静电场的环路定理
静电场的环路定理

例3、求均匀带电球面电场中电势的分布,已知 ,q 、求均匀带电球面电场中电势的分布,已知R 微元法) 微元法 解: 方法一 叠加法 (微元法
dq = σdS = σ 2πR2 sinθdθ π 任一圆环 dS = 2 RsinθRdθ
dq 1 σ 2πR sinθdθ du = = 4πε0l 4πε0 l
B A
1 1 dr = ( − ) 2 4πε0r 4πε0 RA RB RA
q
q
2.如图已知 、-q、R 如图已知+q 如图已知 、 移至c ①求单位正电荷沿odc 移至 ,电场力所作的功 求单位正电荷沿
d q −q A = uo − uc = 0−( ) + oc 4πε0 3R 4πε0R a b c q 0 +q −q = 6 0R πε R R R
方法二
定义法
∞ P
q 4 0r2 πε
由高斯定理求出场强分布 E =
r>R r<R
r r 由定义 u = ∫ E • dl
r<R R r r ∞r r u = ∫ E • dl + ∫ E • dl
r R
0
r>R
R
dθ
O∞θຫໍສະໝຸດ lP= 0+ ∫
∞
q
4 0r πε R q = 4 0R πε
dr 2
u= ∫
r r uP = ∫ E • dl
P
∞
♠由点电荷电势公式,利用电势叠加原理计算 由点电荷电势公式,
求电偶极子电场中任一点P的电势 例1 、求电偶极子电场中任一点 的电势
Y
由叠加原理
q(r2 − r1) uP = u1 + u2 = − = 4πε0r1 4πε0r2 4πε0r1r2 q q
静电场的环路定理

q
j
V V V 1 2 k q q q 1 2 n 4 r r 4 r 0 1 4 0 2 0 n
q i
电势叠加原理
V V P i r 0 i i i 4
任意带电体场中的电势
VP q
4 0r
dq
a b
即:a、b两点的电势差 = A/q0
将单位正电荷 从ab电场力作的功 与路径无关
6
例: 已知真空中两金属圆筒电极间电压为U ,半径分别为 R1、 R2 。 求:负极上静止电子到正极时的速度? 解:由电势差的定义可得
A q ( V V )
( e)( U )
R
R
2
1
F
c
dl
q0
dr
b
r +dr
r
a
rb
+
积分
1 1 q q q q 0 0 A d r 2 a4 r 4 r 0 0 a r b
b
ra
q
——点电荷的电场力作功 只与被移动电荷距离场源电荷的距离相关 与路径无关
2
2.在点电荷系的电场中(或连续带电体的电场)
结论
b b b A q E d l q E d l q E d l 0 1 0 2 0 n a a a
电场强度的线积分与路径无关
电场力是保守力,静电场是保守力场。
3
二、环路定理
在任意电场中, 将q0从a
b L2 经L1
经L2
b电场力作功:
A q E d l 0 L
04静电场的环路定理 电势

1
•II区:球壳外电势
rR
U2
r
1 E2 dl r E 2 dr r
q q dr 2 4 0 r 4 0 r
Fan
I区:球面内
r R , E1 0
1
U1
q 4 0 R
q q II区:球面外 r R , E 2 4 0 r 2 U 2 4 0 r
U 4
i i
r
(2)连续带电体:将带电体分割成无限多个电荷元, 将每个电荷元看成点电荷,根据点电荷电势公式求电 荷元的电势,迭加归结于积分。
U dU
dq 4 0 r
注意电荷元的选取!
Fan
特别注意:
点势法的使用,必须是以无穷远处为电势零点为前提 条件。
up
q 40 rp
uab
b
a
E dl
Aab Wa Wb q0 q0 q0
b
a
E dl
移动单位正电荷自 ab 过程中电场力作的功。
移动单位正电荷 自该点 “势 能零点” 过程 中电场力作的 功。
b Wa Aab • 电势定义 ua E dl a q0 q0
意义:把单位正电荷从a点沿任意路径移到b点时电 场力所作的功。 电势差和电势的单位相同,在国际单位制中,电势 的单位为:焦耳/库仑(记作J/C),也称为伏特(V) ,即1V=1J/C。
Fan
注意几点:
1.电势是标量,只有正负之分。
2. 电势和电势能一样都是相对的量,为了让它有确 定的值,必须选择一个零点作为参考点。但电势差 的值具有绝对的意义,与零点的选择无关。 3. 电势零点的选择: •对有限带电体一般选无穷远为电势零点。 在实际问题中,也常常选地球的电势为零电势。 •对无限带电体不宜选无穷远为电势零点。此时只有电 势的相对值(即电势差)有意义。 4.电势能与电势的区别:WP 可正可负,取决于 q 和 q0 ; U只取决于场源电荷 q 。
静电场的环路定理表达式

静电场的环路定理表达式
静电场的环路定理公式:D=pL/S。
在稳恒磁场中,磁感应强度B沿任何闭合路径的线积分,等于这闭合路径所包围的各个电流的代数和乘以磁导率。
这个结论称为安培环路定理。
静电场,指的是观察者与电荷量不随时间生变化的电荷相对静止时所观察到的电场。
静电场性质
根据静电场的高斯定理
静电场的电场线起于正电荷或无穷远,终止于负电荷或无穷远,故静电场是有源场。
从安培环路定理来说它是一个无旋场。
根据环量定理,静电场中环量恒等于零,表明静电场中沿任意闭合路径移动电荷,电场力所做的功都为零,因此静电场是保守场。
根据库仑定律,两个点电荷之间的作用力跟它们的电荷量的乘积成正比,和它们距离的平方成反比,作用力的方向在它们的连线上,即F=(kq1q2)/r2;,其中q1、q2为两电荷的电荷量(不计正负性)、k为静电力常量,约为9.0e+09(N·m2)/(C2;),r为两电荷中心点连线的距离。
注意,点电荷是不考虑其尺寸、形状和电荷分布情况的带电体。
是实际带电体的理想化模型。
当带电体的距离比它们的大小大得多时,带电体的形状和大小可以忽略不计的点电荷。
第10章静电学-3-静电场环路定理

+q
11
(2)电荷分布如图所示, 将点电荷qo从a 经半圆b移到c的 过程中, 电场力对qo的功?
解 Aac qo (Ua Uc )
b
Ua
q
4o R
q
4o R
0
-q
a
+q R
o
c
Uc
q
4 o (3 R)
q
4o R
R
R
q
6o R
Aac
qqo
6o R
12
例10-14 一均匀带电直线段,长为L,电量为q ;取无穷远为电 势零点,求直线延长线上离一端距离为d 的P点的电势。
9
③对于电荷连续分布的带电体,可将其分割为无数多电荷元
dq,每个电荷元dq当作点电荷,其电势为
dU dq 4πε0r
根据电势叠加原理
U
V
dq
4 0r
dl dq dS
dV
积分遍及整个带电体,V是带电体的体积。
电势叠加原理也可以计算多个带电体所产生电场的总电 势,总电势应等于各带电体所产生电场的电势的代数和。
(3)电势差:
b
Uab Ua Ub E dl
a
静电场中a、b两点的电势差等于将单位正电荷由a沿任意路 径移至b过程中电场力做的功。
电势差是绝对量,与电势零点的选择无关。
6
由Wa
q
零势点 E
a
dl ,
得 Wa qUa
由Aab
q
b
E dl
a
Wa Wb ,
得 Aab q(Ua Ub )
(3)等于场强从该点沿任意路径到零势点的线积分。
说明:
(1)电势是相对量,要确定场中各点的电势必须选定电势零点。
静电场的环路定理

已知q的电场分布 E
根据定义, P点的电势为
4
q
0r
2
er
VP
P
E dl
r
q
40r
2Pdr4q04r2qe0rrP dl
q > 0时, VP为正, r V, r处V= 0 min q < 0时, VP为负, r V, r处V = 0 max
2.电场强度与电势梯度的关系
根据电势差的定义, 把单位正电荷从P1移到P2 电场力所作的功为:
dA E dn V (V dV )
r E
dn
n
P1
P2
V V dV
E dn dV
E
dV dn
grad V
E
ቤተ መጻሕፍቲ ባይዱ
dV dn
n
r E grad V
r 即:电场中某点的场强 E 等于该点电势梯度的负值
无意义
VP
P
E
dr
rP
2 0r
dr
2 0
ln
rP
r
P
P'
令某处 r = r0(有限值) V=0,则
VP
P0
P
E
dl
P
P
E dl
P0
P
E dl
r0 P0
P
P
2
0r
dr
2 0
ln
r0 r
可见:当电荷分布到无穷远时,
22
归纳 电场强度与电势的关系
积分关系:
静电场环路定理

方法二 定义法 先由高斯定理求出场强分布
q
再由定义 u E dl
rR
P
E
4 0 r 2
rR
0
rR
rR
u E dl E dl
R r R
R
O
r< R
P
r> R
0
q
2
4 0 r q 4 0 R
R
dr
u
2 2
方法二 定义法 已知轴线上的场强分布函数
E qx
2
4 0
R x
u Edx
4 0 ( x R ) qxdx
2
3
2
q
xp
xp
4 0 ( x R )
2 2
3
2
4 0 r
例4、求均匀带电球面电场中电势的分布,已知R,q 解: 方法一 叠加法 (微元法) 球面上任取一圆环
q
r1 r2 r
2
r2
l cos u 2 4 0 r
其中
q
O
r r 1
q
X
r x y
2 2
2
l
u 1 4 0
2
cos
x x y
2 2
px (x y )
3 2 2
课堂练习: 已知正方形顶点有四个等量的电点荷 q1 q 4.0 10 9 C r=5cm
静电场环路定理得
对任意大小面积S都成立。环路定理的微分形式。
( E ) dS 0
s
E 0; 或者rotE 0
旋度处处为零的矢量场,称为无旋场。静电场是无旋场。 高斯定理的微分形式。
静电场环路定理

i
l
结论:静电场力做功,与路径无关.
10-4 静电场的环路定理
静电场的环路定理
q0 E dl q 0
q 0 ( E dl
ABC
ABC
E dl 0
l
CDA
E dl ) 0
A
ADC
E dl
B
D
C
E
结论:沿闭合路径一 周,电场力作功为零.
q1
r1
n
n
U i
i 1
i 1
Ei dl
E3
q2
r2
E2
q3
r3
A
E1
10-4 静电场的环路定理
电荷连续分布时 dq dV
dq dU 4πε0 r
1 dq UA 4πε0 r
dq
r
A
10-4 静电场的环路定理
计算电势的方法
q
令 U 0 qdr U E dl r 2
r
4πε0 r
er
r
q U 4 πε0 r
10-4 静电场的环路定理
四
电势的计算
点电荷系 E Ei
i
qi UA i 1 4 π ε0 ri
n
UA
A
E dl
A
10-4 静电场的环路定理
一
电场的环量
E dl E cos dl
l l
环量:场强沿闭合路径的线积分称为电场的环量
dl
l
F dl q0 E cos dl
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静电场的环路定理
物理学
第五版
一、静电场力所做的功
0d d A q E l
=⋅l r
r
εqq d ˆπ42
00
⋅=0
2
0d d 4πqq A r εr
= 点电荷的电场
q
q A
r A
B
B
r E
r
r
ˆl d θ
r
d r θl l r
d cos d d ˆ==⋅
物理学
第五版
20
d 4πB
A
r r qq r A εr
=
⎰
)11(π400B
A r r εqq -=结论: A 仅与q 0的始末位置有关,
与路径无关
2
0d d 4πqq A r εr
=q
q A
r A
B
B
r E
r
r
ˆl d θ
r
d
物理学
第五版
任意带电体的电场
∑=i
i
E E 0d l
A q E l =⋅⎰⎰∑⋅=l
i i
l
E q
d 0结论:静电场力做功,与路径无关。
静电场力是保守力。
(点电荷的组合)
++=+⋅+⋅=
⎰
⎰212010A A l d E q l d E q b
a
b
a
物理学
第五版
二、静电场的环路定理
⎰
⎰⋅=⋅ADC
ABC
l E q l E q
d d 0
00
)d d (0=⋅+
⋅⎰⎰CDA
ABC
l E l E q
d =⋅⎰l
l E
静电场是保守场
结论:沿闭合路径一周,电
场力作功为零.
E
A
B
C
D
物理学
第五版
静电场的环流定理反映了静电场的一个重要性质。
它说明静电场是保守场(无旋场),可以引入势的概念,所以也叫势场。
根据斯托克斯公式
s d E l d E l
s
⋅⨯∇=⋅⎰
⎰
)(0
=⨯∇E
静电场的旋度为零,静电场是无旋场
物理学
第五版
例:用环流定理证明“静电场电力线不会闭合”。
证:用反证法证明:先假设电力线形成闭合线,则以此闭合线为路径应用环流定理
E
l
⎰⎰⎰>=
=
⋅l
Edl Edl l d E 0
cos 0
与 ⎰=⋅l
l d E 0
相矛盾
说明:假设不正确,静电场的电力线不会闭合
物理学
第五版
例:证明非无限大平行板电容器电力线不可能只分布内部。
带电平行板电容器的电场线
+ + + + + + + + + + + + +
- - - - - - - - - - - - -
物理学
第五版
+ + + + + + + + + + + + +
- - - - - - - - - - - - - 证:用反证法,假设外部 0=E 如图作一闭合回路 ⎰
=⋅l
l d E
⎰⎰⎰⎰⋅+⋅+⋅+⋅DA
CD AB BC l d E l d E l d E l d E EL =与 ⎰=⋅l l d E 0
相矛盾,
A B C
D
说明:假设不正确。