2.1平面向量的实际背景及基本概念

合集下载

平面向量的实际背景及基本概念

平面向量的实际背景及基本概念
2.1平面向量的实际背景 及基本概念
主讲人:王海田老师

前言:
西
A 南
东 B
位置是几何学研究的重要内容之一,几何中常用点表 示位置,研究如何由一点的位置确定另外一点的位置. 如图,如何由A点确定B点的位置? 一种常用的方法是,以A点为参照点,用B点与A点之间 的方位和距离确定B点的位置,如,B点在A点南偏东45度,30 千米处.这样在A点与B点之间,我们可以用有向线段AB表示 . A B , AB B点相对于A点的位置.有向线段AB就是A点与B点之间的 位移.位移简明地表示了位置之间的相对关系.像位移这种 既有大小又有方向的量,加以抽象,就是我们本章将要研究 的向量. 向量是近代数学中重要和基本的概念之一,有深刻的几 何背景,是解决几何问题的有力工具.向量是沟通代数、几 何与三角函数的一种工具,有着极其丰富的实际背景,在 数学和物理学科中具有广泛的应用。 那么你能举出一些这样既有方向,又有大小的量吗?
练习
练习: 练习: (1)下列各量中是向量的是( B ) )下列各量中是向量的是( A.动能 B.重力 . . C.质量 D.长度 . .
F (2)等腰梯形 ABCD ,对角线 AC BD相交于点腰 AD 、 上, 过点 P且 EF // AB ,则下列等式正 确的是( 确的是( D ) A. AD = BC B.AC = BD . .
× ×
零向量 零向量
(5)若两个向量在同一直线上,则这两个向量一定是什 )若两个向量在同一直线上,

的中心, 例2.如图,设 O 是正六边形 ABCDEF 的中心,分别写出图中 .如图,
OB 、 相等的向量. OC 相等的向量. 与向量OA 、
解: = CB = DO OA OB = DC = EO

§2.1平面向量的实际背景及基本概念

§2.1平面向量的实际背景及基本概念

2.1 平面向量的实际背景及基本概念一、教材分析㈠地位与作用向量是近代数学最重要和最基本的数学概念之一,它是沟通代数、几何与三角函数的桥梁,对更新和完善中学数学知识结构起着重要的作用.向量集数与形于一身,有着极其丰富的实际背景,在现实生活中随处可见的位移、速度、力等既有大小又有方向的量是它的物理背景,有向线段是它的几何背景,向量就是从这些实际对象中抽象概括出来的数学概念.经过研究,建立起完整的知识体系之后,向量又作为数学模型,广泛地应用于解决数学、物理学科及实际生活中的问题,因此它在整个高中数学的地位是不言而喻的.本课是“平面向量”的起始课,具有“统领全局”的作用.本节概念课,重要的不是向量的形式化定义及几个相关概念,而是能让学生去体会认识研究数学新对象的方法和基本思路,进而提高提出问题,解决问题的能力.㈡学情分析1.知识储备:学生在物理学科中已经积累了足够多的向量模型,并且在三角函数线部分内容的学习中,已经接触到有向线段的概念,从而为本节课的学习提供了知识储备.2.能力储备:学生间通过一学期的共同学习,其合作探究的习惯和意识已然养成,这就为本节课的学习提供了认知储备.㈢教学目标1.知识与技能(1)通过对位移、速度、力等实例的分析,形成平面向量的概念;(2)学会平面向量的表示方法,理解向量集形与数于一身的基本特征;(3)理解向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念,并会区分平行向量、相等向量和共线向量.2.过程与方法(1)培养用联系的观点,类比的方法研究向量;(2)获得研究数学新问题的基本思路,学会概念思维.3.情感态度与价值观(1)使学生自然的、水到渠成的实现“概念的形成”;(2)让学生积极参与到概念本质特征的概括活动中,享受寓教于乐.㈣教学重难点1.教学重点:向量概念、向量的几何表示、以及相等向量、平行向量、共线向量的概念.2.教学难点:平行向量、相等向量和共线向量的区别和联系.二、教法学法分析㈠教法分析根据本节课的特点及课改要求,为了加深学生对向量内涵的理解,应精心选例设问,引导学生的思考置疑.通过直观形象7具体7抽象7再具体的反复过程,使学生逐步理解概念,克服思维的负迁移.㈡学法分析学生主动参与,三、教学过程㈠课前1分钟㈡情境创设1南辕北辙一一战国时,有个北方人要到南方的楚国去.他从太行山脚下出发,乘着马车一直往北走去.有人提醒他:“到楚国应该朝南走,你怎能往北呢?”他却说:“不要紧,我有一匹好马!”结果离目的地越来越远,原因方向错了;2.如图1,在同一时刻,老.鼠由A向西北方向的C处逃窜,猫在B处向正东方向的D处追去,猫能否抓到老鼠?结果无法抓到老鼠,原因方向错了 .思考:上述情景中,描绘了物理学中的哪些量?咱们还认识类似于上面的量,你能举出来吗?这些量的共同特征是什么?㈢形成概念观察:如下图中的三个量有什么区别?自主探究,合作交流的学习方式.l.tan 300'= ,2.ta n—:=___,3.tan 90"= ,4.tan 兀=姚明的身高h=2.26 m1.向量的物理背景与概念:力既有大小,又有方向.重力是竖直向下的,物体的质量越大,它受到的重力就越大;物体在液体中受到的浮力是竖直向上的,物体浸在液体中的体积越大,它受到到的浮力就越大;被拉长或压缩的弹簧的弹力也有方向和大小.在数学中,我们把这种既有大小、又有方向的量叫做向量(年龄、身高、长度、面积、体积、质量等),称为数量.2.向量的表示方法:①几何表示法:向量常用有向线段表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向. H (终点)②字母表示法:以A I为起点,B为终点的有向线段记为AB,线段AB的长度记作|AB|(读为模);也可a,b,ill拍球的力F=20 N摩托车的速度v=80 km/h.只有大小、没有方向的量川A(起点)C4 D7.练习:如图4,小船由A 地向西北方向航行15海里到达B 地,小船的位移如何表示? (用1cm 表示5海里)数量与向量有何区别?数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有大小,方向,不能比较大小,模是实数,可以比较大小的. 说明:我们所说的向量,与起点无关,用有向线段表示向量时,起点 可以取任意位置.所以数学中的向量也叫自由向量. 有向线段与向量的区别: 有向线段:有固定起点、大小、方向; 向量:可选任意点作为向量的起点、有大小、有方向. 3.两个特殊的向量: j① 零向量一一长度为零的向量,记作0,零向量模为0,方向任意;② 单位向量一一长度等于1个单位长度的向量,单位向量模为1,方向不一定相同.思考:平面直角坐标系内,起点在原点的单位向量,它们的终点的轨迹是什么图形? 4. 平行向量: 方向相同或相反的非零向量叫做平行向量. 规定:零向量与任一向量平行.思考:两向量的平行与平面几何里两线段的平行有什么区别?5共线向量:a// b//c ,称 a 、任意一组平行向量都可以平移到同一直线上,故平行 向量又称共线向量.思考:两向量的共线与平面几何里两线段的共线是否 一样? 6.相等向量:长度相等且方向相同的向量. 向量a 与b 相等,记作:a = b . 注意:①零向量与零向量相等;②任意两个相等的非零向量,都可以用一条有向线段来表示,并且与有向线段的起点无关.思考: 相反向量:长度相等且方向相反的向量. 向量a 与b 相反,记作:a = - b . ㈣拓展应用,_. _,T T T例2 .如图,设0是正六边形 ABCDEF 的中心,分别写出图中与向量 OA 、OB 、OC 相4 4记作:a//be 与f 是平行向量吗?b 、c 为共线向量.-(-a) = ? -A B等的向量. .思考:①与向量 O A 长度相等的向量有多少个? ② 是否有与向量 OA 长度相等,方向相反的向量? ③ 与向量OA 共线的向量有哪些? 例3.在图中的3x4方格纸中有一个向量 AB 分别以图中的格点为起点和终点作向量,其 中与AB相等的向量有多少个?与 AB 长度相等的共线向量有多少个? ( AB 除外) (1) 共有7个向量与与AB 相等; (2) 共有15个向量与与AB 相等.例4 .下列命题正确的是( IIIIa 与b 共线,b 与c 共线,则a 与c 也共线; IIII向量a 与b 不共线,则a 与b 都是非零向量; A. B. C. 任意两个相等的非零向量的始点与终点是一平行四边形的四顶点; D. 有相同起点的两个非零向量不平行. ㈤ 1. A. B. 课堂精练 下列说法正确的是(C )共线的向量,若起点不同,则终点一定不同; II若a 与b 都是单位向量,则a = b ; C. 设0是正心ABC 的中心,则向量 AO 、BO 、CO 是模相等的向量; D. 2. (2) 向量AB 与CD 是共线向量,则 A B 、C 、D 四点必在一直线上. 判断下列说法是否正确: (1) (3) 一一 4 4若 a =b ,则 |a|=|b|;■I 4 -- 若 a// b ,贝y a = b ; 斗 T 4 4一一若 a =b ,b =c ,贝U a =c ; 4 4 4 4 4 4若 a//b,b//c ,贝U a//c . 0变题:若a = ]b ,则a = b ;变题:若a = b ,则 a 〃b ; (4)3•下列结论中正确的有 (1) (2) (3) (4)个 若两个向量相等,则它们的起点和终点分另憶合; 模相等的两个平行向量相等; 大小相等,方向不同的向量互为相反向量; 零向量没有方向; I I若a 的模比b 的模大,则a Ab .课堂感悟1.描述一个向量有两个指标 ----- 模、方向;2 •平行向量不是平面几何中平行线概念的简单移植,这儿的平行是指方向相同或相反的 一对向量,与长度无关;共线向量是指平行向量,与是否真的画在同一条直线上无关; 向量的图示,要标上箭头及起、终点,以体现它的直观性. 课后作业书P77-78习题2.1 A 组,B 组2 (做书上); 预习2.2.1 ; 课时训练 课后反思3. 4. ㈦ 1. 2. 3. ㈧。

2.1平面向量的实际背景及基本概念

2.1平面向量的实际背景及基本概念

例1:已知O为正六边形ABCDEF的中心, 在图中所标出的向量中: E D (1)试找出与FE共线的向量;
F
O C
热 热 身
解: (1) OA BC, (2) FE BC
若不相等,则之间有什么关系?
A
B
(3)虽然OA // BC,且|OA|=|BC|,

BACK
练习:
1.已知a、b为不共线的非零向量,且
存在向量 c,使 c ∥ a, c ∥ b, 则
c =____ 0
BACK
练习:
1.与非零向量 a (非单位向量)平行的 2 向量中,不相等的单位向量有_____ 个.
BACK
练习:如图,EF是△ABC的中位线,AD是BC 边上的中
线,在以A、B、C、D、E、F为端点的有向线 段表示的向量中请分别写出

三维目标 1.通过实例,利用平面向量的物理背景以及研 究平面向量的必要性,理解平面向量的概念以 及确定平面向量的两个要素,分清数量与向量 的区别。 2.理解自由向量、平行向量、相等向量、相反 向量等概念,并能判断它们之间的关系,并会 辨认图形中的相等向量或作出与某一向量相等 的向量。 3.在教学过程中,应充分根据平面向量的两个 要素加以研究向量的关系,揭示向量可以平移 这一特性。培养学生数形结合的思想。
教学反思:
位移和距离 这两个量
香港
上海 台北
想一想:
观察下述三个量,哪个与另两个有区别?
m=5kg
(1)
F=20N
(2)
v =20km/h
(3)
(2)(3)都是有大小和方向的量
授课教师:高 波
一、向量的定义

2.1 平面向量的实际背景及基本概念

2.1 平面向量的实际背景及基本概念
数学中,把像位移、速度、力、加 速度、动量等既有大小,又有方向的量 统一称为向量.
三 向量的表示
有向线段 AB 、a
长度(也称为模) AB 、|a| 零向量 0 单位向量 a 0
四 向量的性质
1.向量有大小,但却不可以比较大小
2.向量不是有向线段,却用有向线段 表示
3.向量平行即共线
六 练习3
下列说法不正确的是( ). (A)若|a|=0,则a =0
(B)若| a |=|b|,则a = b (C)若a =0,则| a |=0 (D)若a = b ,则| a |=| b |
六 练习4
如图:四边形 ABCD 是平行四边形. 则下列哪些向量是相等的向量( )
(A) AD 和 BC
A
D
(B) AD 和 CB
(C) AB 和 CD B
C
(D) AC 和 BD
六 练习5 在等腰梯形 ABCD 中,AB∥CD, E、F 分别为 AD、BC 的中点.则
与 AB 共线的向量有_______个.
A
B
E
F
D
C
六 练习6
在平面直角坐标系 xoy 中,已知| OA |
=4, OA 与 x 轴正方向成 60°角,
情感态度与价值观
• 了解数学是如何从具体的事物中抽象出向量的概念,强 化数学与物理之间有着密切联系的观念.
一 实例引入
广附 5 千米 北
60 西
六中
N f
30 G
二 向量的概念
位移和力这些物理量都是既有大小, 又有方向的量,在物理中称为“矢 量”.它们和长度、面积、质量等只有 大小的量是不同的.
4.零向量方向任意,可平行于任何向 量列量当中,不是向量的有( )个.

2.1-平面向量的实际背景及基本概念

2.1-平面向量的实际背景及基本概念

AC 表示A地至C地的
位移,且 AC 264k m
4、向量间的关系
(1)相等向量: 长度相等且方向相同的向量
叫做相等向量. 向量 a 与 b 相等,记作:a b
•向量不能比较大小,但可以说相等不相等
(2)平行向量: 方向 相同或相反的非零向量 叫平行向量,也叫共线向量. a b 记作:∥ 注:零向量与任意向量平行.
(1)向量只有大小和方向两个要素,与起点无 关,只要大小和方向相同,这两个向量就是相同 的向量; (2)有向线段有起点、大小和方向三个要素,起 点不同,尽管大小和方向相同,也是不同的有向 线段.
即有向线段是固定的线段,而向量是可 以平移的.
4、向量的模及两个特殊向量 (1)向量的模:向量的大小就是向量的长 度,即向量的模.记作: | AB | (2)零向量: 长度为0的向量叫做零向量, 记作: 0 (3)单位向量: 长度(模)为1个单位长度 的向量叫单位向量.
引例
美国“小鹰”号航空母舰导弹发射处获得信息:伊拉 克的军事目标距“小鹰”号1200公里。试问只知道这一信 息导弹是否能击中目标?
1200公里
答案:不能,因为 没有给定发射的方向.
1200公里
1200公里
1200公里
力:重力 ,浮力,弹力等
12N 5N f 1kg 5N f
许多物理量都有这样的性质...
注:①所有零向量都相等,且零向量的方向 是任意的. ②如果把所有单位向量的起点平移到同 一点上,那么终点都在同一个单位圆上.
例1 如图,试根据图中的比例尺以及三地的位置,在图中分 别用有向线段表示A地至B、C两地的位移,并求出A地至B、 C两地的距离(精确到1km).
2.7CM 3.3CM

2.1平面向量的实际背景及基本概念

2.1平面向量的实际背景及基本概念

向量的几何表示 方向相同或相反的非零向量叫做平行向量
a
b
记作 a ∥ b ∥c
c
规定: 零向量与任一向量平行, 即对于任意向量a,都有0∥a
相等向量:长度相等且方向相同的向量。
a
b
记作: a = b
共线向量 任一组平行向量都可以移动到 同一直线上 a 平行向量也叫做共线向量。
b c
l
C
o B A
比较大小的,因此向量不能比较大小。
友情链接:物理中向量与数量分别叫做
矢量、标量
判断题
1.身高是一个向量( )

2.温度含零上和零下温度,所以温度是向量(
3.坐标平面上的 x 轴和 y 轴都是(
)
Hale Waihona Puke 2.1.2向量的几何表示 由于实数与数轴上的点一一对应,所以 数量常常用数轴上的一个点表示。 如:3,2,-1,…而且不同的点表示不同 的数量.
B
(知道了有向线段的起点、方向和长度, 它的终点就可以唯一确定.)
A
向量的几何表示:用有向线段表示。 向量AB的大小,也就是向量AB的长度(或 称模),记作|AB|.
长度为0的向量叫做零向量(方向任意)。 记作0. |0|=0.
长度等于1个单位的向量,叫做单位向量. 向量的字母表示:(1)a、b、c.... (2)用表示向量的有向线段的起点和终 点字母表示,例如,AB,CD
思考:有向线段就是向量,向量就是有 向线段? 有向线段只是一个几何图形,是 向量直观表示
例1 如图,试根据图中的比例尺以及三地 的位置,在图中分别用有向线段表示A地 至B、C两地的位移(精确到1km).
解:
AB表示A地至B地的位移,且

平面向量的实际背景及基本概念

平面向量的实际背景及基本概念
问:在平面上把所有单位向量的起点平移到同
一点P,那么它们的终点的集合组成什么图形?
提示:圆
P
相等向量: 长度相等且方向相同的向量.
向量 a与 相等,记作:
b
a b.
A1
a
A3A2
在实数中,我们有:若
=
b
A4, =
,则 B=1
B2
B3
,在向量中,你能提出类似的问题吗?结论怎样?
c


向量 AB 或a 的模 (或长度) 就是向量AB 或a 的大小,


记作:AB 或 a .
注:向量的模是可以比较大小的.
数量中有很特殊的数“0”,“1”,向量中有
没有类似的特殊向量?
零向量——长度为0的向量叫做零向量,记作 0.
零向量的方向是任意的!
单位向量——长度等于1个单位的向量,叫做单位向量.
图中与向量 OA 、OB 、OC 相等的向量。
B
A
O
C
F
D
E
解:
B
A
OA CB DO
OB DC EO
O
C
F
OC AB ED FO
D
E
变式练习:
1.与向量 OA 长度相等的向量有多少个?
2.是否存在与向量 OA 长度相等、方向
相反的向量?
3.与向量OA 共线的向量有哪些?
2.1平面向量的实际背景
及基本概念
向量的概念
向量:既有大小又有方向的量叫向量.
向量的两要素:大小、方向.
数量:只有大小没有方向的量.
数量可以比较大小,向量不能比较大小!
友情链接:物理中常把向量与数量分别叫做 矢量、标量.

2.1 平面向量的实际背景及基本概念

2.1 平面向量的实际背景及基本概念

2.1 平面向量的实际背景及基本概念向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.相等向量:长度相等且方向相同的向量. 与长度相等方向相反的向量叫做的相反向量.课堂训练一、选择题1、下列物理量中, 不能称为向量的是 ( )A .距离B .加速度C .力D .位移2、下列四个命题正确的是 ( )A .两个单位向量一定相等B .若与不共线,则与都是非零向量C .共线的单位向量必相等D .两个相等的向量起点、方向、长度必须都相同3、下列说法错误的是 ( )A .向量OA 的长度与向量AO 的长度相等B .零向量与任意非零向量平行C .长度相等方向相反的向量共线D .方向相反的向量可能相等4、对于以下命题:(1)平行向量一定相等; (2)不相等的向量一定不平行;(3)共线向量一定相等;(4)相等向量一定共线。

其中真命题的个数是 ( )A .0个B .1个C .2个D .3个5、在△ABC 中,AB=AC ,D 、E 分别是AB 、AC 的中点,则 ( ) A. 与AC 共线 B. 与CB 共线 C. 与相等 D. 与相等6、两个向量共线是两个向量相等的 ( )A 、 充分不必要条件B 、必要不充分条件C 、充要条件D 、 既不充分也不必要条件二、填空题1、与非零向量平行的单位向量的个数是_______。

2、||||b a =是b a =的___ __条件。

3、已知B ,C 是线段AD 的两个三等分点,分别以图中各点为起点和终点最多可以写出___ __个互不相等的非零向量。

4、已知平面上不共线的四点满足=,则以下四个命题:(1)ABCD 是平行四边形;(2)ACBD 是平行四边形;(3)ADBC 是平行四边形;(4)ACDB 是平行四边形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

规定:0与任一向量平行。 C OA = a A B
. o
l
OB = b
OC = c
问:把一组平行于直线l的向量的起点平移到直线l上的 一点O ,这时它们是不是平行向量? 各向量的终点与直线l之间有什么关系?
1.若非零向量AB//CD ,那么AB//CD吗? 2.若a//b ,则a与b的方向一定相同或相反吗?
两个特殊向量
1.零向量: 长度(模)为0的向量,记作 0
规定: 0 方向是任意的。
2.单位向量: 长度(模)为1个单位长度 的向量
判断题
1.身高是一个向量(
) )
2.温度含零上和零下温度,所以温度是向量(
3.坐标平面上的 x 轴和 y 轴都是向量。( )
1.如图,在 ABCD中, AB与DC有何关系?
(4)单位向量都相等.
(x)
例题精析
【例1】:如图,设O是正六边形的中心,分别写 出图中与向量 OA 、OB 、 OC 相等的向量。
B A
C
O
F
D
E
解:
B
A
OA CB DO
OB DC EO
C
O
F
OC AB ED FO
D E
向量
概念 长度(或模) 概念 向量 符号表示 零向量 特殊向量 单位向量 有向线段 几何: 大写字母): AB 有向线段的起点终点( 表示符号 小写字母:a 关系 平行(共线)
②向量有方向,大小双重属性,而方向是不能比
较大小的,因此向量不能比较大小。 向量可以在平面内任意平移,与位置无关
注:我们所学的向量常被称为自由向量.
复习:
1. 数量的表示:
由于实数与数轴上的点一一对应,所以数 量常常用数轴上的一个点表示,如3,2, -1,…而且不同的点表示不同的数量。
-1
0
1
2
3
相等
小结
找准方向+看到差距+努力=成功
祝同学们学习进步
结果:离楚国越来越远。
• 这两件事告诉我们,不管是治理国家, 还是抓一只小老鼠,做任何事,都要 首先看准方向,才能充分发挥自己的 有利条件;如果方向错了,那么有利 条件只会起到相反的作用。
思考:
我们在物理课中学过哪些与方向 有关的量?



S
质点做机械运动,从初位置 到末位置的有向线段叫做位移。
嘻嘻!大笨猫!
引入1:猫能捉住老鼠吗?
•老鼠由A向东北方向以6m/s 的速度逃窜,而猫由B向东南 方向10m/s的速度追. 问猫能 否抓到老鼠?
C
你位移错了!
唉, 哪儿去了?
A B D
引入2 故事:南辕北辙
————《战国策》
பைடு நூலகம்
战国后期,魏国国力渐衰,可是魏王想出兵攻 伐赵国.谋臣季梁前来劝阻伐赵。季梁为了打动魏 王,来了个现身说法。季梁说:”今天我在来此的 路上,遇见一个人坐车朝北而行,告诉臣说‘我 想要去楚国。’臣说’楚国在南方,为什么要朝北 走?’那人的回答是: ‘我的马好,跑得快。’ ‘我的路费多着呢。’ ‘我的马夫最会赶车。’
D C
2.在梯形ABCD中, ( 1) AB与DC有何关系? (2) AB与CD有何关系?
A
B
D
C
A
B
四.向量的关系:平行向量、相等向量
(1)平行向量:方向相同或相反的非零向量叫做平行向量。 如: a b c 平行向量又叫做共线向量 记作 a ∥b ∥c
3.有向线段:
在线段AB的两个端点 中,规定一个顺序,假 设A为起点,B为终点, 我们就说线段AB具有 方向。具有方向的线段 叫做有向线段。
B(终点)
A(起点)
有向线段的三个要素:起点、方向、长度
二.向量的表示
对于向量,我们常用有向线段来表 示,线段按一定比例(标度)画出,它 的长度表示向量的大小,箭头表示向量 的方向。(由起点指向终点)
B
符号表示为:AB或者a
a AB BA
A
三.向量的模及两个特殊向量
向量 AB 的模 (或长度) 就是向量 AB 的大小
记作: | AB |
AB 0
注:向量的模是可以比较大小的 如: | CD | | EF | , 但CD EF无意义
共同点: 力、位移,它们都是有大小和 方向的量
新课: 一.向量的概念
定义:
在数学中,我们将这种
既有大小,又有方向的量叫做向量: 只有大小的量,称为数量。
例如,年龄、身高、长度、面积、体积等。
一.向量的概念
定义:既有大小又有方向的量叫向量。
大小,方向 注:1.向量两要素:
2.向量与数量的区别: ①数量只有大小 ,可以比较大小。
(2)相等向量:长度相等且方向相同的向量叫做相等向量。
D A C
记作:a = b
B
A
规定:0 = 0
a b 相等向量一定是平行向量吗?
. o
B
D
C
思考:两个单位向量一定相等吗?
平行向量一定是相等向量吗? 向量相等
向量平行
练习巩固:
判断正误 (1)零向量的方向是任意的. (√) (2)若 a 0, 则a 0. (X) (3)单位向量的模都相等. (√)
相关文档
最新文档