金山区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案
金山区第三中学校2018-2019学年上学期高二数学12月月考试题含解析

金山区第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m ,n 为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a 和b ,则一定有( )A .a >bB .a <bC .a=bD .a ,b 的大小与m ,n 的值有关2. 如图是一个多面体的三视图,则其全面积为( )A .B .C .D .3. 已知命题p :对任意x ∈R ,总有3x >0;命题q :“x >2”是“x >4”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .¬p ∧¬qC .¬p ∧qD .p ∧¬q4. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E 为底面ABCD 上的动点.若三棱锥B ﹣D 1EC 的表面积最大,则E点位于( )A .点A 处B .线段AD 的中点处C .线段AB 的中点处D .点D 处5. 已知函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x+2)=f (x ).当0≤x ≤1时,f (x )=x 2.若直线y=x+a 与函数y=f (x )的图象在[0,2]内恰有两个不同的公共点,则实数a 的值是( )A .0B .0或C .或D .0或6. 下列式子表示正确的是( )A 、{}00,2,3⊆B 、{}{}22,3∈C 、{}1,2φ∈D 、{}0φ⊆7. 函数21()ln 2f x x x ax =++存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力. 8. 如图框内的输出结果是( )A .2401B .2500C .2601D .27049. 已知两条直线12:,:0L y x L ax y =-=,其中为实数,当这两条直线的夹角在0,12π⎛⎫⎪⎝⎭内变动 时,的取值范围是( )A . ()0,1B .⎝C .()1,3⎫⎪⎪⎝⎭D .(10.如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为( )A .30B .50C .75D .15011.奇函数f (x )在(﹣∞,0)上单调递增,若f (﹣1)=0,则不等式f (x )<0的解集是( ) A .(﹣∞,﹣1)∪(0,1) B .(﹣∞,﹣1)(∪1,+∞) C .(﹣1,0)∪(0,1) D .(﹣1,0)∪(1,+∞)12.设偶函数f (x )在[0,+∞)单调递增,则使得f (x )>f (2x ﹣1)成立的x 的取值范围是( )A .(,1)B .(﹣∞,)∪(1,+∞)C .(﹣,)D .(﹣∞,﹣)∪(,+∞)二、填空题13.如图所示是y=f (x )的导函数的图象,有下列四个命题: ①f (x )在(﹣3,1)上是增函数; ②x=﹣1是f (x )的极小值点;③f (x )在(2,4)上是减函数,在(﹣1,2)上是增函数; ④x=2是f (x )的极小值点.其中真命题为 (填写所有真命题的序号).14.已知过双曲线22221(0,0)x y a b a b-=>>的右焦点2F 的直线交双曲线于,A B 两点,连结11,AF BF ,若1||||AB BF =,且190ABF ∠=︒,则双曲线的离心率为( )A .5-BC .6- D【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想.15.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x ﹣y+1=0相交所得的弦长为,则圆的方程为 . 16.不等式的解集为 .17.已知1a b >>,若10log log 3a b b a +=,b a a b =,则a b += ▲ . 18.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为y=()t ﹣a (a 为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.三、解答题19.如图所示,在四棱锥P ABCD -中,底面ABCD 为菱形,E 为AC 与BD 的交点,PA ⊥平 面ABCD ,M 为PA 中点,N 为BC 中点. (1)证明:直线//MN 平面ABCD ;(2)若点Q 为PC 中点,120BAD ∠=︒,PA =1AB =,求三棱锥A QCD -的体积.20.已知函数f (x )=alnx+,曲线y=f (x )在点(1,f (1))处的切线方程为y=2.(I)求a、b的值;(Ⅱ)当x>1时,不等式f(x)>恒成立,求实数k的取值范围.21.已知数列{a n}满足a1=,a n+1=a n+,数列{b n}满足b n=(Ⅰ)证明:b n∈(0,1)(Ⅱ)证明:=(Ⅲ)证明:对任意正整数n有a n.22.某实验室一天的温度(单位:)随时间(单位;h)的变化近似满足函数关系;(1) 求实验室这一天的最大温差;(2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?23.19.已知函数f(x)=ln.24.在△ABC中,cos2A﹣3cos(B+C)﹣1=0.(1)求角A的大小;(2)若△ABC的外接圆半径为1,试求该三角形面积的最大值.金山区第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:根据茎叶图中的数据,得;甲得分的众数为a=85,乙得分的中位数是b=85;所以a=b.故选:C.2.【答案】C【解析】解:由三视图可知几何体是一个正三棱柱,底面是一个边长是的等边三角形,侧棱长是,∴三棱柱的面积是3××2=6+,故选C.【点评】本题考查根据三视图求几何体的表面积,考查由三视图确定几何图形,考查三角形面积的求法,本题是一个基础题,运算量比较小.3.【答案】D【解析】解:p:根据指数函数的性质可知,对任意x∈R,总有3x>0成立,即p为真命题,q:“x>2”是“x>4”的必要不充分条件,即q为假命题,则p∧¬q为真命题,故选:D【点评】本题主要考查复合命题的真假关系的应用,先判定p,q的真假是解决本题的关键,比较基础4.【答案】A【解析】解:如图,E为底面ABCD上的动点,连接BE,CE,D1E,对三棱锥B﹣D1EC,无论E在底面ABCD上的何位置,面BCD1的面积为定值,要使三棱锥B﹣D1EC的表面积最大,则侧面BCE、CAD1、BAD1的面积和最大,而当E与A重合时,三侧面的面积均最大,∴E点位于点A处时,三棱锥B﹣D1EC的表面积最大.故选:A.【点评】本题考查了空间几何体的表面积,考查了数形结合的解题思想方法,是基础题.5.【答案】D【解析】解:∵f(x)是定义在R上的偶函数,当0≤x≤1时,f(x)=x2,∴当﹣1≤x≤0时,0≤﹣x≤1,f(﹣x)=(﹣x)2=x2=f(x),又f(x+2)=f(x),∴f(x)是周期为2的函数,又直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,其图象如下:当a=0时,直线y=x+a变为直线l1,其方程为:y=x,显然,l1与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点;当a≠0时,直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,由图可知,直线y=x+a与函数y=f(x)相切,切点的横坐标x0∈[0,1].由得:x2﹣x﹣a=0,由△=1+4a=0得a=﹣,此时,x0=x=∈[0,1].综上所述,a=﹣或06. 【答案】D 【解析】试题分析:空集是任意集合的子集。
金山区第一中学校2018-2019学年高二上学期第一次月考试卷化学

金山区第一中学校2018-2019学年高二上学期第一次月考试卷化学一、选择题1. 已知正项等差数列{}n a 中,12315a a a ++=,若1232,5,13a a a +++成等比数列,则10a =( ) A .19 B .20 C .21 D .22 2. 如果过点M (﹣2,0)的直线l与椭圆有公共点,那么直线l 的斜率k 的取值范围是( )A. B.C.D.3. 已知点A (﹣2,0),点M (x ,y )为平面区域上的一个动点,则|AM|的最小值是( )A .5B .3C .2 D.4. 若实数x ,y 满足不等式组则2x+4y 的最小值是( )A .6B .﹣6C .4D .25. 已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若+,则x 、y 的值分别为( )A .x=1,y=1B .x=1,y= C .x=,y=D .x=,y=16. 函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是( )A .2B .3C .7D .97. 已知集合A={x|a ﹣1≤x ≤a+2},B={x|3<x <5},则A ∩B=B 成立的实数a 的取值范围是( ) A .{a|3≤a ≤4} B .{a|3<a ≤4} C .{a|3<a <4} D .∅ 8. 已知命题p :“若直线a 与平面α内两条直线垂直,则直线a 与平面α垂直”,命题q :“存在两个相交平面垂直于同一条直线”,则下列命题中的真命题为( )A .p ∧qB .p ∨qC .¬p ∨qD .p ∧¬q9. 将n 2个正整数1、2、3、…、n 2(n ≥2)任意排成n 行n 列的数表.对于某一个数表,计算某行或某列中的任意两个数a 、b (a >b)的比值,称这些比值中的最小值为这个数表的“特征值”.当n=2时,数表的所有可能的“特征值”的最大值为( )A.B.C .2D .310.函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .()1,10B .()1,+∞C .()0,1D .()10,+∞ 11.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A .B .C .D .12.以下四个命题中,真命题的是( ) A .2,2x R x x ∃∈≤-B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.二、填空题13.计算:×5﹣1= .14.已知()212811f x x x -=-+,则函数()f x 的解析式为_________.15.设向量a =(1,-1),b =(0,t ),若(2a +b )·a =2,则t =________. 16.已知函数y=f (x )的图象是折线段ABC ,其中A (0,0)、、C (1,0),函数y=xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为 .17.给出下列四个命题:①函数f (x )=1﹣2sin 2的最小正周期为2π; ②“x 2﹣4x ﹣5=0”的一个必要不充分条件是“x=5”;③命题p :∃x ∈R ,tanx=1;命题q :∀x ∈R ,x 2﹣x+1>0,则命题“p ∧(¬q )”是假命题; ④函数f (x )=x 3﹣3x 2+1在点(1,f (1))处的切线方程为3x+y ﹣2=0. 其中正确命题的序号是 .18.命题:“∀x ∈R ,都有x 3≥1”的否定形式为 .三、解答题19.某市出租车的计价标准是4km 以内10元(含4km ),超过4km 且不超过18km 的部分1.5元/km ,超出18km 的部分2元/km .(1)如果不计等待时间的费用,建立车费y 元与行车里程x km 的函数关系式; (2)如果某人乘车行驶了30km ,他要付多少车费?20.如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:BC1∥平面ACD1.(2)当时,求三棱锥E﹣ACD1的体积.21.已知椭圆+=1(a>b>0)的离心率为,且a2=2b.(1)求椭圆的方程;(2)直线l:x﹣y+m=0与椭圆交于A,B两点,是否存在实数m,使线段AB的中点在圆x2+y2=5上,若存在,求出m的值;若不存在,说明理由.22.在等比数列{a n}中,a1a2a3=27,a2+a4=30试求:(1)a1和公比q;(2)前6项的和S6.23.求下列曲线的标准方程:(1)与椭圆+=1有相同的焦点,直线y=x为一条渐近线.求双曲线C的方程.(2)焦点在直线3x﹣4y﹣12=0 的抛物线的标准方程.24.已知a>0,a≠1,设p:函数y=log a(x+3)在(0,+∞)上单调递减,q:函数y=x2+(2a﹣3)x+1的图象与x轴交于不同的两点.如果p∨q真,p∧q假,求实数a的取值范围.金山区第一中学校2018-2019学年高二上学期第一次月考试卷化学(参考答案)一、选择题1. 【答案】C【解析】设等差数列的公差为d ,且0d >. ∵12315a a a ++=,∴25a =. ∵1232,5,13a a a +++成等比数列, ∴2213(5)(2)(13)a a a +=++, ∴2222(5)(2)(13)a a d a d +=-+++, ∴210(7)(18)d d =-+,解得2d =. ∴102858221a a d =+=+⨯=. 2. 【答案】D【解析】解:设过点M (﹣2,0)的直线l 的方程为y=k (x+2),联立,得(2k 2+1)x 2+8k 2x+8k 2﹣2=0,∵过点M (﹣2,0)的直线l 与椭圆有公共点,∴△=64k 4﹣4(2k 2+1)(8k 2﹣2)≥0,整理,得k 2,解得﹣≤k ≤.∴直线l 的斜率k 的取值范围是[﹣,].故选:D .【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.3. 【答案】D【解析】解:不等式组表示的平面区域如图,结合图象可知|AM|的最小值为点A 到直线2x+y ﹣2=0的距离,即|AM|min =.故选:D .【点评】本题考查了不等式组表示的平面区域的画法以及运用;关键是正确画图,明确所求的几何意义.4.【答案】B【解析】解:作出不等式组对应的平面区域如图:设z=2x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点C时,直线y=﹣x+的截距最小,此时z最小,由,解得,即C(3,﹣3),此时z=2x+4y=2×3+4×(﹣3)=6﹣12=﹣6.故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键.5.【答案】C【解析】解:如图,++().故选C.6.【答案】C【解析】解:∵函数f(x)=sinωx+acosωx(a>0,ω>0)在x=处取最小值﹣2,∴sin+acos=﹣=﹣2,∴a=,∴f(x)=sinωx+cosωx=2sin(ωx+).再根据f()=2sin(+)=﹣2,可得+=2kπ+,k∈Z,∴ω=12k+7,∴k=0时,ω=7,则ω的可能值为7,故选:C.【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题.7.【答案】A【解析】解:∵A={x|a﹣1≤x≤a+2}B={x|3<x<5}∵A∩B=B∴A⊇B∴解得:3≤a≤4故选A【点评】本题考查集合的包含关系判断及应用,通过对集合间的关系转化为元素的关系,属于基础题.8.【答案】C【解析】解:根据线面垂直的定义知若直线a与平面α内两条相交直线垂直,则直线a与平面α垂直,当两条直线不相交时,结论不成立,即命题p为假命题.垂直于同一条直线的两个平面是平行的,故命题存在两个相交平面垂直于同一条直线为假命题.,即命题q 为假命题.则¬p∨q为真命题,其余都为假命题,故选:C.【点评】本题主要考查复合命题真假之间的判断,分别判断命题p,q的真假是解决本题的关键.9.【答案】B【解析】解:当n=2时,这4个数分别为1、2、3、4,排成了两行两列的数表,当1、2同行或同列时,这个数表的“特征值”为; 当1、3同行或同列时,这个数表的特征值分别为或; 当1、4同行或同列时,这个数表的“特征值”为或,故这些可能的“特征值”的最大值为.故选:B .【点评】题考查类比推理和归纳推理,属基础题.10.【答案】B 【解析】试题分析:函数()f x 有两个零点等价于1xy a ⎛⎫= ⎪⎝⎭与log a y x =的图象有两个交点,当01a <<时同一坐标系中做出两函数图象如图(2),由图知有一个交点,符合题意;当1a >时同一坐标系中做出两函数图象如图(1),由图知有两个交点,不符合题意,故选B.(1) (2)考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程()y f x =零点个数的常用方法:①直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化法:函数()y f x =零点个数就是方程()0f x =根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;③数形结合法:一是转化为两个函数()(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x ==的交点个数的图象的交点个数问题.本题的解答就利用了方法③.11.【答案】C【解析】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种, 其中只有(3,4,5)为勾股数, 故这3个数构成一组勾股数的概率为.故选:C12.【答案】D二、填空题13.【答案】 9 .【解析】解:×5﹣1=×=×=(﹣5)×(﹣9)×=9,∴×5﹣1=9,故答案为:9.14.【答案】()2245f x x x =-+ 【解析】试题分析:由题意得,令1t x =-,则1x t =+,则()222(1)8(1)11245f t t t t t =+-++=-+,所以函数()f x 的解析式为()2245f x x x =-+.考点:函数的解析式. 15.【答案】【解析】(2a +b )·a =(2,-2+t )·(1,-1) =2×1+(-2+t )·(-1) =4-t =2,∴t =2. 答案:216.【答案】 .【解析】解:依题意,当0≤x ≤时,f (x )=2x ,当<x ≤1时,f (x )=﹣2x+2∴f (x )=∴y=xf(x)=y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为S=+=x3+(﹣+x2)=+=故答案为:17.【答案】①③④.【解析】解:①∵,∴T=2π,故①正确;②当x=5时,有x2﹣4x﹣5=0,但当x2﹣4x﹣5=0时,不能推出x一定等于5,故“x=5”是“x2﹣4x﹣5=0”成立的充分不必要条件,故②错误;③易知命题p为真,因为>0,故命题q为真,所以p∧(¬q)为假命题,故③正确;④∵f′(x)=3x2﹣6x,∴f′(1)=﹣3,∴在点(1,f(1))的切线方程为y﹣(﹣1)=﹣3(x﹣1),即3x+y ﹣2=0,故④正确.综上,正确的命题为①③④.故答案为①③④.18.【答案】∃x0∈R,都有x03<1.【解析】解:因为全称命题的否定是特称命题.所以,命题:“∀x∈R,都有x3≥1”的否定形式为:命题:“∃x0∈R,都有x03<1”.故答案为:∃x0∈R,都有x03<1.【点评】本题考查全称命题与特称命题的否定关系,基本知识的考查.三、解答题19.【答案】【解析】解:(1)依题意得:当0<x≤4时,y=10;…(2分)当4<x≤18时,y=10+1.5(x﹣4)=1.5x+4…当x>18时,y=10+1.5×14+2(x﹣18)=2x﹣5…(8分)∴…(9分)(2)x=30,y=2×30﹣5=55…(12分)【点评】本题考查函数模型的建立,考查利用数学知识解决实际问题,考查学生的计算能力,属于中档题.20.【答案】【解析】(1)证明:∵AB∥C1D1,AB=C1D1,∴四边形ABC1D1是平行四边形,∴BC1∥AD1,又∵AD1⊂平面ACD1,BC1⊄平面ACD1,∴BC1∥平面ACD1.(2)解:S△ACE=AEAD==.∴V=V===.【点评】本题考查了线面平行的判定,长方体的结构特征,棱锥的体积计算,属于中档题.21.【答案】【解析】解:(1)由题意得e==,a2=2b,a2﹣b2=c2,解得a=,b=c=1故椭圆的方程为x2+=1;(2)设A(x1,y1),B(x2,y2),线段AB的中点为M(x0,y0).联立直线y=x+m与椭圆的方程得,即3x2+2mx+m2﹣2=0,△=(2m)2﹣4×3×(m2﹣2)>0,即m2<3,x1+x2=﹣,所以x0==﹣,y0=x0+m=,即M(﹣,).又因为M点在圆x2+y2=5上,可得(﹣)2+()2=5,解得m=±3与m2<3矛盾.故实数m不存在.【点评】本题考查椭圆的方程的求法,注意运用离心率公式,考查直线和椭圆方程联立,运用韦达定理和中点坐标公式,考查存在性问题的解法,属于中档题.22.【答案】【解析】解:(1)在等比数列{a n}中,由已知可得:…(3分)解得:或…(6分)(2)∵∴当时,.…(10分)当时,…(14分)【点评】本题主要考查了利用等比数列的通项公式求解等比数列的基本量,及等比数列的求和公式的应用,解题的关键是熟练应用公式.23.【答案】【解析】解:(1)由椭圆+=1,得a2=8,b2=4,∴c2=a2﹣b2=4,则焦点坐标为F(2,0),∵直线y=x为双曲线的一条渐近线,∴设双曲线方程为(λ>0),即,则λ+3λ=4,λ=1.∴双曲线方程为:;(2)由3x﹣4y﹣12=0,得,∴直线在两坐标轴上的截距分别为(4,0),(0,﹣3),∴分别以(4,0),(0,﹣3)为焦点的抛物线方程为:y2=16x或x2=﹣12y.【点评】本题考查椭圆方程和抛物线方程的求法,对于(1)的求解,设出以直线为一条渐近线的双曲线方程是关键,是中档题.24.【答案】【解析】解:由题意得命题P真时0<a<1,命题q真时由(2a﹣3)2﹣4>0解得a>或a<,由p∨q真,p∧q 假,得,p,q一真一假即:或,解得≤a <1或a >.【点评】本题考查了复合命题的判断,考查对数函数,二次函数的性质,是一道基础题.。
金山区二中2018-2019学年上学期高二数学12月月考试题含解析

金山区二中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知x >0,y >0, +=1,不等式x+y ≥2m ﹣1恒成立,则m 的取值范围( )A .(﹣∞,]B .(﹣∞,] C .(﹣∞,] D .(﹣∞,]2. 将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( ) A .1372 B .2024 C .3136 D .44953. 已知点P 是双曲线C :22221(0,0)x y a b a b-=>>左支上一点,1F ,2F 是双曲线的左、右两个焦点,且12PF PF ⊥,2PF 与两条渐近线相交于M ,N 两点(如图),点N 恰好平分线段2PF ,则双曲线的离心率是( )A.5B.2 D.2【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力.4. 已知某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N 1(90,86)和ξ2:N 2(93,79),则以下结论正确的是( )A .第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定B .第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定C .第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定D .第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定 5. 己知y=f (x )是定义在R 上的奇函数,当x <0时,f (x )=x+2,那么不等式2f (x )﹣1<0的解集是( )A .B .或C .D .或6. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的面积的最大值为4,则此时△ABC 的形状为( )A .等腰三角形B .正三角形C .直角三角形D .钝角三角形7. ∃x ∈R ,x 2﹣2x+3>0的否定是( )A .不存在x ∈R ,使∃x 2﹣2x+3≥0B .∃x ∈R ,x 2﹣2x+3≤0C .∀x ∈R ,x 2﹣2x+3≤0D .∀x ∈R ,x 2﹣2x+3>08. 函数y=|a|x ﹣(a ≠0且a ≠1)的图象可能是( )A .B .C .D .9. 已知双曲线的渐近线与圆x 2+(y ﹣2)2=1相交,则该双曲线的离心率的取值范围是( )A .(,+∞) B .(1,) C .(2.+∞) D .(1,2)10.设S n 为等差数列{a n }的前n 项和,已知在S n 中有S 17<0,S 18>0,那么S n 中最小的是( ) A .S 10 B .S 9C .S 8D .S 711.抛物线x=﹣4y 2的准线方程为( )A .y=1B .y=C .x=1D .x=12.已知集合{2,1,1,2,4}A =--,2{|log ||1,}B y y x x A ==-∈,则A B =( )A .{2,1,1}--B .{1,1,2}-C .{1,1}-D .{2,1}--【命题意图】本题考查集合的交集运算,意在考查计算能力.二、填空题13.若正数m 、n 满足mn ﹣m ﹣n=3,则点(m ,0)到直线x ﹣y+n=0的距离最小值是 .14.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则ba 的值为 ▲ .15.设是空间中给定的个不同的点,则使成立的点的个数有_________个.16.正方体ABCD ﹣A 1B 1C 1D 1中,平面AB 1D 1和平面BC 1D 的位置关系为 .17.已知关于的不等式20x ax b ++<的解集为(1,2),则关于的不等式210bx ax ++>的解集 为___________.18.如图,一船以每小时20km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°方向,行驶4小时后,船到达C 处,看到这个灯塔在北偏东15°方向,这时船与灯塔间的距离为 km .三、解答题19.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=(2﹣a )(x ﹣1)﹣2lnx ,g (x )=1x xe -.(a ∈R ,e 为自然对数的底数)(Ⅰ)当a=1时,求f (x )的单调区间; (Ⅱ)若函数f (x )在10,2⎛⎫⎪⎝⎭上无零点,求a 的最小值; (Ⅲ)若对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使得f (x i )=g (x 0)成立,求a 的取值范围.2020142015CBA 5场比赛中的投篮次数及投中次数如下表所示:3分球的平均命中率;(2)视这5场比赛中2分球和3分球的平均命中率为相应的概率.假设运动员在第6场比赛前一分钟分别获得1次2分球和1次3分球的投篮机会,该运动员在最后一分钟内得分ξ分布列和数学期望.21.已知函数f(x)=2cos2ωx+2sinωxcosωx﹣1,且f(x)的周期为2.(Ⅰ)当时,求f(x)的最值;(Ⅱ)若,求的值.22.(本小题满分12分)在多面体ABCDEFG中,四边形ABCD与CDEF均为正方形,CF⊥平面ABCD,==.BG⊥平面ABCD,且24AB BG BH(1)求证:平面AGH⊥平面EFG;--的大小的余弦值.(2)求二面角D FG E23.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.24.设函数f(x)=x+ax2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2 (1)求a,b的值;(2)设函数g(x)=f(x)﹣2x+2,求g(x)在其定义域上的最值.金山区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:x>0,y>0,+=1,不等式x+y≥2m﹣1恒成立,所以(x+y)(+)=10+≥10=16,当且仅当时等号成立,所以2m﹣1≤16,解得m;故m的取值范围是(﹣];故选D.2.【答案】C【解析】【专题】排列组合.【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得.【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上.任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法.这类三角形共有4×73=1372个.另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点.这类三角形共有4×21×21=1764个.综上可知,可得不同三角形的个数为1372+1764=3136.故选:C.【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题.3.【答案】A.【解析】4.【答案】C【解析】解:∵某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N1(90,86)和ξ2:N2(93,79),∴μ1=90,▱1=86,μ2=93,▱2=79,∴第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定,故选:C.【点评】本题考查正态分布曲线的特点,考查学生分析解决问题的能力,比较基础.5.【答案】B【解析】解:因为y=f(x)为奇函数,所以当x>0时,﹣x<0,根据题意得:f(﹣x)=﹣f(x)=﹣x+2,即f(x)=x﹣2,当x<0时,f(x)=x+2,代入所求不等式得:2(x+2)﹣1<0,即2x<﹣3,解得x<﹣,则原不等式的解集为x<﹣;当x≥0时,f(x)=x﹣2,代入所求的不等式得:2(x﹣2)﹣1<0,即2x<5,解得x<,则原不等式的解集为0≤x<,综上,所求不等式的解集为{x|x<﹣或0≤x<}.故选B6.【答案】A【解析】解:∵(acosB+bcosA)=2csinC,∴(sinAcosB+sinBcosA)=2sin2C,∴sinC=2sin2C,且sinC>0,∴sinC=,∵a+b=8,可得:8≥2,解得:ab≤16,(当且仅当a=b=4成立)∵△ABC的面积的最大值S△ABC=absinC≤=4,∴a=b=4,则此时△ABC的形状为等腰三角形.故选:A.7.【答案】C【解析】解:因为特称命题的否定是全称命题,所以,∃x∈R,x2﹣2x+3>0的否定是:∀x∈R,x2﹣2x+3≤0.故选:C.8.【答案】D【解析】解:当|a|>1时,函数为增函数,且过定点(0,1﹣),因为0<1﹣<1,故排除A,B当|a|<1时且a≠0时,函数为减函数,且过定点(0,1﹣),因为1﹣<0,故排除C.故选:D.9.【答案】C【解析】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.【点评】本题主要考查了双曲线的简单性质,直线与圆的位置关系,点到直线的距离公式等.考查了学生数形结合的思想的运用.10.【答案】C【解析】解:∵S16<0,S17>0,∴=8(a8+a9)<0,=17a9>0,∴a8<0,a9>0,∴公差d>0.∴S n中最小的是S8.故选:C .【点评】本题考查了等差数列的通项公式性质及其求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题.11.【答案】D【解析】解:抛物线x=﹣4y 2即为y 2=﹣x ,可得准线方程为x=.故选:D .12.【答案】C【解析】当{2,1,1,2,4}x ∈--时,2log ||1{1,1,0}y x =-∈-,所以AB ={1,1}-,故选C .二、填空题13.【答案】 .【解析】解:点(m ,0)到直线x ﹣y+n=0的距离为d=,∵mn ﹣m ﹣n=3,∴(m ﹣1)(n ﹣1)=4,(m ﹣1>0,n ﹣1>0),∴(m ﹣1)+(n ﹣1)≥2,∴m+n ≥6,则d=≥3.故答案为:.【点评】本题考查了的到直线的距离公式,考查了利用基本不等式求最值,是基础题.14.【答案】12-考点:函数极值【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.15.【答案】1【解析】【知识点】平面向量坐标运算【试题解析】设设,则因为,所以,所以因此,存在唯一的点M ,使成立。
金山屯区高级中学2018-2019学年上学期高二数学12月月考试题含解析

金山屯区高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.下列满足“∀x∈R,f(x)+f(﹣x)=0且f′(x)≤0”的函数是()A.f(x)=﹣xe|x| B.f(x)=x+sinxC.f(x)=D.f(x)=x2|x|2.在下列区间中,函数f(x)=()x﹣x的零点所在的区间为()A.(0,1) B.(1,2) C.(2,3 )D.(3,4)3.四棱锥P﹣ABCD的底面是一个正方形,PA⊥平面ABCD,PA=AB=2,E是棱PA的中点,则异面直线BE与AC所成角的余弦值是()A. B. C.D.4.已知a,b是实数,则“a2b>ab2”是“<”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件5.如图,已知正方体ABCD﹣A1B1C1D1的棱长为4,点E,F分别是线段AB,C1D1上的动点,点P是上底面A1B1C1D1内一动点,且满足点P到点F的距离等于点P到平面ABB1A1的距离,则当点P运动时,PE的最小值是()A.5 B.4 C.4D.26. 直线2x+y+7=0的倾斜角为( ) A .锐角 B .直角 C .钝角 D .不存在7. 如果一个几何体的三视图如图所示,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,(单位:cm ),则此几何体的表面积是( )A .8cm 2B . cm 2C .12 cm 2D .cm 28. 如图,在平面直角坐标系中,锐角α、β及角α+β的终边分别与单位圆O 交于A ,B ,C 三点.分别作AA'、BB'、CC'垂直于x 轴,若以|AA'|、|BB'|、|CC'|为三边长构造三角形,则此三角形的外接圆面积为( )A .B .C .D .π9. 已知x ,y 满足,且目标函数z=2x+y 的最小值为1,则实数a 的值是( )A .1B .C .D .10.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则点P 轨迹方程为( )A .86210x y --=B .86210x y +-=C .68210x y +-=D .68210x y --=【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.11.若函数f (x )=ka x ﹣a ﹣x ,(a >0,a ≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则g (x )=log a (x+k )的是( )A .B .C .D .12.复数i iiz (21+=是虚数单位)的虚部为( ) A .1- B .i - C .i 2 D .2【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力.二、填空题13.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x ﹣y+1=0相交所得的弦长为,则圆的方程为 .14.函数f (x )=x 2e x 在区间(a ,a+1)上存在极值点,则实数a 的取值范围为 .15.【泰州中学2018届高三10月月考】设二次函数()2f x ax bx c =++(,,a b c 为常数)的导函数为()f x ',对任意x R ∈,不等式()()f x f x ≥'恒成立,则222b a c+的最大值为__________. 16.设所有方程可以写成(x ﹣1)sin α﹣(y ﹣2)cos α=1(α∈[0,2π])的直线l 组成的集合记为L ,则下列说法正确的是 ; ①直线l 的倾斜角为α;②存在定点A ,使得对任意l ∈L 都有点A 到直线l 的距离为定值; ③存在定圆C ,使得对任意l ∈L 都有直线l 与圆C 相交; ④任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2;⑤任意l 1∈L ,必存在唯一l 2∈L ,使得l 1⊥l 2.17.若函数()ln f x a x x =-在区间(1,2)上单调递增,则实数的取值范围是__________.18.已知过双曲线22221(0,0)x y a b a b-=>>的右焦点2F 的直线交双曲线于,A B 两点,连结11,AF BF ,若1||||AB BF =,且190ABF ∠=︒,则双曲线的离心率为( )A .5-BC .6- D【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想.三、解答题19.已知α、β、是三个平面,且c αβ=,a βγ=,b αγ=,且a b O =.求证:、、三线共点.20.已知向量=(x ,y ),=(1,0),且(+)•(﹣)=0.(1)求点Q (x ,y )的轨迹C 的方程;(2)设曲线C 与直线y=kx+m 相交于不同的两点M 、N ,又点A (0,﹣1),当|AM|=|AN|时,求实数m 的取值范围.21.圆锥底面半径为1cm ,其中有一个内接正方体,求这个内接正方体的棱长.22.设集合A={x|0<x﹣m<3},B={x|x≤0或x≥3},分别求满足下列条件的实数m的取值范围.(1)A∩B=∅;(2)A∪B=B.23.已知圆的极坐标方程为ρ2﹣4ρcos(θ﹣)+6=0.(1)将极坐标方程化为普通方程;(2)若点P在该圆上,求线段OP的最大值和最小值.24.如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.金山屯区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:满足“∀x∈R,f(x)+f(﹣x)=0,且f′(x)≤0”的函数为奇函数,且在R上为减函数,A中函数f(x)=﹣xe|x|,满足f(﹣x)=﹣f(x),即函数为奇函数,且f′(x)=≤0恒成立,故在R上为减函数,B中函数f(x)=x+sinx,满足f(﹣x)=﹣f(x),即函数为奇函数,但f′(x)=1+cosx≥0,在R上是增函数,C中函数f(x)=,满足f(﹣x)=f(x),故函数为偶函数;D中函数f(x)=x2|x|,满足f(﹣x)=f(x),故函数为偶函数,故选:A.2.【答案】A【解析】解:函数f(x)=()x﹣x,可得f(0)=1>0,f(1)=﹣<0.f(2)=﹣<0,函数的零点在(0,1).故选:A.3.【答案】B【解析】解:以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则B(2,0,0),E(0,0,1),A(0,0,0),C(2,2,0),=(﹣2,0,1),=(2,2,0),设异面直线BE与AC所成角为θ,则cosθ===.故选:B.4.【答案】C【解析】解:由a2b>ab2得ab(a﹣b)>0,若a﹣b>0,即a>b,则ab>0,则<成立,若a﹣b<0,即a<b,则ab<0,则a<0,b>0,则<成立,若<则,即ab(a﹣b)>0,即a2b>ab2成立,即“a2b>ab2”是“<”的充要条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键.5.【答案】D【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设AE=a,D1F=b,0≤a≤4,0≤b≤4,P(x,y,4),0≤x≤4,0≤y≤4,则F(0,b,4),E(4,a,0),=(﹣x,b﹣y,0),∵点P到点F的距离等于点P到平面ABB1A1的距离,∴当E、F分别是AB、C1D1上的中点,P为正方形A1B1C1D1时,PE取最小值,此时,P(2,2,4),E(4,2,0),∴|PE|min==2.故选:D.【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识.6.【答案】C【解析】【分析】设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,即可判断出结论.【解答】解:设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,则θ为钝角.故选:C.7.【答案】C【解析】解:由已知可得:该几何体是一个四棱锥,侧高和底面的棱长均为2,故此几何体的表面积S=2×2+4××2×2=12cm2,故选:C.【点评】本题考查的知识点是棱柱、棱锥、棱台的体积和表面积,空间几何体的三视图,根据已知判断几何体的形状是解答的关键.8.【答案】A【解析】(本题满分为12分)解:由题意可得:|AA'|=sinα、|BB'|=sinβ、|CC'|=sin(α+β),设边长为sin(α+β)的所对的三角形内角为θ,则由余弦定理可得,cosθ==﹣cosαcosβ=﹣cosαcosβ=sinαsinβ﹣cosαcosβ=﹣cos(α+β),∵α,β∈(0,)∴α+β∈(0,π)∴sinθ==sin(α+β)设外接圆的半径为R,则由正弦定理可得2R==1,∴R=,∴外接圆的面积S=πR2=.故选:A.【点评】本题主要考查了余弦定理,三角函数恒等变换的应用,同角三角函数基本关系式,正弦定理,圆的面积公式在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题.9.【答案】B【解析】解:由约束条件作出可行域如图,由图可知A (a ,a ),化目标函数z=2x+y 为y=﹣2x+z ,由图可知,当直线y=﹣2x+z 过A (a ,a )时直线在y 轴上的截距最小,z 最小,z 的最小值为2a+a=3a=1,解得:a=. 故选:B .【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.10.【答案】D【解析】由切线性质知PQ CQ ⊥,所以222PQ PC QC=-,则由PQ PO =,得,2222(3)(4)4x y x y -++-=+,化简得68210x y --=,即点P 的轨迹方程,故选D ,11.【答案】C【解析】解:∵函数f (x )=ka x ﹣a ﹣x,(a >0,a ≠1)在(﹣∞,+∞)上是奇函数 则f (﹣x )+f (x )=0即(k ﹣1)(a x ﹣a ﹣x)=0则k=1又∵函数f (x )=ka x ﹣a ﹣x,(a >0,a ≠1)在(﹣∞,+∞)上是增函数则a >1则g (x )=log a (x+k )=log a (x+1) 函数图象必过原点,且为增函数 故选C【点评】若函数在其定义域为为奇函数,则f (﹣x )+f (x )=0,若函数在其定义域为为偶函数,则f (﹣x )﹣f (x )=0,这是函数奇偶性定义的变形使用,另外函数单调性的性质,在公共单调区间上:增函数﹣减函数=增函数也是解决本题的关键.12.【答案】A【解析】()12(i)122(i)iiz ii i+-+===--,所以虚部为-1,故选A.二、填空题13.【答案】(x﹣1)2+(y+1)2=5.【解析】解:设所求圆的圆心为(a,b),半径为r,∵点A(2,1)关于直线x+y=0的对称点A′仍在这个圆上,∴圆心(a,b)在直线x+y=0上,∴a+b=0,①且(2﹣a)2+(1﹣b)2=r2;②又直线x﹣y+1=0截圆所得的弦长为,且圆心(a,b)到直线x﹣y+1=0的距离为d==,根据垂径定理得:r2﹣d2=,即r2﹣()2=③;由方程①②③组成方程组,解得;∴所求圆的方程为(x﹣1)2+(y+1)2=5.故答案为:(x﹣1)2+(y+1)2=5.14.【答案】(﹣3,﹣2)∪(﹣1,0).【解析】解:函数f(x)=x2e x的导数为y′=2xe x+x2e x =xe x(x+2),令y′=0,则x=0或﹣2,﹣2<x<0上单调递减,(﹣∞,﹣2),(0,+∞)上单调递增,∴0或﹣2是函数的极值点,∵函数f(x)=x2e x在区间(a,a+1)上存在极值点,∴a<﹣2<a+1或a<0<a+1,∴﹣3<a<﹣2或﹣1<a<0.故答案为:(﹣3,﹣2)∪(﹣1,0).15.【答案】2【解析】试题分析:根据题意易得:()'2f x ax b =+,由()()'f x f x ≥得:()220ax b a x c b +-+-≥在R上恒成立,等价于:0{ 0a >≤,可解得:()22444b ac a a c a ≤-=-,则:222222241441c b ac a aa c a c c a ⎛⎫- ⎪-⎝⎭≤=++⎛⎫+ ⎪⎝⎭,令1,(0)c t t a =->,24422222t y t t t t==≤=++++,故222b ac +的最大值为2. 考点:1.函数与导数的运用;2.恒成立问题;3.基本不等式的运用 16.【答案】 ②③④【解析】解:对于①:倾斜角范围与α的范围不一致,故①错误; 对于②:(x ﹣1)sin α﹣(y ﹣2)cos α=1,(α∈[0,2π)),可以认为是圆(x ﹣1)2+(y ﹣2)2=1的切线系,故②正确;对于③:存在定圆C ,使得任意l ∈L ,都有直线l 与圆C 相交,如圆C :(x ﹣1)2+(y ﹣2)2=100,故③正确;对于④:任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2,作图知④正确; 对于⑤:任意意l 1∈L ,必存在两条l 2∈L ,使得l 1⊥l 2,画图知⑤错误. 故答案为:②③④.【点评】本题考查命题真假的判断,是中档题,解题时要注意直线方程、圆、三角函数、数形结合思想等知识点的合理运用.17.【答案】2a ≥ 【解析】试题分析:因为()ln f x a x x =-在区间(1,2)上单调递增,所以(1,2)x ∈时,()'10af x x=-≥恒成立,即a x ≥恒成立,可得2a ≥,故答案为2a ≥.1考点:1、利用导数研究函数的单调性;2、不等式恒成立问题. 18.【答案】B 【解析】三、解答题19.【答案】证明见解析.【解析】考点:平面的基本性质与推论.20.【答案】【解析】解:(1)由题意向量=(x,y),=(1,0),且(+)•(﹣)=0,∴,化简得,∴Q点的轨迹C的方程为.…(2)由得(3k2+1)x2+6mkx+3(m2﹣1)=0,由于直线与椭圆有两个不同的交点,∴△>0,即m2<3k2+1.①…(i )当k ≠0时,设弦MN 的中点为P (x P ,y P ),x M 、x N 分别为点M 、N 的横坐标,则,从而,,…又|AM|=|AN|,∴AP ⊥MN .则,即2m=3k 2+1,②将②代入①得2m >m 2,解得0<m <2,由②得,解得,故所求的m的取值范围是(,2).…(ii )当k=0时,|AM|=|AN|,∴AP ⊥MN ,m 2<3k 2+1,解得﹣1<m <1.…综上,当k ≠0时,m的取值范围是(,2), 当k=0时,m 的取值范围是(﹣1,1).…【点评】本题考查轨迹方程,考查直线与椭圆的位置关系,考查小时分析解决问题的能力,属于中档题.21.. 【解析】试题分析:画出图形,设出棱长,根据三角形相似,列出比例关系,求出棱长即可.试题解析:过圆锥的顶点S 和正方体底面的一条对角线CD 作圆锥的截面,得圆锥的轴截面SEF ,正方体对角面11CDD C ,如图所示.设正方体棱长为,则1CC x =,11C D , 作SO EF ⊥于O,则SO =1OE =,∵1ECC EOS ∆∆,∴11CC EC SO EO =121x =,∴2x =cm,即内接正方体棱长为2.考点:简单组合体的结构特征.22.【答案】【解析】解:∵A={x|0<x﹣m<3},∴A={x|m<x<m+3},(1)当A∩B=∅时;如图:则,解得m=0,(2)当A∪B=B时,则A⊆B,由上图可得,m≥3或m+3≤0,解得m≥3或m≤﹣3.23.【答案】【解析】解:(1)ρ2﹣4ρcos(θ﹣)+6=0,展开为:ρ2﹣4×ρ(cosθ+sinθ)+6=0.化为:x2+y2﹣4x﹣4y+6=0.(2)由x2+y2﹣4x﹣4y+6=0可得:(x﹣2)2+(y﹣2)2=2.圆心C(2,2),半径r=.|OP|==2.∴线段OP的最大值为2+=3.最小值为2﹣=.24.【答案】【解析】(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,∴AA1⊥平面ABC.(II)解:由AC=4,BC=5,AB=3.∴AC2+AB2=BC2,∴AB⊥AC.建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),∴,,.设平面A1BC1的法向量为,平面B1BC1的法向量为=(x2,y2,z2).则,令y1=4,解得x1=0,z1=3,∴.,令x2=3,解得y2=4,z2=0,∴.===.∴二面角A1﹣BC1﹣B1的余弦值为.(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,∴=,=(0,3,﹣4),∵,∴,∴,解得t=.∴.【点评】本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力.。
2019-2020学年上学期高二数学12月月考试题含解析(794)

金山区第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 在等差数列{}n a 中,11a =,公差0d ≠,n S 为{}n a 的前n 项和.若向量13(,)m a a =,133(,)n a a =-,且0m n ?,则2163n n S a ++的最小值为( )A .4B .3 C.2 D .92【命题意图】本题考查等差数列的性质,等差数列的前n 项和,向量的数量积,基本不等式等基础知识,意在考查学生的学生运算能力,观察分析,解决问题的能力.2. 某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位: 小时)间的关系为0e ktP P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1%的污染物,则需要( )小时. A.8B.10C. 15D. 18【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想. 3. 设函数f (x )在x 0处可导,则等于( )A .f ′(x 0)B .f ′(﹣x 0)C .﹣f ′(x 0)D .﹣f (﹣x 0)4. 执行如图所示的程序框图,若输入的分别为0,1,则输出的( )A .4B .16C .27D .36 5. 给出下列命题:①在区间(0,+∞)上,函数y=x ﹣1,y=,y=(x ﹣1)2,y=x 3中有三个是增函数;②若log m 3<log n 3<0,则0<n <m <1;③若函数f (x )是奇函数,则f (x ﹣1)的图象关于点A (1,0)对称;④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0有2个实数根.其中假命题的个数为( )A .1B .2C .3D .46. 已知命题p :“∀∈[1,e],a >lnx ”,命题q :“∃x ∈R ,x 2﹣4x+a=0””若“p ∧q ”是真命题,则实数a 的取值范围是( )A .(1,4]B .(0,1]C .[﹣1,1]D .(4,+∞)7. 如图甲所示, 三棱锥P ABC - 的高8,3,30PO AC BC ACB ===∠= ,,M N 分别在BC和PO 上,且(),203CM x PN x x ==∈(,,图乙的四个图象大致描绘了三棱锥N AMC -的体积y 与的变化关系,其中正确的是( )A .B . C. D .1111]8. 函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是( )A .()1,10B .()1,+∞C .()0,1D .()10,+∞9. 对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为( )A .92%B .24%C .56%D .5.6%10.已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则=( )A .﹣1B .2C .﹣5D .﹣311.“3<-b a ”是“圆056222=++-+a y x y x 关于直线b x y 2+=成轴对称图形”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度.12.四棱锥P ﹣ABCD 的底面是一个正方形,PA ⊥平面ABCD ,PA=AB=2,E 是棱PA 的中点,则异面直线BE 与AC 所成角的余弦值是( )A .B .C .D .二、填空题13.若6()mx y +展开式中33x y 的系数为160-,则m =__________.【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想. 14.抛物线24x y =的焦点为F ,经过其准线与y 轴的交点Q 的直线与抛物线切于点P ,则FPQ ∆外接圆的标准方程为_________.15()23k x =-+有两个不等实根,则的取值范围是 .16.计算sin43°cos13°﹣cos43°sin13°的值为 .17.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是.已知样本中平均气温不大于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为 .18.给出下列四个命题:①函数f (x )=1﹣2sin 2的最小正周期为2π; ②“x 2﹣4x ﹣5=0”的一个必要不充分条件是“x=5”;③命题p :∃x ∈R ,tanx=1;命题q :∀x ∈R ,x 2﹣x+1>0,则命题“p ∧(¬q )”是假命题;④函数f (x )=x 3﹣3x 2+1在点(1,f (1))处的切线方程为3x+y ﹣2=0. 其中正确命题的序号是 .三、解答题19.某中学为了普及法律知识,举行了一次法律知识竞赛活动.下面的茎叶图记录了男生、女生各10名学生在该次竞赛活动中的成绩(单位:分).已知男、女生成绩的平均值相同.(1)求的值;(2)从成绩高于86分的学生中任意抽取3名学生,求恰有2名学生是女生的概率.20.已知f(x)是定义在[﹣1,1]上的奇函数,f(1)=1,且若∀a、b∈[﹣1,1],a+b≠0,恒有>0,(1)证明:函数f(x)在[﹣1,1]上是增函数;(2)解不等式;(3)若对∀x∈[﹣1,1]及∀a∈[﹣1,1],不等式f(x)≤m2﹣2am+1恒成立,求实数m 的取值范围.21.设极坐标与直角坐标系xOy有相同的长度单位,原点O为极点,x轴坐标轴为极轴,曲线C1的极坐标方程为ρ2cos2θ+3=0,曲线C2的参数方程为(t是参数,m是常数).(Ⅰ)求C1的直角坐标方程和C2的普通方程;(Ⅱ)若C1与C2有两个不同的公共点,求m的取值范围.22.(本小题满分10分)已知圆P过点)0,1(A,)0,4(B.C,求圆P的方程;(1)若圆P还过点)2,6((2)若圆心P的纵坐标为,求圆P的方程.23.如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点.(Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值;(Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.24.如图,⊙O的半径为6,线段AB与⊙相交于点C、D,AC=4,∠BOD=∠A,OB与⊙O相交于点.(1)求BD长;(2)当CE⊥OD时,求证:AO=AD.金山区第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】2.【答案】15【解析】3.【答案】C【解析】解:=﹣=﹣f′(x0),故选C.4.【答案】D【解析】【知识点】算法和程序框图【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是,则输出的36。
金山区第一高级中学2018-2019学年高二上学期第一次月考试卷化学

金山区第一高级中学2018-2019学年高二上学期第一次月考试卷化学一、选择题1. 设函数y=的定义域为M ,集合N={y|y=x 2,x ∈R},则M ∩N=( )A .∅B .NC .[1,+∞)D .M2. 已知集合M={0,1,2},则下列关系式正确的是( )A .{0}∈MB .{0}∉MC .0∈MD .0⊆M3. 函数y=(x 2﹣5x+6)的单调减区间为( )A.(,+∞) B .(3,+∞)C .(﹣∞,) D .(﹣∞,2)4. 下列满足“∀x ∈R ,f (x )+f (﹣x )=0且f ′(x )≤0”的函数是( ) A .f (x )=﹣xe |x| B .f (x )=x+sinx C .f (x )=D .f (x )=x 2|x|5. 已知正三棱柱111ABC A B C -的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱 柱的侧面,绕行两周到达点1A 的最短路线的长为( )A .16cmB .123cmC .243cmD .26cm6. 圆C 1:(x+2)2+(y ﹣2)2=1与圆C 2:(x ﹣2)2+(y ﹣5)2=16的位置关系是( )A .外离B .相交C .内切D .外切7. 已知三个数1a -,1a +,5a +成等比数列,其倒数重新排列后为递增的等比数列{}n a 的前三 项,则能使不等式1212111n na a a a a a +++≤+++成立的自然数的最大值为( ) A .9 B .8 C.7 D .5 8. 在ABC ∆中,22tan sin tan sin A B B A =,那么ABC ∆一定是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形 9. 如图,函数f (x )=Asin (2x+φ)(A >0,|φ|<)的图象过点(0,),则f (x )的图象的一个对称中心是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .(﹣,0)B .(﹣,0)C .(,0)D .(,0)10.sin (﹣510°)=( )A .B .C .﹣D .﹣11.已知双曲线(a >0,b >0)的右焦点F ,直线x=与其渐近线交于A ,B 两点,且△ABF 为钝角三角形,则双曲线离心率的取值范围是( )A .B .C .D .12.椭圆=1的离心率为( ) A . B .C .D .二、填空题13.下列结论正确的是①在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.35,则ξ在(0,2)内取值的概率为0.7;②以模型y=ce kx 去拟合一组数据时,为了求出回归方程,设z=lny ,其变换后得到线性回归方程z=0.3x+4,则c=e 4;③已知命题“若函数f (x )=e x ﹣mx 在(0,+∞)上是增函数,则m ≤1”的逆否命题是“若m >1,则函数f (x )=e x ﹣mx 在(0,+∞)上是减函数”是真命题;④设常数a ,b ∈R ,则不等式ax 2﹣(a+b ﹣1)x+b >0对∀x >1恒成立的充要条件是a ≥b ﹣1.14.抛物线y 2=﹣8x 上到焦点距离等于6的点的坐标是 .15.已知f (x )=,x ≥0,若f 1(x )=f (x ),f n+1(x )=f (f n (x )),n ∈N +,则f 2015(x )的表达式为 .16.已知圆C 的方程为22230x y y +--=,过点()1,2P -的直线与圆C 交于,A B 两点,若使AB 最小则直线的方程是 .17.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=3x x +,对任意的m ∈[﹣2,2],f (mx﹣2)+f (x )<0恒成立,则x 的取值范围为_____.18.设O 为坐标原点,抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,过F 斜率为的直线与抛物线C相交于A ,B 两点,直线AO 与l 相交于D ,若|AF|>|BF|,则= .三、解答题19.某单位组织职工开展构建绿色家园活动,在今年3月份参加义务植树活动的职工中,随机抽取M 名职工为样本,得到这些职工植树的株数,根据此数据作出了频数与频率统计表和频率分布直方图如图: (1)求出表中M ,p 及图中a 的值;(2)单位决定对参加植树的职工进行表彰,对植树株数在[25,30)区间的职工发放价值800元的奖品,对植树株数在[20,25)区间的职工发放价值600元的奖品,对植树株数在[15,20)区间的职工发放价值400元的奖品,对植树株数在[10,15)区间的职工发放价值200元的奖品,在所取样本中,任意取出2人,并设X为X E X合计20.已知集合A={x|x<﹣1,或x>2},B={x|2p﹣1≤x≤p+3}.(1)若p=,求A∩B;(2)若A∩B=B,求实数p的取值范围.21.某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:[50,60][60,70][70,80][80,90][90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分.22.设函数f(x)=mx2﹣mx﹣1.(1)若对一切实数x,f(x)<0恒成立,求m的取值范围;(2)对于x∈[1,3],f(x)<﹣m+5恒成立,求m的取值范围.23.已知=(sinx,cosx),=(sinx,sinx),设函数f(x)=﹣.(1)写出函数f(x)的周期,并求函数f(x)的单调递增区间;(2)求f(x)在区间[π,]上的最大值和最小值.24.(本小题满分12分)如图(1),在三角形PCD 中,AB 为其中位线,且2BD PC =,若沿AB 将三角形PAB 折起,使PAD θ∠=,构成四棱锥P ABCD -,且2PC CDPF CE==. (1)求证:平面 BEF ⊥平面PAB ; (2)当 异面直线BF 与PA 所成的角为3π时,求折起的角度.金山区第一高级中学2018-2019学年高二上学期第一次月考试卷化学(参考答案)一、选择题1.【答案】B【解析】解:根据题意得:x+1≥0,解得x≥﹣1,∴函数的定义域M={x|x≥﹣1};∵集合N中的函数y=x2≥0,∴集合N={y|y≥0},则M∩N={y|y≥0}=N.故选B2.【答案】C【解析】解:对于A、B,是两个集合的关系,不能用元素与集合的关系表示,所以不正确;对于C,0是集合中的一个元素,表述正确.对于D,是元素与集合的关系,错用集合的关系,所以不正确.故选C【点评】本题考查运算与集合的关系,集合与集合的关系,考查基本知识的应用3.【答案】B【解析】解:令t=x2﹣5x+6=(x﹣2)(x﹣3)>0,可得x<2,或x>3,故函数y=(x2﹣5x+6)的定义域为(﹣∞,2)∪(3,+∞).本题即求函数t在定义域(﹣∞,2)∪(3,+∞)上的增区间.结合二次函数的性质可得,函数t在(﹣∞,2)∪(3,+∞)上的增区间为(3,+∞),故选B.4.【答案】A【解析】解:满足“∀x∈R,f(x)+f(﹣x)=0,且f′(x)≤0”的函数为奇函数,且在R上为减函数,A中函数f(x)=﹣xe|x|,满足f(﹣x)=﹣f(x),即函数为奇函数,且f′(x)=≤0恒成立,故在R上为减函数,B中函数f(x)=x+sinx,满足f(﹣x)=﹣f(x),即函数为奇函数,但f′(x)=1+cosx≥0,在R上是增函数,C中函数f(x)=,满足f(﹣x)=f(x),故函数为偶函数;D中函数f(x)=x2|x|,满足f(﹣x)=f(x),故函数为偶函数,故选:A.5. 【答案】D 【解析】考点:多面体的表面上最短距离问题.【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题. 6. 【答案】D【解析】解:由圆C 1:(x+2)2+(y ﹣2)2=1与圆C 2:(x ﹣2)2+(y ﹣5)2=16得: 圆C 1:圆心坐标为(﹣2,2),半径r=1;圆C 2:圆心坐标为(2,5),半径R=4. 两个圆心之间的距离d==5,而d=R+r ,所以两圆的位置关系是外切.故选D7. 【答案】C【解析】试题分析:因为三个数1,1,5a a a -++等比数列,所以()()()2115,3a a a a +=-+∴=,倒数重新排列后恰好为递增的等比数列{}n a 的前三项,为111,,842,公比为,数列1n a ⎧⎫⎨⎬⎩⎭是以为首项,12为公比的等比数列,则不等式1212111n n a a a a a a +++≤+++等价为()1181122811212n n ⎛⎫-- ⎪⎝⎭≤--,整理,得722,17,n n n N +≤∴≤≤≤∈,故选C. 1考点:1、等比数列的性质;2、等比数列前项和公式. 8. 【答案】D 【解析】试题分析:在ABC ∆中,22tan sin tan sin A B B A =,化简得22sin sin sin sin cos cos A BB A A B=,解得sin sin sin cos sin cos cos cos B AA AB B A B =⇒=,即si n 2s i n 2A B =,所以22A B =或22A B π=-,即A B =或2A B π+=,所以三角形为等腰三角形或直角三角形,故选D .考点:三角形形状的判定.【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出sin 2sin 2A B =,从而得到A B =或2A B π+=是试题的一个难点,属于中档试题.9. 【答案】 B【解析】解:由函数图象可知:A=2,由于图象过点(0,),可得:2sin φ=,即sin φ=,由于|φ|<,解得:φ=,即有:f (x )=2sin (2x+).由2x+=k π,k ∈Z 可解得:x=,k ∈Z ,故f (x )的图象的对称中心是:(,0),k ∈Z当k=0时,f (x )的图象的对称中心是:(,0),故选:B .【点评】本题主要考查由函数y=Asin (ωx+φ )的部分图象求函数的解析式,正弦函数的对称性,属于中档题.10.【答案】C【解析】解:sin (﹣510°)=sin (﹣150°)=﹣sin150°=﹣sin30°=﹣, 故选:C .11.【答案】D【解析】解:∵函数f (x )=(x ﹣3)e x, ∴f ′(x )=e x +(x ﹣3)e x =(x ﹣2)e x,令f ′(x )>0,即(x ﹣2)e x>0,∴x ﹣2>0, 解得x >2, ∴函数f (x )的单调递增区间是(2,+∞).故选:D .【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目.12.【答案】D【解析】解:根据椭圆的方程=1,可得a=4,b=2,则c==2;则椭圆的离心率为e==,故选D.【点评】本题考查椭圆的基本性质:a2=b2+c2,以及离心率的计算公式,注意与双曲线的对应性质的区分.二、填空题13.【答案】①②④【解析】解:①在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0)则正态曲线关于x=1对称.若ξ在(0,1)内取值的概率为0.35,则ξ在(0,2)内取值的概率P=2×0.35=0.7;故①正确,②∵y=ce kx,∴两边取对数,可得lny=ln(ce kx)=lnc+lne kx=lnc+kx,令z=lny,可得z=lnc+kx,∵z=0.3x+4,∴lnc=4,∴c=e4.故②正确,③已知命题“若函数f(x)=e x﹣mx在(0,+∞)上是增函数,则m≤1”的逆否命题是“若m>1,则函数f(x)=e x﹣mx在(0,+∞)上不是增函数”,若函数f(x)=e x﹣mx在(0,+∞)上是增函数,则f′(x)≥0恒成立,即f′(x)=e x﹣m≥0在(0,+∞)上恒成立,即m≤e x,∵x>0,∴e x>1,则m≤1.故原命题是真命题,则命题的逆否命题也是真命题,故③错误,④设f(x)=ax2﹣(a+b﹣1)x+b,则f(0)=b>0,f(1)=a﹣(a+b﹣1)+b=1>0,∴要使∀x>1恒成立,则对称轴x=,即a+b﹣1≤2a,即a≥b﹣1,即不等式ax2﹣(a+b﹣1)x+b>0对∀x>1恒成立的充要条件是a≥b﹣1.故④正确,故答案为:①②④14.【答案】 (﹣4,) .【解析】解:∵抛物线方程为y 2=﹣8x ,可得2p=8, =2.∴抛物线的焦点为F (﹣2,0),准线为x=2. 设抛物线上点P (m ,n )到焦点F 的距离等于6,根据抛物线的定义,得点P 到F 的距离等于P 到准线的距离,即|PF|=﹣m+2=6,解得m=﹣4,∴n 2=8m=32,可得n=±4,因此,点P 的坐标为(﹣4,).故答案为:(﹣4,).【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标.着重考查了抛物线的定义与标准方程等知识,属于基础题.15.【答案】 .【解析】解:由题意f 1(x )=f (x )=.f 2(x )=f (f 1(x ))=,f 3(x )=f (f 2(x ))==,…f n+1(x )=f (f n (x ))=,故f 2015(x )=故答案为:.16.【答案】30x y -+= 【解析】试题分析:由圆C 的方程为22230x y y +--=,表示圆心在(0,1)C ,半径为的圆,点()1,2P -到圆心的距()1,2P -在圆内,所以当AB CP ⊥时,AB 最小,此时11,1CP k k =-=,由点斜式方程可得,直线的方程为21y x -=+,即30x y -+=.考点:直线与圆的位置关系的应用. 17.【答案】22,3⎛⎫- ⎪⎝⎭【解析】18.【答案】.【解析】解:∵O为坐标原点,抛物线C:y2=2px(p>0)的准线为l,焦点为F,过F斜率为的直线与抛物线C相交于A,B两点,直线AO与l相交于D,∴直线AB的方程为y=(x﹣),l的方程为x=﹣,联立,解得A(﹣,P),B(,﹣)∴直线OA的方程为:y=,联立,解得D(﹣,﹣)∴|BD|==,∵|OF|=,∴==.故答案为:.【点评】本题考查两条件线段的比值的求法,是中档题,解题时要认真审题,要熟练掌握抛物线的简单性质.三、解答题19.【答案】【解析】解:(1)由题可知,,,又5+12+m+1=M,解得M=20,n=0.6,m=2,p=0.1,则[15,20)组的频率与组距之比a为0.12.…(2)所取出两所获品价值之差的绝对值可能为0元、200元、400元、600元,则,P(x=200)=,P(x=400)=,P(x=600)=…EX==…【点评】本题考查的是频率分布直方图和离散型随机变量的分布列和数学期望,属中档题,高考常考题型.20.【答案】【解析】解:(1)当p=时,B={x|0≤x≤},∴A∩B={x|2<x≤};(2)当A∩B=B时,B⊆A;令2p﹣1>p+3,解得p>4,此时B=∅,满足题意;当p≤4时,应满足,解得p不存在;综上,实数p的取值范围p>4.21.【答案】【解析】解:(1)依题意,根据频率分布直方图中各个小矩形的面积和等于1得,10(2a+0.02+0.03+0.04)=1,解得a=0.005.∴图中a的值0.005.(2)这100名学生语文成绩的平均分为:55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73(分),【点评】本题考查频率分布估计总体分布,解题的关键是理解频率分布直方图,熟练掌握频率分布直方图的性质,且能根据所给的数据建立恰当的方程求解22.【答案】【解析】解:(1)当m=0时,f(x)=﹣1<0恒成立,当m≠0时,若f(x)<0恒成立,则解得﹣4<m<0综上所述m的取值范围为(﹣4,0]﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)要x∈[1,3],f(x)<﹣m+5恒成立,即恒成立.令﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当m>0时,g(x)是增函数,所以g(x)max=g(3)=7m﹣6<0,解得.所以当m=0时,﹣6<0恒成立.当m<0时,g(x)是减函数.所以g(x)max=g(1)=m﹣6<0,解得m<6.所以m<0.综上所述,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问题的关键.23.【答案】【解析】解:(1)∵=(sinx,cosx),=(sinx,sinx),∴f(x)=﹣=sin2x+sinxcosx﹣=(1﹣cos2x)+sin2x﹣=﹣cos2x+sin2x﹣=sin(2x﹣),∴函数的周期为T==π,由2kπ﹣≤2x﹣≤2kπ+(k∈Z)解得kπ﹣≤x≤kπ+,∴f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z);(2)由(1)知f(x)=sin(2x﹣),当x∈[π,]时,2x﹣∈[,],∴﹣≤sin(2x﹣)≤1,故f(x)在区间[π,]上的最大值和最小值分别为1和﹣.【点评】本题考查向量的数量积的运算,三角函数的最值,三角函数的周期性及其求法,正弦函数的单调性,考查计算能力,此类题目的解答,关键是基本的三角函数的性质的掌握熟练程度,属于中档题.24.【答案】(1)证明见解析;(2)23πθ=. 【解析】试题分析:(1)可先证BA PA ⊥,BA AD ⊥从而得到BA ⊥平面PAD ,再证CD FE ⊥,CD BE ⊥可得CD ⊥平面BEF ,由//CD AB ,可证明平面BEF ⊥平面PAB ;(2)由PAD θ∠=,取BD 的中点G ,连接,FG AG ,可得PAG ∠即为异面直线BF 与PA 所成的角或其补角,即为所折起的角度.在三角形中求角即可. 1 试题解析:(2)因为PAD θ∠=,取BD 的中点G ,连接,FG AG ,所以//FG CD ,12FG CD =,又//AB CD ,12AB CD =,所以//FG AB ,FG AB =,从而四边形ABFG 为平行四边形,所以//BF AG ,得;同时,因为PA AD =,PAD θ∠=,所以PAD θ∠=,故折起的角度23πθ=.考点:点、线、面之间的位置关系的判定与性质.。
松江区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

松江区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=,则f (0)=()A .﹣1B .0C .1D .32. 已知点A (0,1),B (3,2),C (2,0),若=2,则||为( )AD → DB → CD →A .1 B.43C. D .2533. 设全集U={1,3,5,7,9},集合A={1,|a ﹣5|,9},∁U A={5,7},则实数a 的值是( )A .2B .8C .﹣2或8D .2或84. 数列{a n }的通项公式为a n =﹣n+p ,数列{b n }的通项公式为b n =2n ﹣5,设c n =,若在数列{c n }中c 8>c n (n ∈N *,n ≠8),则实数p 的取值范围是( )A .(11,25)B .(12,16]C .(12,17)D .[16,17)5. 如图,在正四棱锥S ﹣ABCD 中,E ,M ,N 分别是BC ,CD ,SC 的中点,动点P 在线段MN 上运动时,下列四个结论:①EP ∥BD ;②EP ⊥AC ;③EP ⊥面SAC ;④EP ∥面SBD 中恒成立的为()A .②④B .③④C .①②D .①③6. 已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为()A .B .C .D .2480642407. 如图所示,在平行六面体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面对角线A 1C 1的中点,若=+x+y,则()A .x=﹣B .x=C .x=﹣D .x=8. 圆心在直线2x +y =0上,且经过点(-1,-1)与(2,2)的圆,与x 轴交于M ,N 两点,则|MN |=()A .4B .425C .2D .2259. 已知命题p :∀x ∈R ,32x+1>0,有命题q :0<x <2是log 2x <1的充分不必要条件,则下列命题为真命题的是()A .¬pB .p ∧qC .p ∧¬qD .¬p ∨q10.下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .11.已知函数满足,且,分别是上的偶函数和奇函数,()xF x e =()()()F x g x h x =+()g x ()h x R 若使得不等式恒成立,则实数的取值范围是( )(0,2]x ∀∈(2)()0g x ah x -≥A .B .C .D .(,-∞(,-∞(0,)+∞12.已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A ,若,则实数a 的取值范围是( )A .B .C .D .二、填空题13.设函数f (x )=,则f (f (﹣2))的值为 .14.在(1+2x )10的展开式中,x 2项的系数为 (结果用数值表示).15.在平面直角坐标系中,,,记,其中为坐标原点,(1,1)=-a (1,2)=b {}(,)|M OM λμλμΩ==+a b O 给出结论如下:①若,则;(1,4)(,)λμ-∈Ω1λμ==②对平面任意一点,都存在使得;M ,λμ(,)M λμ∈Ω③若,则表示一条直线;1λ=(,)λμΩ④;{}(1,)(,2)(1,5)μλΩΩ=⑤若,,且,则表示的一条线段且长度为0λ≥0μ≥2λμ+=(,)λμΩ其中所有正确结论的序号是 .16.设函数f (x )=则函数y=f (x )与y=的交点个数是 .17.设S n 是数列{a n }的前n 项和,且a 1=﹣1,=S n .则数列{a n }的通项公式a n = .18.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 是A 1D 1的中点,点P 在侧面BCC 1B 1上运动.现有下列命题:①若点P 总保持PA ⊥BD 1,则动点P 的轨迹所在曲线是直线;②若点P 到点A 的距离为,则动点P 的轨迹所在曲线是圆;③若P 满足∠MAP=∠MAC 1,则动点P 的轨迹所在曲线是椭圆;④若P 到直线BC 与直线C 1D 1的距离比为1:2,则动点P 的轨迹所在曲线是双曲线;⑤若P 到直线AD 与直线CC 1的距离相等,则动点P 的轨迹所在曲线是抛物丝.其中真命题是 (写出所有真命题的序号)三、解答题19.(本小题满分12分)已知函数f (x )=x 2+x +a ,g (x )=e x .12(1)记曲线y =g (x )关于直线y =x 对称的曲线为y =h (x ),且曲线y =h (x )的一条切线方程为mx -y -1=0,求m 的值;(2)讨论函数φ(x )=f (x )-g (x )的零点个数,若零点在区间(0,1)上,求a 的取值范围.20.(本题12分)在锐角ABC ∆中,内角A ,B ,C 所对的边分别为,,,且2sin a B =.111](1)求角A 的大小;(2)若6a =,8b c +=,求ABC ∆的面积.21.(本小题满分10分)已知曲线的极坐标方程为,将曲线,(为参数),经过伸缩变C 2sin cos 10ρθρθ+=1cos :sin x C y θθ=⎧⎨=⎩α换后得到曲线.32x xy y'=⎧⎨'=⎩2C (1)求曲线的参数方程;2C (2)若点的在曲线上运动,试求出到曲线的距离的最小值.M 2C M C22.(本小题满分10分)已知集合{}2131A x a x a =-<<+,集合{}14B x x =-<<.(1)若A B ⊆,求实数的取值范围;(2)是否存在实数,使得A B =?若存在,求出的值;若不存在,请说明理由.23.如图,在四边形ABCD 中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD 绕AD旋转一周所成几何体的表面积.24.已知等差数列{a n }中,a 1=1,且a 2+2,a 3,a 4﹣2成等比数列.(1)求数列{a n }的通项公式;(2)若b n =,求数列{b n }的前n 项和S n .松江区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案)一、选择题1. 【答案】B【解析】解:函数f (x )=,则f (0)=f (2)=log 22﹣1=1﹣1=0.故选B .【点评】本题考查分段函数的运用:求函数值,注意运用各段的范围是解题的关键,属于基础题. 2. 【答案】【解析】解析:选C.设D 点的坐标为D (x ,y ),∵A (0,1),B (3,2),=2,AD → DB →∴(x ,y -1)=2(3-x ,2-y )=(6-2x ,4-2y ),∴即x =2,y =,{x =6-2x ,y -1=4-2y )53∴=(2,)-(2,0)=(0,),CD → 5353∴||==,故选C.CD → 02+(53)2533. 【答案】D【解析】解:由题意可得3∈A ,|a ﹣5|=3,∴a=2,或a=8,故选 D . 4. 【答案】C【解析】解:当a n ≤b n 时,c n =a n ,当a n >b n 时,c n =b n ,∴c n 是a n ,b n 中的较小者,∵a n =﹣n+p ,∴{a n }是递减数列,∵b n =2n ﹣5,∴{b n }是递增数列,∵c 8>c n (n ≠8),∴c 8是c n 的最大者,则n=1,2,3,…7,8时,c n 递增,n=8,9,10,…时,c n 递减,∴n=1,2,3,…7时,2n ﹣5<﹣n+p 总成立,当n=7时,27﹣5<﹣7+p ,∴p >11,n=9,10,11,…时,2n ﹣5>﹣n+p 总成立,当n=9时,29﹣5>﹣9+p ,成立,∴p <25,而c 8=a 8或c 8=b 8,若a8≤b8,即23≥p﹣8,∴p≤16,则c8=a8=p﹣8,∴p﹣8>b7=27﹣5,∴p>12,故12<p≤16,若a8>b8,即p﹣8>28﹣5,∴p>16,∴c8=b8=23,那么c8>c9=a9,即8>p﹣9,∴p<17,故16<p<17,综上,12<p<17.故选:C.5.【答案】A【解析】解:如图所示,连接AC、BD相交于点O,连接EM,EN.在①中:由异面直线的定义可知:EP与BD是异面直线,不可能EP∥BD,因此不正确;在②中:由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=M,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确.在③中:由①同理可得:EM⊥平面SAC,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直.即不正确.在④中:由②可知平面EMN∥平面SBD,∴EP∥平面SBD,因此正确.故选:A.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养. 6. 【答案】B 【解析】试题分析:,故选B.8058631=⨯⨯⨯=V 考点:1.三视图;2.几何体的体积.7. 【答案】A【解析】解:根据题意,得;=+(+)=++=﹣+,又∵=+x +y,∴x=﹣,y=,故选:A .【点评】本题考查了空间向量的应用问题,是基础题目. 8. 【答案】【解析】选D.设圆的方程为(x -a )2+(y -b )2=r 2(r >0).由题意得,{2a +b =0(-1-a )2+(-1-b )2=r 2(2-a )2+(2-b )2=r 2)解之得a =-1,b =2,r =3,∴圆的方程为(x +1)2+(y -2)2=9,令y =0得,x =-1±,5∴|MN |=|(-1+)-(-1-)|=2,选D.5559. 【答案】C【解析】解:∵命题p :∀x ∈R ,32x+1>0,∴命题p 为真,由log 2x <1,解得:0<x <2,∴0<x <2是log 2x <1的充分必要条件,∴命题q 为假,故选:C .【点评】本题考查了充分必要条件,考查了对数,指数函数的性质,是一道基础题. 10.【答案】C【解析】【知识点】样本的数据特征茎叶图【试题解析】由题知:所以m 可以取:0,1,2.故答案为:C 11.【答案】B 【解析】试题分析:因为函数满足,且分别是上的偶函数和奇函数,()xF x e =()()()F x g x h x =+()(),g x h x R 使得不等式()()()()()()(],,,,0,222x x x xxxe e e e e g x h x eg x h x g x h x x ---+-∴=+=-∴==∀∈ 恒成立, 即恒成立, ()()20g x ah x -≥22022xxx xe ee e a --+--≥A()2222x x x xx xx xe e e ea e ee e -----++∴≤=--, 设,则函数在上单调递增,, 此时不等()2x x x xe e e e--=-++x x t e e -=-x x t e e -=-(]0,2220t e e -∴<≤-式当且仅当,即时, 取等号,,故选B.2t t +≥2t t=t =a ∴≤考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值.【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数 .本题是利用方法①求得的最大值的.12.【答案】 A【解析】解:取a=﹣时,f (x )=﹣x|x|+x ,∵f (x+a )<f (x ),∴(x ﹣)|x ﹣|+1>x|x|,(1)x<0时,解得﹣<x<0;(2)0≤x≤时,解得0;(3)x>时,解得,综上知,a=﹣时,A=(﹣,),符合题意,排除B、D;取a=1时,f(x)=x|x|+x,∵f(x+a)<f(x),∴(x+1)|x+1|+1<x|x|,(1)x<﹣1时,解得x>0,矛盾;(2)﹣1≤x≤0,解得x<0,矛盾;(3)x>0时,解得x<﹣1,矛盾;综上,a=1,A=∅,不合题意,排除C,故选A.【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用.二、填空题13.【答案】 ﹣4 .【解析】解:∵函数f(x)=,∴f(﹣2)=4﹣2=,f(f(﹣2))=f()==﹣4.故答案为:﹣4.14.【答案】 180 【解析】解:由二项式定理的通项公式T r+1=C n r a n﹣r b r可设含x2项的项是T r+1=C7r(2x)r可知r=2,所以系数为C102×4=180,故答案为:180.【点评】本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9.一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等.15.【答案】②③④【解析】解析:本题考查平面向量基本定理、坐标运算以及综合应用知识解决问题的能力.由得,∴,①错误;(1,4)λμ+=-a b 124λμλμ-+=-⎧⎨+=⎩21λμ=⎧⎨=⎩与不共线,由平面向量基本定理可得,②正确;a b 记,由得,∴点在过点与平行的直线上,③正确;OA = a OM μ=+ a b AM μ= b M A b 由得,,∵与不共线,∴,∴,∴④2μλ+=+a b a b (1)(2)λμ-+-=0a b a b 12λμ=⎧⎨=⎩2(1,5)μλ+=+=a b a b 正确;设,则有,∴,∴且,∴表示的一(,)M x y 2x y λμλμ=-+⎧⎨=+⎩21331133x y x y λμ⎧=-+⎪⎪⎨⎪=+⎪⎩200x y x y -≤⎧⎨+≥⎩260x y -+=(,)λμΩ条线段且线段的两个端点分别为、,其长度为,∴⑤错误.(2,4)(2,2)-16.【答案】 4 .【解析】解:在同一坐标系中作出函数y=f (x )=的图象与函数y=的图象,如下图所示,由图知两函数y=f (x )与y=的交点个数是4.故答案为:4. 17.【答案】 .【解析】解:S n是数列{a n}的前n项和,且a1=﹣1,=S n,∴S n+1﹣S n=S n+1S n,∴=﹣1,=﹣1,∴{}是首项为﹣1,公差为﹣1的等差数列,∴=﹣1+(n﹣1)×(﹣1)=﹣n.∴S n=﹣,n=1时,a1=S1=﹣1,n≥2时,a n=S n﹣S n﹣1=﹣+=.∴a n=.故答案为:.18.【答案】 ①②④ 【解析】解:对于①,∵BD1⊥面AB1C,∴动点P的轨迹所在曲线是直线B1C,①正确;对于②,满足到点A的距离为的点集是球,∴点P应为平面截球体所得截痕,即轨迹所在曲线为圆,②正确;对于③,满足条件∠MAP=∠MAC1的点P应为以AM为轴,以AC1为母线的圆锥,平面BB1C1C是一个与轴AM平行的平面,又点P在BB1C1C所在的平面上,故P点轨迹所在曲线是双曲线一支,③错误;对于④,P到直线C1D1的距离,即到点C1的距离与到直线BC的距离比为2:1,∴动点P的轨迹所在曲线是以C1为焦点,以直线BC为准线的双曲线,④正确;对于⑤,如图建立空间直角坐标系,作PE⊥BC,EF⊥AD,PG⊥CC1,连接PF,设点P坐标为(x,y,0),由|PF|=|PG|,得,即x2﹣y2=1,∴P点轨迹所在曲线是双曲线,⑤错误.故答案为:①②④.【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题.三、解答题19.【答案】【解析】解:(1)y =g (x )=e x 关于直线y =x 对称的曲线h (x )=ln x ,设曲线y =h (x )与切线mx -y -1=0的切点为(x 0,ln x 0),由h (x )=ln x 得h ′(x )=,(x >0),1x 则有,{1x 0=m mx 0-ln x 0-1=0)解得x 0=m =1.∴m 的值为1.(2)φ(x )=x 2+x +a -e x ,12φ′(x )=x +1-e x ,令t (x )=x +1-e x ,∴t ′(x )=1-e x ,当x <0时,t ′(x )>0,x >0时,t ′(x )<0,x =0时,t ′(x )=0.∴φ′(x )在(-∞,0)上单调递增,在(0,+∞)上单调递减,∴φ′(x )max =φ′(0)=0,即φ′(x )≤0在(-∞,+∞)恒成立,即φ(x )在(-∞,+∞)单调递减,且当a =1有φ(0)=0.∴不论a 为何值时,φ(x )=f (x )-g (x )有唯一零点x 0,当x 0∈(0,1)时,则φ(0)φ(1)<0,即(a -1)(a -)<0,2e -32∴1<a <,即a 的取值范围为(1,).2e -322e -32 20.【答案】(1)3π=A ;(2)337=∆ABC S .【解析】试题分析:(1)利用正弦定理Aa Bb sin sin =及b B a 3sin 2=,便可求出A sin ,得到A 的大小;(2)利用(1)中所求A 的大小,结合余弦定理求出bc 的值,最后再用三角形面积公式求出1sin 2ABC S bc A ∆=值.试题解析:(1)由b B a 3sin 2=及正弦定理A a B b sin sin =,得23sin =A .…………分因为A 为锐角,所以3π=A .………………分(2)由余弦定理A bc c b a cos 2222-+=,得3622=-+bc c b ,………………分又8=+c b ,所以328=bc ,………………分所以3372332821sin 21=⨯⨯==∆A bc S ABC .………………12分考点:正余弦定理的综合应用及面积公式.21.【答案】(1)(为参数);(23cos 2sin x y θθ=⎧⎨=⎩【解析】试题解析:(1)将曲线(为参数),化为1cos :sin x C y αα=⎧⎨=⎩α,由伸缩变换化为,221x y +=32x x y y '=⎧⎨'=⎩1312x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩代入圆的方程,得到,211132x y ⎛⎫⎛⎫''+= ⎪ ⎪⎝⎭⎝⎭()()222:194x y C ''+=可得参数方程为;3cos 2sin x y αα=⎧⎨=⎩考点:坐标系与参数方程.22.【答案】(1)[](2]01a ∈-∞- ,,;(2)不存在实数,使A B =.【解析】试题分析:(1)对集合A 可以分为A =∅或A ≠∅两种情况来讨论;(2)先假设存在实数,使A B =,则必有21103141a a a a -=-=⎧⎧⇒⎨⎨+==⎩⎩,无解.考点:集合基本运算.23.【答案】【解析】解:四边形ABCD绕AD旋转一周所成的几何体,如右图:S表面=S圆台下底面+S圆台侧面+S圆锥侧面=πr22+π(r1+r2)l2+πr1l1===24.【答案】【解析】解:(1)由a2+2,a3,a4﹣2成等比数列,∴=(a2+2)(a4﹣2),(1+2d)2=(3+d)(﹣1+3d),d2﹣4d+4=0,解得:d=2,∴a n=1+2(n﹣1)=2n﹣1,数列{a n}的通项公式a n=2n﹣1;(2)b n===(﹣),S n=[(1﹣)+(﹣)+…+(﹣)],=(1﹣),=,数列{b n}的前n项和S n,S n=.。
金山区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

金山区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点.若a 为无理数,则在过点P (a ,﹣)的所有直线中( )A .有无穷多条直线,每条直线上至少存在两个有理点B .恰有n (n ≥2)条直线,每条直线上至少存在两个有理点C .有且仅有一条直线至少过两个有理点D .每条直线至多过一个有理点2. 执行如图所示的程序框图,若a=1,b=2,则输出的结果是( )A .9B .11C .13D .153. 已知函数()x F x e =满足()()()F x g x h x =+,且()g x ,()h x 分别是R 上的偶函数和奇函数, 若(0,2]x ∀∈使得不等式(2)()0g x ah x -≥恒成立,则实数的取值范围是( )A .(-∞B .(-∞C .D .)+∞ 4. 若关于x 的方程x 3﹣x 2﹣x+a=0(a ∈R )有三个实根x 1,x 2,x 3,且满足x 1<x 2<x 3,则a 的取值范围为( )A .a >B .﹣<a <1 C .a <﹣1D .a >﹣15. 设集合( )A .B .C .D .6. 已知α是△ABC 的一个内角,tan α=,则cos (α+)等于( )A .B .C .D .7. 设F 为双曲线22221(0,0)x y a b a b-=>>的右焦点,若OF 的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为1||2OF ,则双曲线的离心率为( )A .B .3C .D .3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想.8. 设数集M={x|m ≤x ≤m+},N={x|n ﹣≤x ≤n},P={x|0≤x ≤1},且M ,N 都是集合P 的子集,如果把b ﹣a 叫做集合{x|a ≤x ≤b}的“长度”,那么集合M ∩N 的“长度”的最小值是( )A .B .C .D .9. 设βα,是两个不同的平面,是一条直线,以下命题正确的是( ) A .若α⊥l ,βα⊥,则β⊂l B .若α//l , βα//,则β⊂l C .若α⊥l ,βα//,则β⊥l D .若α//l ,βα⊥,则β⊥l10.如图所示,在三棱锥P ABC -的六条棱所在的直线中,异面直线共有( )111]A .2对B .3对C .4对D .6对11.在等差数列{a n }中,a 1+a 2+a 3=﹣24,a 10+a 11+a 12=78,则此数列前12项和等于( ) A .96B .108C .204D .21612.若函数()y f x =的定义域是[]1,2016,则函数()()1g x f x =+的定义域是( )A .(]0,2016 B .[]0,2015 C .(]1,2016 D .[]1,2017二、填空题13.设复数z 满足z (2﹣3i )=6+4i (i 为虚数单位),则z 的模为 .14.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 .15.【盐城中学2018届高三上第一次阶段性考试】已知函数()()ln f x x x ax =-有两个极值点,则实数a 的取值范围是.16.设A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},A ∩B=B ,则a 的取值范围是 .17.在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 .18.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2132n n S S n n ++=+,若对n N *∀∈,1n n a a +< 恒成立,则m 的取值范围是_______.【命题意图】本题考查数列递推公式、数列性质等基础知识,意在考查转化与化归、逻辑思维能力和基本运算能力.三、解答题19.在数列{a n }中,a 1=1,a n+1=1﹣,b n =,其中n ∈N *.(1)求证:数列{b n }为等差数列;(2)设c n =b n+1•(),数列{c n }的前n 项和为T n ,求T n ;(3)证明:1+++…+≤2﹣1(n ∈N *)20.已知椭圆:的长轴长为,为坐标原点.(Ⅰ)求椭圆C 的方程和离心率; (Ⅱ) 设动直线与y 轴相交于点,点关于直线的对称点在椭圆上,求的最小值.21.如图,在四棱柱ABCD ﹣A 1B 1C 1D 1中,底面ABCD 是矩形,且AD=2CD=2,AA 1=2,∠A 1AD=.若O为AD 的中点,且CD ⊥A 1O (Ⅰ)求证:A 1O ⊥平面ABCD ;(Ⅱ)线段BC 上是否存在一点P ,使得二面角D ﹣A 1A ﹣P 为?若存在,求出BP 的长;不存在,说明理由.22.(本小题满分12分) 已知函数2()xf x e ax bx =--.(1)当0,0a b >=时,讨论函数()f x 在区间(0,)+∞上零点的个数; (2)证明:当1b a ==,1[,1]2x ∈时,()1f x <.23.选修4﹣5:不等式选讲已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|﹣2≤x≤1}.(Ⅰ)求a的值;(Ⅱ)若恒成立,求k的取值范围.24.已知点(1,)是函数f(x)=a x(a>0且a≠1)的图象上一点,等比数列{a n}的前n项和为f(n)﹣c,数列{b n}(b n>0)的首项为c,且前n项和S n满足S n﹣S n﹣1=+(n≥2).记数列{}前n项和为T n,(1)求数列{a n}和{b n}的通项公式;(2)若对任意正整数n,当m∈[﹣1,1]时,不等式t2﹣2mt+>T n恒成立,求实数t的取值范围(3)是否存在正整数m,n,且1<m<n,使得T1,T m,T n成等比数列?若存在,求出m,n的值,若不存在,说明理由.金山区第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】C【解析】解:设一条直线上存在两个有理点A (x 1,y 1),B (x 2,y 2),由于也在此直线上,所以,当x 1=x 2时,有x 1=x 2=a 为无理数,与假设矛盾,此时该直线不存在有理点;当x 1≠x 2时,直线的斜率存在,且有,又x 2﹣a 为无理数,而为有理数,所以只能是,且y 2﹣y 1=0,即;所以满足条件的直线只有一条,且直线方程是; 所以,正确的选项为C . 故选:C .【点评】本题考查了新定义的关于直线方程与直线斜率的应用问题,解题的关键是理解新定义的内容,寻找解题的途径,是难理解的题目.2. 【答案】C【解析】解:当a=1时,不满足退出循环的条件,故a=5, 当a=5时,不满足退出循环的条件,故a=9, 当a=9时,不满足退出循环的条件,故a=13, 当a=13时,满足退出循环的条件, 故输出的结果为13, 故选:C【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.3. 【答案】B 【解析】试题分析:因为函数()xF x e =满足()()()F x g x h x =+,且()(),g x h x 分别是R 上的偶函数和奇函数,()()()()()()(],,,,0,222x x x xxxe e e e e g x h x eg x h x g x h x x ---+-∴=+=-∴==∀∈ 使得不等式()()20g x ah x -≥恒成立, 即22022x xx xe ee e a--+--≥恒成立, ()2222xx x xx xx xe e e e a e e e e -----++∴≤=--()2x x x xe e e e--=-++, 设x x t e e -=-,则函数x x t e e -=-在(]0,2上单调递增,220t e e -∴<≤-, 此时不等式2t t +≥当且仅当2t t=,即t =, 取等号,a ∴≤故选B.考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值.【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数 .本题是利用方法①求得的最大值的.4. 【答案】B【解析】解:由x 3﹣x 2﹣x+a=0得﹣a=x 3﹣x 2﹣x , 设f (x )=x 3﹣x 2﹣x ,则函数的导数f ′(x )=3x 2﹣2x ﹣1,由f ′(x )>0得x >1或x <﹣,此时函数单调递增, 由f ′(x )<0得﹣<x <1,此时函数单调递减, 即函数在x=1时,取得极小值f (1)=1﹣1﹣1=﹣1,在x=﹣时,函数取得极大值f (﹣)=(﹣)3﹣(﹣)2﹣(﹣)=,要使方程x 3﹣x 2﹣x+a=0(a ∈R )有三个实根x 1,x 2,x 3,则﹣1<﹣a <,即﹣<a <1,故选:B .【点评】本题主要考查导数的应用,构造函数,求函数的导数,利用导数求出函数的极值是解决本题的关键.5.【答案】B【解析】解:集合A中的不等式,当x>0时,解得:x>;当x<0时,解得:x<,集合B中的解集为x>,则A∩B=(,+∞).故选B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.6.【答案】B【解析】解:由于α是△ABC的一个内角,tanα=,则=,又sin2α+cos2α=1,解得sinα=,cosα=(负值舍去).则cos(α+)=cos cosα﹣sin sinα=×(﹣)=.故选B.【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题.7.【答案】B【解析】8.【答案】C【解析】解:∵集M={x|m≤x≤m+},N={x|n﹣≤x≤n},P={x|0≤x≤1},且M,N都是集合P的子集,∴根据题意,M的长度为,N的长度为,当集合M∩N的长度的最小值时,M与N应分别在区间[0,1]的左右两端,故M∩N的长度的最小值是=.故选:C.9.【答案】C111]【解析】考点:线线,线面,面面的位置关系10.【答案】B【解析】中,则PA与BC、PC与AB、PB与AC都是异面直线,所以共有三对,故选试题分析:三棱锥P ABCB.考点:异面直线的判定.11.【答案】B【解析】解:∵在等差数列{a n}中,a1+a2+a3=﹣24,a10+a11+a12=78,∴3a2=﹣24,3a11=78,解得a2=﹣8,a11=26,∴此数列前12项和==6×18=108,故选B.【点评】本题考查了等差数列的前n项和公式,以及等差数列的性质,属于基础题.12.【答案】B【解析】二、填空题13.【答案】 2 .【解析】解:∵复数z 满足z (2﹣3i )=6+4i (i 为虚数单位),∴z=,∴|z|===2,故答案为:2.【点评】本题主要考查复数的模的定义,复数求模的方法,利用了两个复数商的模等于被除数的模除以除数的模,属于基础题.14.【答案】 ﹣3<a <﹣1或1<a <3 .【解析】解:根据题意知:圆x 2+(y ﹣a )2=4和以原点为圆心,1为半径的圆x 2+y 2=1相交,两圆圆心距d=|a|, ∴2﹣1<|a|<2+1, ∴﹣3<a <﹣1或1<a <3. 故答案为:﹣3<a <﹣1或1<a <3.【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x 2+(y ﹣a )2=4和以原点为圆心,1为半径的圆x 2+y 2=1相交,属中档题.15.【答案】.【解析】由题意,y ′=ln x +1−2mx令f ′(x )=ln x −2mx +1=0得ln x =2mx −1,函数()()ln f x x x mx =-有两个极值点,等价于f ′(x )=ln x −2mx +1有两个零点, 等价于函数y =ln x 与y =2mx −1的图象有两个交点,,当m=1时,直线y=2mx−1与y=ln x的图象相切,2时,y=ln x与y=2mx−1的图象有两个交点,由图可知,当0<m<12),则实数m的取值范围是(0,12故答案为:(0,1).216.【答案】a≤0或a≥3.【解析】解:∵A={x|x≤1或x≥3},B={x|a≤x≤a+1},且A∩B=B,∴B⊆A,则有a+1≤1或a≥3,解得:a≤0或a≥3,故答案为:a≤0或a≥3.17.【答案】.【解析】解:过CD作平面PCD,使AB⊥平面PCD,交AB与P,设点P到CD的距离为h,则有V=×2×h××2,当球的直径通过AB与CD的中点时,h最大为2,则四面体ABCD的体积的最大值为.故答案为:.【点评】本小题主要考查棱柱、棱锥、棱台的体积、球内接多面体等基础知识,考查运算求解能力,考查空间想象力.属于基础题.18.【答案】15 (,)43三、解答题19.【答案】【解析】(1)证明:b n+1﹣b n=﹣=﹣=1,又b1=1.∴数列{b n}为等差数列,首项为1,公差为1.(2)解:由(1)可得:b n=n.c n=b n+1•()=(n+1).∴数列{c n}的前n项和为T n=+3×++…+(n+1).=+3×+…+n+(n+1),∴T n=+++…+﹣(n+1)=+﹣(n+1),可得T n=﹣.(3)证明:1+++…+≤2﹣1(n∈N*)即为:1+++…+≤﹣1.∵=<=2(k=2,3,…).∴1+++…+≤1+2[(﹣1)+()+…+(﹣)]=1+2=2﹣1.∴1+++…+≤2﹣1(n∈N*).20.【答案】【解析】【知识点】圆锥曲线综合椭圆【试题解析】(Ⅰ)因为椭圆C:,所以,,故,解得,所以椭圆的方程为.因为,所以离心率.(Ⅱ)由题意,直线的斜率存在,设点,则线段的中点的坐标为,且直线的斜率,由点关于直线的对称点为,得直线,故直线的斜率为,且过点,所以直线的方程为:,令,得,则,由,得,化简,得.所以.当且仅当,即时等号成立.所以的最小值为.21.【答案】【解析】满分(13分).(Ⅰ)证明:∵∠A1AD=,且AA1=2,AO=1,∴A1O==,…(2分)∴+AD2=AA12,∴A1O⊥AD.…(3分)又A1O⊥CD,且CD∩AD=D,∴A1O⊥平面ABCD.…(5分)(Ⅱ)解:过O作Ox∥AB,以O为原点,建立空间直角坐标系O﹣xyz(如图),则A(0,﹣1,0),A(0,0,),…(6分)1设P(1,m,0)m∈[﹣1,1],平面A1AP的法向量为=(x,y,z),∵=,=(1,m+1,0),且取z=1,得=.…(8分)又A1O⊥平面ABCD,A1O⊂平面A1ADD1∴平面A1ADD1⊥平面ABCD.又CD⊥AD,且平面A1ADD1∩平面ABCD=AD,∴CD⊥平面A1ADD1.不妨设平面A1ADD1的法向量为=(1,0,0).…(10分)由题意得==,…(12分)解得m=1或m=﹣3(舍去).∴当BP的长为2时,二面角D﹣A1A﹣P的值为.…(13分)【点评】本小题主要考查直线与平面的位置关系,二面角的大小等基础知识,考查空间想象能力、推理论证能力和运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想.22.【答案】(1)当2(0,)4e a ∈时,有个公共点,当24e a =时,有个公共点,当2(,)4e a ∈+∞时,有个公共点;(2)证明见解析. 【解析】试题分析:(1)零点的个数就是对应方程根的个数,分离变量可得2x e a x=,构造函数2()xe h x x =,利用()'h x 求出单调性可知()h x 在(0,)+∞的最小值2(2)4e h =,根据原函数的单调性可讨论得零点个数;(2)构造函数2()1x h x e x x =---,利用导数可判断()h x 的单调性和极值情况,可证明()1f x <.1试题解析:当2(0,)4ea ∈时,有0个公共点; 当24e a =,有1个公共点;当2(,)4e a ∈+∞有2个公共点.(2)证明:设2()1x h x e x x =---,则'()21xh x e x =--,令'()()21xm x h x e x ==--,则'()2xm x e =-,因为1(,1]2x ∈,所以,当1[,ln 2)2x ∈时,'()0m x <;()m x 在1[,ln 2)2上是减函数,当(ln 2,1)x ∈时,'()0m x >,()m x 在(ln 2,1)上是增函数,考点:1.函数的极值;2.函数的单调性与导数的关系;3.不等式;4.函数的零点.【方法点睛】本题主要考查函数的极值,函数的单调性与导数的关系,不等式,函数的零点.有关零点问题一类题型是直接求零点,另一类是确定零点的个数.确定函数零点的常用方法:(1)解方程判定法,若方程易求解时用此法;(2)零点存在的判定定理法,常常要结合函数的性质,导数等知识;(3)数形结合法.在研究函数零点,方程的根及图象交点的问题时,当从正面求解难以入手,可以转化为某一个易入手的等价问题求解,如求解含绝对值,分式,三角式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号. 23.【答案】【解析】解:(Ⅰ)由|ax+1|≤3得﹣4≤ax≤2∵不等式f(x)≤3的解集为{x|﹣2≤x≤1}.∴当a≤0时,不合题意;当a>0时,,∴a=2;(Ⅱ)记,∴h(x)=∴|h(x)|≤1∵恒成立,∴k≥1.【点评】本题考查绝对值不等式的解法,考查恒成立问题,将绝对值符号化去是关键,属于中档题.24.【答案】【解析】解:(1)因为f(1)=a=,所以f(x)=,所以,a2=[f(2)﹣c]﹣[f(1)﹣c]=,a3=[f(3)﹣c]﹣[f(2)﹣c]=因为数列{a n}是等比数列,所以,所以c=1.又公比q=,所以;由题意可得:=,又因为b n>0,所以;所以数列{}是以1为首项,以1为公差的等差数列,并且有;当n≥2时,b n=S n﹣S n﹣1=2n﹣1;所以b n=2n﹣1.(2)因为数列前n项和为T n,所以==;因为当m∈[﹣1,1]时,不等式恒成立,所以只要当m∈[﹣1,1]时,不等式t2﹣2mt>0恒成立即可,设g(m)=﹣2tm+t2,m∈[﹣1,1],所以只要一次函数g(m)>0在m∈[﹣1,1]上恒成立即可,所以,解得t<﹣2或t>2,所以实数t的取值范围为(﹣∞,﹣2)∪(2,+∞).(3)T1,T m,T n成等比数列,得T m2=T1T n∴,∴结合1<m<n知,m=2,n=12【点评】本题综合考查数列、不等式与函数的有关知识,解决此类问题的关键是熟练掌握数列求通项公式与求和的方法,以及把不等式恒成立问题转化为函数求最值问题,然后利用函数的有关知识解决问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金山区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.若命题“p或q”为真,“非p”为真,则()A.p真q真B.p假q真C.p真q假D.p假q假2.某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x的值是()A.2B.C.D.33.记,那么ABCD4.若方程x2﹣mx+3=0的两根满足一根大于1,一根小于1,则m的取值范围是()A.(2,+∞)B.(0,2)C.(4,+∞)D.(0,4)5.设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.36.运行如图所示的程序框图,输出的所有实数对(x,y)所对应的点都在某函数图象上,则该函数的解析式为()A.y=x+2B.y=C.y=3x D.y=3x37.已知函数f(x)=2ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(1,+∞)B.(0,1)C.(﹣1,0)D.(﹣∞,﹣1)8.函数g(x)是偶函数,函数f(x)=g(x﹣m),若存在φ∈(,),使f(sinφ)=f(cosφ),则实数m的取值范围是()A.()B.(,]C.()D.(]9.一个椭圆的半焦距为2,离心率e=,则它的短轴长是()A.3B.C.2D.610.若函数f(x)是奇函数,且在(0,+∞)上是增函数,又f(﹣3)=0,则(x﹣2)f(x)<0的解集是()A.(﹣3,0)∪(2,3)B.(﹣∞,﹣3)∪(0,3)C.(﹣∞,﹣3)∪(3,+∞)D.(﹣3,0)∪(2,+∞)11.已知直线x+y+a=0与圆x2+y2=1交于不同的两点A、B,O是坐标原点,且,那么实数a的取值范围是()A.B.C.D.12.已知a>b>0,那么下列不等式成立的是()A .﹣a >﹣bB .a+c <b+cC .(﹣a )2>(﹣b )2D .二、填空题13.在△ABC 中,若角A 为锐角,且=(2,3),=(3,m ),则实数m 的取值范围是 .14.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .15.下列四个命题申是真命题的是 (填所有真命题的序号)①“p ∧q 为真”是“p ∨q 为真”的充分不必要条件;②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等;③在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30°的角;④动圆P 过定点A (﹣2,0),且在定圆B :(x ﹣2)2+y 2=36的内部与其相内切,则动圆圆心P 的轨迹为一个椭圆. 16.设幂函数()f x kx α=的图象经过点()4,2,则k α+= ▲ .17.设向量a =(1,-1),b =(0,t ),若(2a +b )·a =2,则t =________.18.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=,若函数y=f (f ()210{ 21(0)xxx e x x x +≥++<(x )﹣a )﹣1有三个零点,则a 的取值范围是_____.三、解答题19.已知是等差数列,是等比数列,为数列的前项和,,且,{}n a {}n b n S {}n a 111a b ==3336b S =().228b S =*n N ∈(1)求和;n a n b (2)若,求数列的前项和.1n n a a +<11n n a a +⎧⎫⎨⎬⎩⎭n T20.某重点大学自主招生考试过程依次为自荐材料审查、笔试、面试共三轮考核。
规定:只能通过前一轮考核才能进入下一轮的考核,否则将被淘汰;三轮考核都通过才算通过该高校的自主招生考试。
学生甲三轮考试通过的概率分别为23,34,45,且各轮考核通过与否相互独立。
(1)求甲通过该高校自主招生考试的概率;(2)若学生甲每通过一轮考核,则家长奖励人民币1000元作为大学学习的教育基金。
记学生甲得到教育基金的金额为X,求X的分布列和数学期望。
21.设函数f(x)=lnx﹣ax2﹣bx.(1)当a=2,b=1时,求函数f(x)的单调区间;(2)令F(x)=f(x)+ax2+bx+(2≤x≤3)其图象上任意一点P(x0,y0)处切线的斜率k≤恒成立,求实数a的取值范围;(3)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.22.如图,在四棱锥P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD ,(Ⅰ)求证:平面PED⊥平面PAC;(Ⅱ)若直线PE与平面PAC所成的角的正弦值为,求二面角A﹣PC﹣D的平面角的余弦值.23.(本小题满分12分)数列满足:,,且.{}n b 122n n b b +=+1n n n b a a +=-122,4a a ==(1)求数列的通项公式;{}n b (2)求数列的前项和.{}n a n S 24.(本小题满分10分)选修4-1:几何证明选讲如图,直线与圆相切于点,是过点的割线,,点是线段的中PA O A PBC O CPE APE ∠=∠H ED 点.(1)证明:四点共圆;D F E A 、、、(2)证明:.PC PB PF ⋅=2金山区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案)一、选择题1.【答案】B【解析】解:若命题“p或q”为真,则p真或q真,若“非p”为真,则p为假,∴p假q真,故选:B.【点评】本题考查了复合命题的真假的判断,是一道基础题.2.【答案】C解析:由三视图可知:原几何体是一个四棱锥,其中底面是一个上、下、高分别为1、2、2的直角梯形,一条长为x的侧棱垂直于底面.则体积为=,解得x=.故选:C.3.【答案】B【解析】【解析1】,所以【解析2】,4.【答案】C【解析】解:令f(x)=x2﹣mx+3,若方程x2﹣mx+3=0的两根满足一根大于1,一根小于1,则f(1)=1﹣m+3<0,解得:m∈(4,+∞),故选:C.【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档.5.【答案】D【解析】解:,∴y′(0)=a﹣1=2,∴a=3.故答案选D.【点评】本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题.在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视.6.【答案】C【解析】解:模拟程序框图的运行过程,得;该程序运行后输出的是实数对(1,3),(2,9),(3,27),(4,81);这组数对对应的点在函数y=3x的图象上.故选:C.【点评】本题考查了程序框图的应用问题,是基础题目.7.【答案】D【解析】解:若a=0,则函数f(x)=﹣3x2+1,有两个零点,不满足条件.若a≠0,函数的f(x)的导数f′(x)=6ax2﹣6x=6ax(x﹣),若f(x)存在唯一的零点x0,且x0>0,若a>0,由f′(x)>0得x>或x<0,此时函数单调递增,由f′(x)<0得0<x<,此时函数单调递减,故函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若x0>0,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件.若a<0,由f′(x)>0得<x<0,此时函数递增,由f′(x)<0得x<或x>0,此时函数单调递减,即函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若存在唯一的零点x0,且x0>0,则f()>0,即2a()3﹣3()2+1>0,()2<1,即﹣1<<0,解得a<﹣1,故选:D【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键.注意分类讨论.8.【答案】A【解析】解:∵函数g(x)是偶函数,函数f(x)=g(x﹣m),∴函数f(x)关于x=m对称,若φ∈(,),则sinφ>cosφ,则由f(sinφ)=f(cosφ),则=m,即m==(sinφ×+cosαφ)=sin(φ+)当φ∈(,),则φ+∈(,),则<sin(φ+)<,则<m<,故选:A【点评】本题主要考查函数奇偶性和对称性之间的应用以及三角函数的图象和性质,利用辅助角公式是解决本题的关键.9.【答案】C【解析】解:∵椭圆的半焦距为2,离心率e=,∴c=2,a=3,∴b=∴2b=2.故选:C.【点评】本题主要考查了椭圆的简单性质.属基础题.10.【答案】A【解析】解:∵f(x)是R上的奇函数,且在(0,+∞)内是增函数,∴在(﹣∞,0)内f(x)也是增函数,又∵f(﹣3)=0,∴f(3)=0∴当x∈(﹣∞,﹣3)∪(0,3)时,f(x)<0;当x∈(﹣3,0)∪(3,+∞)时,f(x)>0;∴(x﹣2)•f(x)<0的解集是(﹣3,0)∪(2,3)故选:A.11.【答案】A【解析】解:设AB的中点为C,则因为,所以|OC|≥|AC|,因为|OC|=,|AC|2=1﹣|OC|2,所以2()2≥1,所以a≤﹣1或a≥1,因为<1,所以﹣<a<,所以实数a的取值范围是,故选:A.【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,考查学生的计算能力,属于中档题. 12.【答案】C【解析】解:∵a>b>0,∴﹣a<﹣b<0,∴(﹣a)2>(﹣b)2,故选C.【点评】本题主要考查不等式的基本性质的应用,属于基础题.二、填空题13.【答案】 .【解析】解:由于角A 为锐角,∴且不共线,∴6+3m >0且2m ≠9,解得m >﹣2且m .∴实数m 的取值范围是.故答案为:.【点评】本题考查平面向量的数量积运算,考查了向量共线的条件,是基础题. 14.【答案】()53,44--【解析】试题分析:()23f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足()10,0,0f f m ><<,解得51534244m m >->⇒-<<-考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.15.【答案】 ①③④ 【解析】解:①“p ∧q 为真”,则p ,q 同时为真命题,则“p ∨q 为真”,当p 真q 假时,满足p ∨q 为真,但p ∧q 为假,则“p ∧q 为真”是“p ∨q 为真”的充分不必要条件正确,故①正确;②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等或互补;故②错误,③设正三棱锥为P ﹣ABC ,顶点P 在底面的射影为O ,则O 为△ABC 的中心,∠PCO 为侧棱与底面所成角∵正三棱锥的底面边长为3,∴CO=∵侧棱长为2,∴在直角△POC 中,tan ∠PCO=∴侧棱与底面所成角的正切值为,即侧棱与底面所成角为30°,故③正确,④如图,设动圆P 和定圆B 内切于M ,则动圆的圆心P 到两点,即定点A (﹣2,0)和定圆的圆心B (2,0)的距离之和恰好等于定圆半径,即|PA|+|PB|=|PM|+|PB|=|BM|=6>4=|AB|.∴点P 的轨迹是以A 、B 为焦点的椭圆,故动圆圆心P 的轨迹为一个椭圆,故④正确,故答案为:①③④16.【答案】32【解析】试题分析:由题意得11,422k αα==⇒=∴32k α+=考点:幂函数定义17.【答案】【解析】(2a +b )·a =(2,-2+t )·(1,-1)=2×1+(-2+t )·(-1)=4-t =2,∴t =2.答案:218.【答案】11[133e e ⎧⎫+⋃+⎨⎬⎩⎭,)【解析】当x <0时,由f (x )﹣1=0得x 2+2x+1=1,得x=﹣2或x=0,当x ≥0时,由f (x )﹣1=0得,得x=0,110x x e+-=由,y=f (f (x )﹣a )﹣1=0得f (x )﹣a=0或f (x )﹣a=﹣2,即f (x )=a ,f (x )=a ﹣2,作出函数f (x )的图象如图:y=≥1(x ≥0),1xx e +y ′=,当x ∈(0,1)时,y ′>0,函数是增函数,x ∈(1,+∞)时,y ′<0,函数是减函数,1x x e-x=1时,函数取得最大值:,11e+当1<a ﹣2时,即a ∈(3,3+)时,y=f (f (x )﹣a )﹣1有4个零点,11e <+1e当a ﹣2=1+时,即a=3+时则y=f (f (x )﹣a )﹣1有三个零点,1e 1e当a >3+时,y=f (f (x )﹣a )﹣1有1个零点1e当a=1+时,则y=f (f (x )﹣a )﹣1有三个零点,1e当时,即a ∈(1+,3)时,y=f (f (x )﹣a )﹣1有三个零点.11{ 21a e a >+-≤1e 综上a ∈,函数有3个零点.11[133e e ⎧⎫+⋃+⎨⎬⎩⎭,)故答案为:.11[133e e ⎧⎫+⋃+⎨⎬⎩⎭)点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.三、解答题19.【答案】(1),或,;(2).21n a n =-12n n b -=1(52)3n a n =-16n n b -=21n n +【解析】试题解析:(1)设的公差为,的公比为,{}n a d {}n b 由题意得解得或2(33)36,(2)8,q d q d ⎧+=⎨+=⎩2,2,d q =⎧⎨=⎩2,36.d q ⎧=-⎪⎨⎪=⎩∴,或,.21n a n =-12n n b -=1(52)3n a n =-16n n b -=(2)若,由(1)知,+1n n a a <21n a n =-∴,111111((21)(21)22121n n a a n n n n +==--+-+∴.111111(1)2335212121n n Tn n n =-+-++-=-++…考点:1、等差数列与等比数列的通项公式及前项和公式;2、裂项相消法求和的应用.20.【答案】(1)25(2)X 的分布列为数学期望为11124700()0100020003000361053E X =⨯+⨯+⨯+⨯=--解析:(1)设“学生甲通过该高校自主招生考试”为事件A ,则P (A )=23423455⨯⨯=所以学生甲通过该高校自主招生考试的概率为25-------------4分(2)X 的可能取值为0元,1000元,2000元,3000元--------------5分21(0)133P X ==-=,231(1000)(1346P X ==⨯-=,2341(2000)(1)34510P X ==⨯⨯-=2342(3000)3455P X ==⨯⨯=------------------9分所以,X 的分布列为数学期望为11124700()0100020003000361053E X =⨯+⨯+⨯+⨯=---------------------12分21.【答案】【解析】解:(1)依题意,知f (x )的定义域为(0,+∞).…当a=2,b=1时,f (x )=lnx ﹣x 2﹣x ,f ′(x )=﹣2x ﹣1=﹣.令f ′(x )=0,解得x=.…当0<x <时,f ′(x )>0,此时f (x )单调递增;当x >时,f ′(x )<0,此时f (x )单调递减.所以函数f (x )的单调增区间(0,),函数f (x )的单调减区间(,+∞).…(2)F (x )=lnx+,x ∈[2,3],所以k=F ′(x 0)=≤,在x 0∈[2,3]上恒成立,…所以a ≥(﹣x 02+x 0)max ,x 0∈[2,3]…当x 0=2时,﹣x 02+x 0取得最大值0.所以a ≥0.…(3)当a=0,b=﹣1时,f (x )=lnx+x ,因为方程f(x)=mx在区间[1,e2]内有唯一实数解,所以lnx+x=mx有唯一实数解.∴m=1+,…设g(x)=1+,则g′(x)=.…令g′(x)>0,得0<x<e;g′(x)<0,得x>e,∴g(x)在区间[1,e]上是增函数,在区间[e,e2]上是减函数,…1 0分∴g(1)=1,g(e2)=1+=1+,g(e)=1+,…所以m=1+,或1≤m<1+.…22.【答案】【解析】解:(Ⅰ)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AB⊥PA∴PA⊥平面ABCD结合AB⊥AD,可得分别以AB、AD、AP为x轴、y轴、z轴,建立空间直角坐标系o﹣xyz,如图所示…可得A(0,0,0)D(0,2,0),E(2,1,0),C(2,4,0),P(0,0,λ)(λ>0)∴,,得,,∴DE⊥AC且DE⊥AP,∵AC、AP是平面PAC内的相交直线,∴ED⊥平面PAC.∵ED⊂平面PED∴平面PED⊥平面PAC(Ⅱ)由(Ⅰ)得平面PAC的一个法向量是,设直线PE与平面PAC所成的角为θ,则,解之得λ=±2∵λ>0,∴λ=2,可得P的坐标为(0,0,2)设平面PCD的一个法向量为=(x0,y0,z0),,由,,得到,令x 0=1,可得y 0=z 0=﹣1,得=(1,﹣1,﹣1)∴cos <,由图形可得二面角A ﹣PC ﹣D 的平面角是锐角,∴二面角A ﹣PC ﹣D的平面角的余弦值为.【点评】本题在四棱锥中证明面面垂直,并且在线面所成角的正弦情况下求二面角A ﹣PC ﹣D 的余弦值.着重考查了线面垂直、面面垂直的判定定理和利用空间向量研究直线与平面所成角和二面角大小的方法,属于中档题.23.【答案】(1);(2).122n n b +=-222(4)n n S n n +=-++【解析】试题分析:(1)已知递推公式,求通项公式,一般把它进行变形构造出一个等比数列,由等比122n n b b +=+数列的通项公式可得,变形形式为;(2)由(1)可知,n b 12()n n b x b x ++=+122(2)n n n n a a b n --==-≥这是数列的后项与前项的差,要求通项公式可用累加法,即由{}n a 112()()n n n n n a a a a a ---=-+-+ 求得.211()a a a +-+试题解析:(1),∵,112222(2)n n n n b b b b ++=+⇒+=+1222n n b b ++=+又,121224b a a +=-+=∴.2312(21)(2222)22222221n nn n a n n n +-=++++-+=-+=-- ∴.224(12)(22)2(4)122n n n n n S n n +-+=-=-++-考点:数列的递推公式,等比数列的通项公式,等比数列的前项和.累加法求通项公式.24.【答案】(1)证明见解析;(2)证明见解析.【解析】1111]试题解析:解:(1)∵是切线,是弦,∴,,PA AB C BAP ∠=∠CPE APD ∠=∠∴,CPE C APD BAP ∠+∠=∠+∠∵CPEC AED APD BAP ADE ∠+∠=∠∠+∠=∠,∴,即是等腰三角形AED ADE ∠=∠ADE ∆又点是线段的中点,∴ 是线段垂直平分线,即H ED AH ED EDAH ⊥又由可知是线段的垂直平分线,∴与互相垂直且平分,CPE APE ∠=∠PH AF AF ED∴四边形是正方形,则四点共圆.(5分)AEFD D F E A 、、、(2由割线定理得,由(1)知是线段的垂直平分线,PC PB PA ⋅=2PH AF ∴,从而 (10分)PF PA =PC PB PF ⋅=2考点:与圆有关的比例线段.。