图是()A. B. C. D.10、如图,这是一个由圆柱体材料加工而成的零件,它是以圆柱体的上底面为底面,在其内部“掏取”一个与圆柱体等高的圆锥体而得到的,其底面直径,高,则这个零件的表面积是()A. B. C. D.11、如图所示的几何体是由4个小正方体搭成,则它的主视图是()A. B. C. D.12、如图所示,该几何体的俯视图是()A. B. C. D.13、一个正方体的表面展开图如图所示,则原正方体中字“命”所在面的对面所标的字是()A.在B.于C.运D.动14、如图,圆柱体的表面展开后得到的平面图形是( )A. B. C. D.15、把一个正五棱柱如图摆放,当投射线由正前方射到后方时,它的正投影是()A. B. C. D.二、填空题(共10题,共计30分)16、若要使图中平面展开图按虚线折叠成正方体后,相对面上的两个数为相反数,则x+y =________.17、如图是王芳同学某一天观察到的一棵树在不同时刻的影子,请你把它们按时间先后顺序进行排列是________ .18、如图是一正方体的表面展开图,若AB=5,则该正方体上A、B两点间的距离为________.19、有如图四张卡片,除卡片上的图案不同其余完全相同,现把这些卡片有图案的一面朝下搅匀,随机抽出一张,上面的图案能够围成一个正方体的概率是________.20、如图,一个圆锥形零件,高为8cm,底面圆的直径为12cm,则此圆锥的侧面积是________.21、如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则的值为________.22、圆锥底面圆的半径为2,母线长为5,它的侧面积等于________(结果保留π).23、已知圆锥的底面半径为1cm,母线长为3cm,则其全面积为________cm2.24、已知圆柱的侧面积是20π cm2,高为5cm,则圆柱的底面半径为________.25、如图,是由一些相同的小正方体搭成的几何体从三个方向看到的图形,搭成这个几何体的小正方体的个数是________.三、解答题(共5题,共计25分)26、如图是一个正方体的平面展开图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和均为5,求x+y+z的值.27、如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=1.72米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(1)求楼房的高度约为多少米?(结果精确到0.1米)(2)过了一会儿,当α=45°时,小猫能不能晒到太阳.【参考数据:=1.732】28、如图,花丛中有一路灯杆AB,在灯光下,大华在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时大华的影长GH=5米.如果大华的身高为2米,求路灯杆AB的高度.29、如图,用一张长为2π米、宽为2米的铁皮制作一个圆柱形管道,如果制作中不考虑材料损耗,试求可围成管道的最大体积.30、如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.参考答案一、单选题(共15题,共计45分)1、D2、B3、A4、B5、C6、C7、A8、B9、D10、A11、C12、B13、D14、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)29、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章
一、选择题(每小题5分,共30分)
1.下列立体图形中,侧面展开图是扇形的是( )
图7-Z-1
2.下列各图不是正方体表面展开图的是( )
图7-Z-2
3.如图7-Z-3是由3个相同的小正方体组合而成的几何体,它的俯视图是( )
图7-Z-3
图7-Z-4
4.如图7-Z-5所示的工件,其俯视图是( )
图7-Z-5
图7-Z-6
图7-Z-7
5.如图7-Z-7是某几何体的三视图,该几何体是( )
A.三棱柱
B.长方体
C.圆锥
D.圆柱
图7-Z-8
6.如图7-Z-8,一天晚上,小颖由路灯A下的B处走到C处时,测得影子CD的长为1米,当她继续往前走到D处时,测得此时影子DE的长刚好是自己的身高.已知小颖的身高为1.5米,那么路灯A的高度AB为( )
A.3米 B.4.5米
C.6米 D.8米
二、填空题(每小题5分,共30分)
7.已知圆锥的底面半径为 3 cm,母线长为 5 cm,则它的侧面展开图的面积等于________cm2.
图7-Z-9
8.如图7-Z-9,由三个棱长均为1 cm的小立方体搭成的几何体的主视图的面积是________cm2.
9.如图7-Z-10是一个几何体的三视图(图中尺寸单位: cm),根据图中所示数据计算这个几何体的表面积为________cm2.
7-Z-10
图7-Z-11
10.一个几何体的三视图如图7-Z-11所示,则该几何体的体积为__________.
图7-Z-12
11.有一个圆柱,它的高为12 cm,底面半径为3 cm,如图7-Z-12所示,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,则它沿圆柱侧面爬行的最短路程是________ cm(π取3).
12.展览厅内要用相同的小正方体木块搭成一个三视图如图7-Z-13所示的展台,则此展台共需这样的小正方体________块.
图7-Z-13
三、解答题(共40分)
13.(8分)如图7-Z-14为某几何体的示意图,请画出该几何体的三视图.
图7-Z-14
14.(10分)某工厂要加工一批茶叶罐,设计者给出了茶叶罐的三视图(如图7-Z-15),请你按照三视图确定制作每个密封罐所需钢板的面积.(单位:mm)
图7-Z-15
15.(10分)如图7-Z -16,D 是等边三角形ABC 中BC 边的延长线上一点,且AC =CD ,以AB 为直径作⊙O ,分别交边AC ,BC 于点E ,F .
(1)求证:AD 是⊙O 的切线;
(2)连结OC ,交⊙O 于点G ,若AB =8,求线段CE ,CG 与GE ︵
围成的阴影部分的面积S .
图7-Z -16
16.(12分)如图7-Z -17是一粮囤的示意图,其顶部是一圆锥,底部是一圆柱. (1)画出该粮囤的三视图;
(2)若这个圆锥的底面周长为32 m ,母线长为7 m ,为防雨需要在粮囤顶部铺上油毡,则需要多少平方米油毡(油毡接缝重合部分不计)?
(3)若这个圆柱的底面圆半径为8 m ,高为5 m ,粮食最多只能装至与圆柱同样高,则最多可以存放多少立方米粮食?
图7-Z-17
详解详析
1.B 2.C 3.C
4.B [解析] 从上面看到的图形是B项中的图形.
5.B 6.B 7.15π
8.3 [解析] 从正面看第一层是两个小正方形,第二层左边是一个小正方形,则主视图的面积是3 cm2.
9.4π10.120
11.15 [解析] 展开圆柱的半个侧面是矩形,矩形的宽是圆柱的底面周长的一半,即3π=9(cm),矩形的长是圆柱的高12 cm.根据两点之间线段最短,得最短路程是矩形的对角线的长,即122+92=15(cm).
12.10
13.解:三视图如下:
14.解:由三视图可知茶叶罐的形状为圆柱体,并且茶叶罐的底面直径2R为100 mm,高h为150 mm.
∵每个密封罐所需钢板的面积即为该圆柱体的表面积,
∴S表面=2πR2+2πRh
=2π×502+2π×50×150
=20000π(mm2).
答:制作每个密封罐所需钢板的面积为20000π mm2.
15.解:(1)证明:∵△ABC是等边三角形,
∴∠BAC =∠ACB =60°. ∵CA =CD ,∴∠D =∠CAD . ∵∠ACB =∠D +∠CAD , ∴∠CAD =30°,
∴∠BAD =60°+30°=90°, ∴AD ⊥AB ,∴AD 是⊙O 的切线. (2)如图,连结OE ,
∵OA =OE ,∠OAE =60°, ∴△OAE 是等边三角形, ∴AE =AO =12AB =1
2AC ,
∴AE =EC , ∴S △OEC =S △AOE =
34
×42
=4 3. ∵CA =CB ,OA =OB ,∴CO ⊥AB , ∴∠AOC =90°,∴∠EOG =30°, ∴S 扇形OEG =30×π×42
360=4π
3,
∴S 阴影=S △OEC -S 扇形OEG =4 3-4π
3.
16.解:(1)略. (2)12×32×7=112(m 2
). 故需要112 m 2
油毡. (3)π×82
×5=320π(m 3
).
故最多可以存放320π m3粮食.。