【审核版】2013-2017年高考数学(理)分类汇编:第2章-函数-4-指数函数与对数函数(含答案解析)

合集下载

2013-2017高考数学全国卷--立体几何汇编(完整资料).doc

2013-2017高考数学全国卷--立体几何汇编(完整资料).doc

【最新整理,下载后即可编辑】2013-2017高考数学全国卷理科--立体几何汇编学校:姓名:班级:考号:评卷得分一、选择题I(理)]某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成, 正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A. 10B. 12C. 14D. 162. [2017·全国新课标卷II(理)]如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A. 90πB. 63πC. 42πD. 36π【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】 3. [2017·全国新课标卷II(理)]已知直三棱柱ABC-A 1B 1C 1中,∠ABC=120°,AB=2,BC=CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为 ( )A. √32B. √155C. √105D. √33 4. [2017·全国新课标卷III(理)]已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A. πB. 3π4C. π2D. .π4 5. [2016·高考全国新课标卷Ⅰ,6]如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是 ( )A. 17πB. 18πC. 20πD. 28π6. [2016·高考全国新课标卷Ⅰ,11]平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为 ( )A. √32B. √22C. √33D. 13【最新整理,下载后即可编辑】7. [2016·高考全国新课标卷Ⅱ,6]如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 ( )A. 20πB. 24πC. 28πD. 32π8. [2016·高考全国新课标卷Ⅲ,9]如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A. 18+36√5B. 54+18√5C. 90D. 819. [2016·高考全国新课标卷Ⅲ,10]在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 ( )A. 4πB. 9π2C. 6πD. 32π310. [2015·高考全国新课标卷Ⅰ,6]《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米【最新整理,下载后即可编辑】 (如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A. 14斛B. 22斛C. 36斛D. 66斛11. [2015·高考全国新课标卷Ⅰ,11]圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=( )正视图 俯视图A. 1B. 2C. 4D. 812. [2015·高考全国新课标卷Ⅱ,6]一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )A. 18B. 17C. 16D. 15【最新整理,下载后即可编辑】 13. [2015·高考全国新课标卷Ⅱ,9]已知A ,B 是球O 的球面上两点,∠AOB=90°,C 为该球面上的动点.若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( )A. 36πB. 64πC. 144πD. 256π14. [2014·高考全国新课标卷Ⅰ,12]如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A. 6√2B. 6C. 4√2D. 4 15. [2014·全国新课标卷Ⅱ,6]如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A. 1727 B. 59 C. 1027 D. 13【最新整理,下载后即可编辑】 16. [2014·全国新课标卷Ⅱ,11]直三棱柱ABC ­A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( ) A. 110 B. 25 C. √3010 D. √22 17. [2013·高考全国新课标卷Ⅰ,6]如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A. 500π3 cm 3B. 866π3 cm 3C. 1372π3 cm 3D.2048π3 cm 318. [2013·高考全国新课标卷Ⅰ,8]某几何体的三视图如图所示,则该几何体的体积为( )A. 16+8πB. 8+8πC. 16+16π D. 8+16π19. [2013·高考全国新课标卷Ⅱ,4]已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( )A. α∥β且l ∥αB. α⊥β且l ⊥βC. α与β相交,且交线垂直于lD. α与β相交,且交线平行l20. [2013·高考全国新课标卷Ⅱ,7]一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为( )A. B. C. D.评卷得分二、填空题I(理)]如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.22. [2017·全国新课标卷III(理)]a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】 ②当直线AB 与a 成60°角时,AB 与b 成60°角;③直线AB 与a 所成角的最小值为45°;④直线AB 与a 所成角的最大值为60°.其中正确的是 .(填写所有正确结论的编号)23. [2016·高考全国新课标卷Ⅱ,14]α,β是两个平面,m ,n 是两条直线,有下列四个命题:①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β.②如果m ⊥α,n ∥α,那么m ⊥n .③如果α∥β,m ⊂α,那么m ∥β.④如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号)三、解答题 I(理)] (本小题满分12分)如图,在四棱锥P-ABCD 中,AB ∥CD ,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD ; (2)若PA=PD=AB=DC ,∠APD=90°,求二面角A-PB-C 的余弦值.25. [2017·全国新课标卷II(理)] (本小题满分12分)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD,AB=BC=12AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.26. [2017·全国新课标卷III(理)] (本小题满分12分)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D-AE-C的余弦值.【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】27. [2016·高考全国新课标卷Ⅰ,18] (本小题满分12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF ⊥平面EFDC ;(2)求二面角E -BC -A 的余弦值.28. [2016·高考全国新课标卷Ⅱ,19] (本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D'EF 的位置,OD'=√10.(1)证明:D'H⊥平面ABCD;(2)求二面角B-D'A-C的正弦值.29. [2016·高考全国新课标卷Ⅲ,19] (本小题满分12分) 如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】30. [2015·高考全国新课标卷Ⅰ,18](本小题满分12分)如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC.(1)证明:平面AEC ⊥平面AFC ; (2)求直线AE 与直线CF 所成角的余弦值.31. [2015·高考全国新课标卷Ⅱ,19](本小题满分12分)如图,长方体ABCD-A 1B 1C 1D 1中,AB=16,BC=10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E=D 1F= 4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF 与平面α所成角的正弦值.【最新整理,下载后即可编辑】32. [2014·高考全国新课标卷Ⅰ,19] (本小题满分12分) 如图,三棱柱ABC ­A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB ⊥B 1C .(1)证明:AC =AB 1;(2)若AC ⊥AB 1,∠CBB 1=60°,AB =BC ,求二面角A ­A 1B 1­C 1的余弦值.33. [2014·全国新课标卷Ⅱ,18] (本小题满分12分) 如图,四棱锥P ­ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D ­AE ­C 为60°,AP =1,AD =√3,求三棱锥E ­ACD 的体积.【最新整理,下载后即可编辑】34. [2013·高考全国新课标卷Ⅰ,18](本小题满分12分) 如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°. (1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.35. [2013·高考全国新课标卷Ⅱ,18](本小题满分12分)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =√22AB .(1)证明:BC 1∥平面A 1CD ;C-E的正弦值.(2)求二面角D-A1【最新整理,下载后即可编辑】。

高考理科数学一轮总复习课标通用版课件:第2章函数2-4

高考理科数学一轮总复习课标通用版课件:第2章函数2-4

考纲原文下载
命题规律分析
知识梳理整合
挖教材赢高考
高频考点透析 直通高考202X 第26页
经典品质/超出梦想
高考总复习/新课标版 数学·理
[强化训练 1.1] 已知 y=f(x)是二次函数,且 f(-32+x)=f(-23-x)对 x∈R 恒成立,f(- 32)=49,方程 f(x)=0 的两实根之差的绝对值等于 7.求此二次函数的解析式.
考纲原文下载
命题规律分析
知识梳理整合
挖教材赢高考
高频考点透析 直通高考202X 第12页
经典品质/超出梦想
高考总复习/新课标版
答案
1.(1)ax2+bx+c (2)a(x-h)2+k
(3)a(x-x1)(x-x2) 2.(1)-2ba (2)(-2ba,4ac4-a b2) (3)向上 向下 (4)[4ac4-a b2,+∞) (-∞,4ac4-a b2]
经典品质/超出梦想
高考总复习/新课标版 数学·理
02 函数的概念、基本初等函数 (Ⅰ)及函数的应用
考纲原文下载
命题规律分析
知识梳理整合
挖教材赢高考
高频考点透析 直通高考202X 第1页
经典品质/超出梦想
高考总复习/新课标版 数学·理
§2.4 二次函数
考纲原文下载
命题规律分析
知识梳理整合
挖教材赢高考
高频考点透析 直通高考202X 第15页
经典品质/超出梦想
高考总复习/新课标版 数学·理
2.(教材改编)若函数 f(x)=4x2-kx-8 在区间[5,20]上是单调函数,则实数 k 的取 值范围是________.
解析:二次函数的对称轴方程是 x=8k,
故只需8k≤5 或8k≥20,即 k≤40 或 k≥160. 故所求 k 的取值范围是(-∞,40]∪[160,+∞) 答案:(-∞,40]∪[160,+∞)

2013年高考真题理科数学解析分类汇编17 选考内容

2013年高考真题理科数学解析分类汇编17  选考内容

2013年高考真题理科数学解析分类汇编17 选考内容一选择题1.2013安徽理(7)在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为 (A )=0()cos=2R θρρ∈和 (B )=()cos=22R πθρρ∈和(C ) =()cos=12R πθρρ∈和 (D )=0()cos=1R θρρ∈和【答案】B【解析】在极坐标系中,圆心坐标232.101ππθθρ或故左切线为,半径,====r .2cos 2:.2cos 2cos ===⇒=θρπθθρρθ和即切线方程为右切线满足所以选B二填空题2.上海7.在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为__________答案:解析:⟹⟹ρ=,ρ=所以ρ=3.[湖南]9.在平面直角坐标系xoy 中,若,3cos ,:(t )C :2sin x t x l y t a y ϕϕ==⎧⎧⎨⎨=-=⎩⎩为参数过椭圆()ϕ为参数的右顶点,则常数a 的值为 3 .【答案】 3 【解析】303)0,3(149,:22=⇒-=-⇒-=+-=a a y x C a x y l 的右顶点程:椭圆方方程直线4.上海3.若2211x xx y y y=--,则______x y +=答案0 解析:⟹⟹x+y=05..已知222,,,236,49a b c a b c a b c ∈++=++则的最小值为 12 .【答案】 12【解析】 .考察柯西不等式12943631211))3()2(()111(2222222222≥++⇒=⋅+⋅+⋅≥++⋅++c b a c b a c b a )(时,取最小值且当32,1,2===c b a .6..如图2的O 中,弦,,2,AB CD P PA PB ==相交于点1PD O =,则圆心到弦CD 的距离为 .【答案】 23 【解析】23)2(5,422=-===⇒⋅=⋅PC r d CD DC PC PC DP PB AP 的距离,圆心到由相交弦定理得7.湖北 18.江西15(1)、(坐标系与参数方程选做题)设曲线C 的参数方程为2x ty t =⎧⎨=⎩(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线c 的极坐标方程为15(2)、(不等式选做题)在实数范围内,不等式211x --≤的解集为9.陕西15. (考生请注意:请在下列三题中任选一题作答, 如果多做, 则按所做的第一题计分)A. (不等式选做题) 已知a , b , m , n 均为正数, 且a +b =1, mn =2, 则(am +bn )(bm +an )的最小值为 2 . 【答案】2【解析】利用柯西不等式求解,212)()())(22=⋅=+⋅=⋅+⋅≥++b a mn bm bn an am bm an bn am (,且仅当 n m bmbnan am =⇒=时取最小值 2 B. (几何证明选做题) 如图, 弦AB 与CD 相交于O 内一点E , 过E 作BC 的平行线与AD 的延长线相交于点P . 已知PD =2DA =2, 则PE.【答案】.6 【解析】..//BAD PED BAD BCD PED BCD PE BC ∠=∠⇒∠=∠∠=∠∴且在圆中.6.623∽2==⋅=⋅=⇒=⇒∆∆⇒PE PD PA PE PEPDPA PE APE EPD 所以C. (坐标系与参数方程选做题) 如图, 以过原点的直线的倾斜角θ为参数, 则圆220y x x +-=的参数方程为 R y x ∈⎩⎨⎧⋅==θθθθ,s i n c o sc o s 2.【答案】R y x ∈⎩⎨⎧⋅==θθθθ,sin cos cos 2【解析】 222)21()21=+-⇒y x (圆的方程21=⇒r 圆的半径 θθθθθθθsin cos sin ,cos cos cos 2cos 2⋅=⋅==⋅=⇒=⋅=⇒OP y OP x r OP 。

2013年高考真题解析分类汇编(理科数学)含解析

2013年高考真题解析分类汇编(理科数学)含解析

2013高考试题解析分类汇编(理数)5:平面向量一、选择题1 .(2013年高考上海卷(理))在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为;以D为起点,其余顶点为终点的向量分别为.若分别为的最小值、最大值,其中,,则满足()A. B. C. D.D.【解答】作图知,只有,其余均有,故选D.2 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))已知点()A. B. C. D.A,所以,所以同方向的单位向量是,选A.3 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版))设是边上一定点,满足,且对于边上任一点,恒有.则()A. B. C. D.D以AB所在的直线为x轴,以AB的中垂线为y轴建立直角坐标系,设AB=4,C(a,b),P(x,0)则BP0=1,A(﹣2,0),B(2,0),P0(1,0)所以=(1,0),=(2﹣x,0),=(a﹣x,b),=(a﹣1,b)因为恒有所以(2﹣x)(a﹣x)≥a﹣1恒成立整理可得x2﹣(a+2)x+a+1≥0恒成立所以△=(a+2)2﹣4(a+1)≤0即△=a2≤0所以a=0,即C在AB的垂直平分线上所以AC=BC故△ABC为等腰三角形故选D4 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))在四边形ABCD中,,,则四边形的面积为()A. B. C.5 D.10C由题意,容易得到.设对角线交于O点,则四边形面积等于四个三角形面积之和即S= .容易算出,则算出S=5.故答案C5 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))在平面直角坐标系中,是坐标原点,两定点满足则点集所表示的区域的面积是()A. B. C. D.D.在本题中,.建立直角坐标系,设A(2,0),所以选D6 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))在平面上,,,.若,则的取值范围是()A. B. C. D.D【命题立意】本题考查平面向量的应用以及平面向量的基本定理。

【高考研究】高考数学(理)试题分类汇编(2013-17年):第2章-函数-4-指数函数与对数函数(含详解)

【高考研究】高考数学(理)试题分类汇编(2013-17年):第2章-函数-4-指数函数与对数函数(含详解)

高考数学(理)试题分类汇编(2013-17年)第四节 指数函数与对数函数题型24 指(对)数运算及指(对)数方程 1. (2013浙江理3)已知y x ,为正实数,则().A.y x y x lg lg lg lg 222+=+B.lg()lg lg 222x y x y +=⋅C.lg lg lg lg 222x y x y ⋅=+D.lg()lg lg 222xy x y =⋅2.(2014 陕西理 11) 已知42,lg a x a ==,则x =_______.3.(2015浙江理12) 若4log 3a =,则22a a -+=.3.解析 因为242221log 3log 3log 3log 2a ====所以log log 2222--+=+==a a 4.(2015江苏7)不等式224x x-<的解集为.4.解析 由题意22242x x-<=,根据2x y =是单调递增函数,得22x x -<,即()()22210--=-+<x x x x ,故不等式的解集为()1,2-或写成{}12-<<x x 均可.5.(2015重庆理4)“1x >”是“12og ()l 20x +<”的( ).A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件5.解析 由12(og 0l 2)+<x 得1x >-,且“1x >”是“1x >-”的充分不必要条件.故选B .6.(2015四川理8)设,a b 都是不等于1的正数,则“333a b >>”是log 3log 3a b <”的( ).A.充要条件B.充分不必要条件C.必要不充分条件D. 既不充分也不必要条件6. 解析 若333a b >>,则1a b >>,所以log 3log 3a b <,故为充分条件;若log 3log 3a b <不一定有1a b >>,比如,13a =,3b =,所以333a b >>不成立.故选B.7.(2016浙江理12)已知1a b >>.若5log log 2a b b a +=,b a a b =,则a =,b =. 7.4;2解析设log b a t =,因为1a b >>,则1t >.由题知152t t +=,解得2t =,所以2a b =.由baa b =,将2a b =带入,得22bb b b =,22b b =,得2,4b a ==.8.(2017北京理8)根据有关资料,围棋状态空间复杂度的上限M 约为3613,而可观测宇宙中普通物质的原子总数N 约为8010,则下列各数中与M N最接近的是( ).(参考数据:lg30.48≈)A.3310B.5310C.7310D.93108.解析 设36180310M x N ==,两边取对数36180lg lg3lg10361lg380x =-=⨯-,即93.28x =,所以接近9310.故选D.9.(2017全国1理11)设x ,y ,z 为正数,且235x y z ==,则( ). A .235x y z << B .523z x y << C .352y z x << D .325y x z << 9.解析 设235x y z t ===,两边取对数得ln 2ln 3ln 5ln x y z t ===,则2ln 2ln 2tx =3ln 3ln 3t y =,5ln 5ln 5t z =,ln 0t >.设()ln x f x x=,()()2ln 1ln x f x x -'=,当()0,e x ∈时, ()0f x '<,()f x 单调递减;当()e,x ∈+∞时,()0f x '>,()f x 单调递增.而()24ln x f t =,()33ln y f t =,()55ln z f t =.由e<3<4<5,得. 故选D.题型25 指(对)数函数的图像及应用1.(2014 浙江理 7)在同一直角坐标系中,函数()()()0,log a a f x x x g x x ==…的图像可能是( ).A. B. C. D.2.(2015山东理14)已知函数()()01x f x a b a a =+>≠,的定义域和值域都是[]10-,,则a b +=. 2. 解析 分情况讨论:①当1a >时,()=+x f x a b 在[]1,0-上递增.又()[]1,0∈-f x ,所以()()1100f f -=-⎧⎪⎨=⎪⎩,无解;②当01a <<时,()=+x f x a b 在[]1,0-上递减.又()[]1,0∈-f x ,所以()()1001f f -=⎧⎪⎨=-⎪⎩,解得122a b ⎧=⎪⎨⎪=-⎩,所以32a b +=-.3.(2015陕西理9)设()ln ,0f x x a b =<<,若p f =,()2a bq f +=,1(()())2r f a f b =+,则下列关系式中正确的是( ). A .q r p =< B .q r p => C .p r q =< D .p r q => 3. 解析解法一:依题意()()()()111ln ln ln ln 222p ab a b f a f b r ===+=+=,ln ln 2a b q p +=>=,所以p r q =<.故选C.解法二:令1,9a b ==,ln3p ==,19ln ln 52q +==,()1ln1ln 9ln 32r =+=, 所以p r q =<.故选C.4.(2015天津理7)已知定义在R 上的函数()21x m f x -=-(m 为实数)为偶函数, 记()0.5log 3a f =,()2log 5b f =,()2c f m =,则a ,b ,c 的大小关系为( ). A .a b c << B .a c b << C .c a b << D .c b a << 4.解析 因为函数()21x mf x -=-为偶函数,所以0m =,即()21xf x =-,所以221log log 330.521(log 3)log 21213123a f f ⎛⎫===-=-=-= ⎪⎝⎭, ()()2log 502log 52142(0)210b f c f m f ==-====-=,.所以c a b <<.故选C.题型26 指(对)数函数的性质及应用1.(2013天津理7)函数0.5()2|log |1x f x x =-的零点个数为( ). A .1 B .2 C .3 D .42.(2014 重庆理 12)函数())log 2f x x =的最小值为_________.3.(2016全国丙理6)已知432a =,233b =,1325c =,则( ). A.b a c << B.a b c << C.b c a << D.c a b <<3. A 解析由423324a ==,233b =,得a b >,由1223332554c ==>,则c a >因此c a b >>.故选A.4.(2016全国乙理8)若1a b >>,01c <<,则( ).A.c c a b <B.c c ab ba <C.log log b a a c b c <D.log log a b c c <4. C 解析对于选项A :由于01c <<,所以函数c y x =在()0,+∞上单调递增.由1a b >>,得cc ab >.故A 错误.对于选项B :要比较cab 与cba 的大小,只需比较a b 与ca b ⎛⎫⎪⎝⎭的大小.构造函数xa yb ⎛⎫= ⎪⎝⎭, 因为1a b >>,所以1a b >,因此函数xa yb ⎛⎫= ⎪⎝⎭在R 上单调递增.又01c <<,所以ca ab b ⎛⎫< ⎪⎝⎭,即c c ba ab <.故B 错误. 对于选项C:要比较log b a c 与log a b c 的大小关系,只需比较ln ln c b b 与ln ln ca a的大小, 即比较ln b b 与ln a a 的大小.构造辅助函数()ln f x x x =,()ln 1f x x '=+.令()0f x '=得1e x =.函数()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增,因此,若1a b >>,得ln ln a a b b >,故11ln ln a a b b <.又ln 0c <,所以ln ln ln ln c c a a b b >,即ln ln ln ln b c a ca b>, 得log log a b b c a c >.故选项C 正确.对于选项D :比较log a c 与log b c 的大小,只需比较ln ln c a 与ln ln cb 的大小,即比较ln a 与ln b 的大小.又1a b >>,得ln ln 0a b >>,所以11ln ln a b <.又ln 0c <,得ln ln ln ln c c a b>, 即log log a b c c >.故选项D 不正确.综上可得.故选C.5.(2016上海理22)已知a ∈R ,函数()21log f x a x ⎛⎫=+ ⎪⎝⎭.(1)当5a =时,解不等式()0f x >;(2)若关于x 的方程()()2log 4250f x a x a --+-=⎡⎤⎣⎦的解集中恰有一个元素,求a 的取值范围;(3)设0a >,若对任意1,12t ⎡⎤∈⎢⎥⎣⎦,函数()f x 在区间[],1t t +上的最大值和最小值的差不超过1,求a 的取值范围.5.解析(1)由题意221log 50log 1x⎛⎫+>= ⎪⎝⎭,即151x +>,整理得410x x+>, 即()410x x +>.故不等式的解为104x x x ⎧⎫><-⎨⎬⎩⎭或;(2)依题意()221log log 425a a x a x ⎛⎫+=-+-⎡⎤ ⎪⎣⎦⎝⎭,所以()14250a a x a x +=-+->, ①整理得()24(5)10a x a x -+--=,即()()1410x a x +--=⎡⎤⎣⎦,②当4a =时,方程②的解为1x =-,代入①式,成立;当3a =时,方程②的解为1x =-,代入①式,成立;当3a ≠且4a ≠时,方程②的解为1x =-或14a -,若1x =-为方程①的解,则110a a x+=->,即1a >, 若14x a =-为方程①的解,则1240a a x+=->,即2a >.要使得方程①有且仅有一个解,则12a a >⎧⎨⎩…或12a a ⎧⎨>⎩…,即12a <….综上,若原方程的解集有且只有一个元素,则a 的取值范围为12a <…或3a =或4a =.(3)当120x x <<时,1211a a x x +>+,221211log log a a x x ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭, 所以()f x 在()0,+∞上单调递减.因此()f x 在[],1t t +上单调递减.故只需满足()()11f x f t -+…,即2211log log 11a a t t ⎛⎫⎛⎫+-+ ⎪⎪+⎝⎭⎝⎭…,所以1121a a t t ⎛⎫++ ⎪+⎝⎭…,即()12111t a t t t t --=++…,设1t r -=,则10,2r ⎡⎤∈⎢⎥⎣⎦,()()()2111232t r r t t r r r r -==+---+. 当0r =时,2032r r r =-+;当102r <…时,212323r r r r r=-++-,又函数2y x x=+在(递减,所以219422r r ++=….故112293332r r=+--….故a 的取值范围为23a …. 评注 第(3)问还可从二次函数的角度考查,由1121a a tt ⎛⎫++⎪+⎝⎭…整理得()2110at a t ++-…对任意1,12t ⎡⎤∈⎢⎥⎣⎦成立.因为0a >,函数()211y at a t =++-的对称轴()0102a t a-+=<,故函数在区间1,12⎡⎤⎢⎥⎣⎦上单调递增.所以当12t =时,y 有最小值3142a -,由31042a -…,得23a ….故a 的取值范围为2,3⎡⎫+∞⎪⎢⎣⎭.。

精美排版,出版打印2013——2017年全国卷《函数》真题汇总 - 正文

精美排版,出版打印2013——2017年全国卷《函数》真题汇总 - 正文

2013——2017全国卷《函数》真题汇总 2017年【全国卷Ⅰ·文科·8T 】 函数sin21cos x y x=-的部分图像大致为( )【全国卷Ⅰ·文科·9T 】已知函数()ln ln(2)f x x x =+-,则( )A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .()y f x =的图像关于直线x=1对称D .()y f x =的图像关于点(1,0)对称【全国卷Ⅰ·文科·14T 】 曲线21y x x=+在点(1,2)处的切线方程为__________. 【全国卷Ⅰ·文科·21T 】 已知函数2()()x x f x e e a a x =--.(Ⅰ)讨论()f x 的单调性;(Ⅱ)若()0f x ≥,求a 的取值范围.函数2()ln(28)f x x x =--的单调递增区间是( )A .(,2)-∞-B .(,1)-∞C .(1,)+∞D .(4,)+∞【全国卷Ⅱ·文科·14T 】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f =__________.【全国卷Ⅱ·文科·21T 】设函数2()(1)e x f x x =-.(Ⅰ)讨论()f x 的单调性;(Ⅱ)当0x ≥时,()1f x ax ≤+,求a 的取值范围.函数2sin 1x y x x =++的部分图像大致为( ) A . B .C .D .【全国卷Ⅲ·文科·12T 】已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =( )A .12-B .13C .12D .1 【全国卷Ⅲ·文科·16T 】 设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是__________. 【全国卷Ⅲ·文科·21T 】已知函数2()ln (21)f x x ax a x =+++.(Ⅰ)讨论()f x 的单调性;(Ⅱ)当0a <时,证明3()24f x a≤--.2016年【全国卷Ⅰ·文科·8T 】若0a b >>,01c <<,则( )A.log log a b c c <B.log log c c a b <C.c c a b <D.a bc c >【全国卷Ⅰ·文科·9T 】函数2||2x y x e =-在[2,2]-的图象大致为( )【全国卷Ⅰ·文科·12T 】 若函数1()sin 2sin 3f x x x a x =-+在(,)-∞+∞单调递增,则a 的取值范围是() A.[1,1]- B.1[1,]3- C.11[,]33- D.1[1,]3-【全国卷Ⅰ·文科·21T 】已知函数2()(2)(1)x f x x e a x =-+-.(Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 有两个零点,求a 的取值范围.下列函数中,其定义域和值域分别与函数lg 10x y =的定义域和值域相同的是( )A.y x =B.lg y x =C.2x y =D.y =【全国卷Ⅱ·文科·12T 】已知函数()(R)f x x ∈满足()(2)f x f x =-,若函数2|23|y x x =--与()y f x =图象的交点为11(,)x y ,22(,)x y ,…,(,)m m x y ,则1m i i x ==∑( )A.0B.mC.2mD.4m【全国卷Ⅱ·文科·20T 】已知函数()(1)ln (1)f x x x a x =+--.(Ⅰ)当4a =时,求曲线()y f x =在(1,(1))f 处的切线方程;(Ⅱ)若当(1,)x ∈+∞时, ()0f x >,求a 的取值范围.已知4213332,3,25a b c ===,则( )A.b a c <<B.a b c <<C.b c a <<D.c a b <<【全国卷Ⅲ·文科·16T 】已知()f x 为偶函数,当0x ≤时, 1()x f x e x --=-,则曲线()y f x =在点(1,2)处的切线方程是_________.【全国卷Ⅲ·文科·21T 】设函数()ln 1f x x x =-+.(Ⅰ)讨论()f x 的单调性; (Ⅱ)证明当(1,)x ∈+∞时,11ln x x x-<<; (Ⅲ)设1c >,证明当(0,1)x ∈时,1(1)x c x c +->.2015年【全国卷Ⅰ·文科·10T 】已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩且()3f a =-,则(6)f a -=( ) A.74- B.54- C.34- D.14- 【全国卷Ⅰ·文科·12T 】设函数()y f x =的图象与2x a y +=的图象关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )A.-1B.1C.2D.4【全国卷Ⅰ·文科·14T 】已知函数3()1f x ax x =++的图象在点(1,(1))f 处的切线过点(2,7),则a =__________.【全国卷Ⅰ·文科·21T 】设函数2()ln x f x e a x =-.(Ⅰ)讨论()f x 的导函数()f x '零点的个数;(Ⅱ)证明:当0a >时, 2()2lnf x a a a≥+.【全国卷Ⅱ·文科·11T 】如图,长方形ABCD 的边2,1,AB BC O ==是AB 的中点.点P 沿着边,BC CD 与DA 运动,记BOP x ∠=.将动点P 到,A B 两点距离之和表示为x 的函数()f x ,则()y f x =的图象大致为( )【全国卷Ⅱ·文科·12T 】 设函数21()ln(1||)1f x x x =+-+,则使得()(21)f x f x >-成立的x 的取值范围是( ) A.1(,1)3 B.1(,)(1,)3-∞+∞ C.11(,)33- D.11(,)(,)33-∞-+∞ 【全国卷Ⅱ·文科·13T 】已知函数3()2f x ax x =-的图象过点(1,4)-,则a =__________.【全国卷Ⅱ·文科·16T 】已知曲线ln y x x =+在点(1,1)处的切线与曲线2(2)1y ax a x =+++相切,则a =__________.【全国卷Ⅱ·文科·21T 】已知函数()ln (1)f x x a x =+-.(Ⅰ)讨论()f x 的单调性;(Ⅱ)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.2014年【全国卷Ⅰ·文科·5T 】设函数(),()f x g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论中正确的是( )A.()()f x g x 是偶函数B.|()|()f x g x 是奇函数C.()|()|f x g x 是奇函数D.|()()|f x g x 是奇函数【全国卷Ⅰ·文科·12T 】已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )A.(2,)+∞B.(1,)+∞C.(,2)-∞-D.(,1)-∞-【全国卷Ⅰ·文科·15T 】 设函数113,1(),1x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是__________.【全国卷Ⅰ·文科·21T 】 设函数21()ln (1)2a f x a x x bx a -=+-≠,曲线()y f x =在点(1,(1))f 处的切线斜率为0. (Ⅰ)求b ;(Ⅱ)若存在01x ≥,使得0()1a f x a <-,求a 的取值范围.【全国卷Ⅱ·文科·3T 】函数()f x 在0x x =处导数存在.若0:()0p f x '=;0:q x x =是()f x 的极值点,则( )A.p 是q 的充分必要条件B.p 是q 的充分条件,但不是q 的必要条件C.p 是q 的必要条件,但不是q 的充分条件D.p 既不是q 的充分条件,也不是q 的必要条件【全国卷Ⅱ·文科·11T 】若函数()ln f x kx x =-在区间(1,)+∞单调递增,则k 的取值范围是( )A.(,2]-∞-B.(,1]-∞-C.[2,)+∞D.[1,)+∞【全国卷Ⅱ·文科·15T 】偶函数()y f x =的图象关于直线2x =对称, (3)3f =,则(1)f -=__________.【全国卷Ⅱ·文科·21T 】已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (Ⅰ)求a ;(Ⅱ)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.2013年【全国卷Ⅰ·文科·5T 】已知命题:R,23x x p x ∀∈<;命题32:R,1q x x x ∃∈=-,则下列命题中为真命题的是( )A.p q ∧B. p q ⌝∧C.p q ∧⌝D.p q ⌝∧⌝【全国卷Ⅰ·文科·12T 】已知函数22,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩若|()|f x ax ≥,则a 的取值范围是( )A.(,0]-∞B.(,1]-∞C.[2,1]-D.[2,0]-【全国卷Ⅰ·文科·20T 】已知函数2()()4x f x e ax b x x =+--,曲线()y f x =在点(0,(0))f 处的切线方程为44y x =+. (Ⅰ)求,a b 的值;(Ⅱ)讨论()f x 的单调性,并求()f x 的极大值.【全国卷Ⅱ·文科·8T 】设3log 2a =,5log 2b =,2log 3c =,则( )A.a c b >>B.b c a >>C.c b a >>D.c a b >>【全国卷Ⅱ·文科·11T 】已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A.0R x ∃∈,0()0f x =B.函数()y f x =的图象是中心对称图形C.若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减D.若0x 是()f x 的极值点,则0()0f x '=【全国卷Ⅱ·文科·12T 】若存在正数x 使2()1x x a -<成立,则a 的取值范围是( )A.(,)-∞+∞B.(2,)-+∞C.(0,)+∞D.(1,)-+∞【全国卷Ⅱ·文科·21T 】已知函数2()x f x x e -=.(Ⅰ)求()f x 的极小值和极大值;(Ⅱ)当曲线()y f x =的切线1的斜率为负数时,求1在x 轴上截距的取值范围.。

高考数学(理)一轮复习文档 第二章 基本初等函数、导数及其应用 第5讲 指数与指数函数 Word版含答案

高考数学(理)一轮复习文档 第二章 基本初等函数、导数及其应用 第5讲 指数与指数函数 Word版含答案

第5讲 指数与指数函数1.根式 (1)根式的概念①若x n=a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.这里n 叫做根指数,a 叫做被开方数.②a 的n 次方根的表示:x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n ∈N *,n >1时,xn 为偶数且n ∈N *时.(2)根式的性质①(na )n =a (n ∈N *,且n >1).②n a n=⎩⎪⎨⎪⎧a ,n 为奇数,|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0,n 为偶数. 2.有理数指数幂 (1)幂的有关概念①正分数指数幂:a mna >0,m ,n ∈N *,且n >1);②负分数指数幂:a -m n=1a m n=1(a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的运算性质 ①a r a s=ar +s(a >0,r ,s ∈Q );②(a r )s =a rs(a >0,r ,s ∈Q ); ③(ab )r=a r b r(a >0,b >0,r ∈Q ). 3.指数函数的图象及性质1.辨明三个易误点(1)指数幂的运算容易出现的问题是误用指数幂的运算法则,或在运算变换中方法不当,不注意运算的先后顺序等.(2)指数函数y =a x(a >0,a ≠1)的图象和性质与a 的取值有关,要特别注意区分a >1或0<a <1.(3)在解形如a 2x+b ·a x +c =0或a 2x +b ·a x+c ≥0(≤0)的指数方程或不等式时,常借助换元法解决,但应注意换元后“新元”的范围.2.指数函数图象画法的三个关键点画指数函数y =a x(a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎪⎫-1,1a .1.教材习题改编有下列四个式子:①3(-8)3=-8;② (-10)2=-10;③4(3-π)4=3-π;④2 017(a -b )2 017=a -b . 其中正确的个数是( )A .1B .2C .3D .4B ①④正确,(-10)2=|-10|=10,②错误; 4(3-π)4=|3-π|=-(3-π)=π-3,③错误,故选B.2.下列函数中,满足“f (x +y )=f (x )f (y )”的单调递增函数是( ) A .f (x )=x 12B .f (x )=x 3C .f (x )=⎝ ⎛⎭⎪⎫12xD .f (x )=3xD 根据各选项知,选项C 、D 中的指数函数满足f (x +y )=f (x )·f (y ).又f (x )=3x是增函数,所以D 正确.3.(2017·东北三校联考)函数f (x )=a x -1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( )A .y =1-xB .y =|x -2|C .y =2x-1 D .y =log 2(2x )A 由f (x )=ax -1(a >0,a ≠1)的图象恒过点(1,1),又0=1-1,知(1,1)不在y=1-x 的图象上.4.(2017·皖北协作区联考)函数f (x )=1-e x的值域为________. 由1-e x ≥0,e x≤1,故函数f (x )的定义域为{x |x ≤0}. 所以0<e x ≤1,-1≤-e x <0,0≤1-e x<1,函数f (x )的值域为 由题意知0<a 2-1<1,即1<a 2<2, 得-2<a <-1或1<a < 2. (-2,-1)∪(1,2)指数幂的运算化简下列各式:(1)0.027-13-⎝ ⎛⎭⎪⎫17-2+⎝ ⎛⎭⎪⎫27912-(2-1)0;(2)⎝ ⎛⎭⎪⎫56a 13b -2·(-3a -12b -1)÷(4a 23b -3)12·ab .【解】 (1)原式=⎝ ⎛⎭⎪⎫271 000-13-72+⎝ ⎛⎭⎪⎫25912-1=103-49+53-1=-45. (2)原式=⎝ ⎛⎭⎪⎫-52a -16b -3÷(2a 13b -32)·a 12b 12=-54a -12b -32·a 12b 12=-54b -1=-54b.化简下列各式:(1)(0.027)23+⎝ ⎛⎭⎪⎫27125-13-⎝ ⎛⎭⎪⎫2790.5; (2)⎝ ⎛⎭⎪⎫14-12·(4ab -1)3(0.1)-1·(a 3·b -3)12.(1)原式=0.32+⎝ ⎛⎭⎪⎫1252713- 259=9100+53-53=9100.(2)原式=2(4ab -1)3210a 32b -32=16a 32b -3210a 32b-32=85.指数函数的图象及应用(1)函数f (x )=21-x的大致图象为()(2)若方程|3x-1|=k 有一解,则k 的取值范围为________.【解析】 (1)函数f (x )=21-x=2×⎝ ⎛⎭⎪⎫12x,单调递减且过点(0,2),选项A 中的图象符合要求.(2)函数y =|3x-1|的图象是由函数y =3x的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.当k =0或k ≥1时,直线y =k 与函数y =|3x-1|的图象有唯一的交点,所以方程有一解.【答案】 (1)A (2){0}∪上单调递减,则k 的取值范围如何?由本例(2)作出的函数y =|3x-1|的图象知,其在(-∞,0]上单调递减,所以k ∈(-∞,0].指数函数的图象及应用(1)与指数函数有关的函数图象的研究,往往利用相应指数函数的图象,通过平移、对称、翻折变换得到其图象.(2)一些指数型方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.)1.函数f (x )=a x -b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0 D 由f (x )=a x -b 的图象可以观察出函数f (x )=ax -b在定义域上单调递减,所以0<a <1.函数f (x )=a x -b 的图象是在f (x )=a x 的基础上向左平移得到的,所以b <0.2.若函数y =21-x+m 的图象不经过第一象限,求m 的取值范围.y =⎝ ⎛⎭⎪⎫12x -1+m ,函数y =⎝ ⎛⎭⎪⎫12x -1的图象如图所示,则要使其图象不经过第一象限,则m ≤-2.指数函数的性质及应用(高频考点)指数函数的性质主要是其单调性,特别受到高考命题专家的青睐,常以选择题、填空题的形式出现.高考对指数函数的性质的考查主要有以下三个命题角度: (1)比较指数幂的大小; (2)解简单的指数方程或不等式; (3)研究指数型函数的性质.(1)已知a =⎝ ⎛⎭⎪⎫1223,b =2-43,c =⎝ ⎛⎭⎪⎫1213,则下列关系式中正确的是( )A .c <a <bB .b <a <cC .a <c <bD .a <b <c(2)已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3. ①若a =-1,求f (x )的单调区间; ②若f (x )有最大值3,求a 的值; ③若f (x )的值域是(0,+∞),求a 的值.【解】 (1)选B.把b 化简为b =⎝ ⎛⎭⎪⎫1243,而函数y =⎝ ⎛⎭⎪⎫12x在R 上为减函数,43>23>13,所以⎝ ⎛⎭⎪⎫1243<⎝ ⎛⎭⎪⎫1223<⎝ ⎛⎭⎪⎫1213,即b <a <c . (2)①当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3, 令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).②令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,3a -4a=-1,解得a =1,即当f (x )有最大值3时,a 的值等于1.③令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由指数函数的性质知,要使y =⎝ ⎛⎭⎪⎫13g (x )的值域为(0,+∞).应使g (x )=ax 2-4x +3的值域为R ,因此只能a =0.(因为若a ≠0,则g (x )为二次函数,其值域不可能为R ) 故f (x )的值域为(0,+∞)时,a 的值为0.有关指数函数性质的问题类型及解题策略(1)比较指数幂大小问题,常利用指数函数的单调性及中间值(0或1).(2)求解简单的指数不等式问题,应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决.在研究指数型函数单调性时,当底数与“1”的大小关系不明确时,要分类讨论.角度一 比较指数幂的大小 1.下列各式比较大小正确的是( ) A .1.72.5>1.73B .0.6-1>0.62C .0.8-0.1>1.250.2D .1.70.3<0.93.1BA 中,因为函数y =1.7x在R 上是增函数,2.5<3,所以1.72.5<1.73. B 中,因为y =0.6x在R 上是减函数,-1<2, 所以0.6-1>0.62. C 中,因为0.8-1=1.25,所以问题转化为比较1.250.1与1.250.2的大小. 因为y =1.25x在R 上是增函数,0.1<0.2, 所以1.250.1<1.250.2,即0.8-0.1<1.250.2.D 中,因为1.70.3>1,0<0.93.1<1,所以1.70.3>0.93.1.角度二 解简单的指数方程或不等式2.(2015·高考江苏卷)不等式2x 2-x <4的解集为________. 因为2x 2-x <4,所以2x 2-x <22,所以x 2-x <2,即x 2-x -2<0,所以-1<x <2. {x |-1<x <2}(或(-1,2))角度三 研究指数型函数的性质 3.若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在 因为f (x )=2|x -a |,所以f (x )的图象关于x =a 对称.又由f (1+x )=f (1-x ),知f (x )的图象关于直线x =1对称,故a =1,且f (x )的增区间是 1——换元法解决指数型函数的值域问题函数f (x )=⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x+1在x ∈上的值域是________. 【解析】 因为x ∈,若令t =⎝ ⎛⎭⎪⎫12x ,则t ∈⎣⎢⎡⎦⎥⎤14,8.y =t 2-t +1=⎝ ⎛⎭⎪⎫t -122+34.当t =12时,y min =34;当t =8时,y max =57.所以函数f (x )的值域为⎣⎢⎡⎦⎥⎤34,57.【答案】 ⎣⎢⎡⎦⎥⎤34,57(1)此题利用了换元法,把函数f (x )转化为y =t 2-t +1,其中t ∈⎣⎢⎡⎦⎥⎤14,8,将问题转化为求二次函数在闭区间上的最值(值域)问题,从而减少了运算量.(2)对于同时含有a x与a 2x(log a x 与log 2a x )(a >0且a ≠1)的函数、方程、不等式问题,通常令t =a x(t =log a x )进行换元巧解,但一定要注意新元的范围.已知函数y =9x+m ·3x-3在区间上单调递减,则m 的取值范围为________.设t =3x ,则y =9x +m ·3x -3=t 2+mt -3.因为x ∈,所以t ∈⎣⎢⎡⎦⎥⎤19,9.又函数y =9x+m ·3x -3在区间上单调递减,即y =t 2+mt -3在区间⎣⎢⎡⎦⎥⎤19,9上单调递减, 故有-m2≥9,解得m ≤-18.所以m 的取值范围为(-∞,-18]. (-∞,-18]1.下列函数中值域为正实数的是( )A .y =-5xB .y =⎝ ⎛⎭⎪⎫131-xC .y =⎝ ⎛⎭⎪⎫12x-1 D .y =1-2xBA 中,y =-5x<0,B 中,因为1-x ∈R ,y =⎝ ⎛⎭⎪⎫13x的值域是正实数,所以y =⎝ ⎛⎭⎪⎫131-x的值域是正实数,C 中,y =⎝ ⎛⎭⎪⎫12x-1≥0,D 中,y =1-2x ,由于2x >0,故1-2x <1,又1-2x≥0,故0≤y <1,故符合条件的只有B.2.化简4a 23·b -13÷⎝ ⎛⎭⎪⎪⎫-23a -13b 23的结果为( ) A .-2a3bB .-8a bC .-6a bD .-6abC 原式=4÷⎝ ⎛⎭⎪⎫-23a 23-(-13)b -13-23=-6ab -1=-6a b,故选C.3.函数y =a x-1a(a >0,a ≠1)的图象可能是( )D 函数y =a x -1a 的图象由函数y =a x的图象向下平移1a个单位长度得到,A 项显然错误;当a >1时,0<1a <1,平移距离小于1,所以B 项错误;当0<a <1时,1a>1,平移距离大于1,所以C 项错误.4.已知a =20.2,b =0.40.2,c =0.40.6,则( ) A .a >b >cB .a >c >bC .c >a >bD .b >c >aA 由0.2<0.6,0.4<1,并结合指数函数的图象可知0.40.2>0.40.6,即b >c ;因为a =20.2>1,b =0.40.2<1,所以a >b .综上,a >b >c .5.(2017·莱芜模拟)若函数f (x )=a |2x -4|(a >0,a ≠1)满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .B 由f (1)=19得a 2=19.又a >0,所以a =13,因此f (x )=⎝ ⎛⎭⎪⎫13|2x -4|. 因为g (x )=|2x -4|在 当a <0时,不等式f (a )<1可化为⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a<⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1可化为a <1, 所以0≤a <1.故a 的取值范围是(-3,1).7.指数函数y =f (x )的图象经过点(m ,3),则f (0)+f (-m )=________. 设f (x )=a x(a >0且a ≠1),所以f (0)=a 0=1. 且f (m )=a m =3.所以f (0)+f (-m )=1+a -m=1+1a m =43.438.614-(π-1)0-⎝ ⎛⎭⎪⎫33813+⎝ ⎛⎭⎪⎫164-23=________. 原式=52-1-⎝ ⎛⎭⎪⎫27813+(4-3)-23=32-32+42=16. 169.(2015·高考山东卷)已知函数f (x )=a x+b (a >0,a ≠1)的定义域和值域都是,则a +b =________.①当a >1时,函数f (x )=a x+b 在上为增函数,由题意得⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0,无解.②当0<a <1时,函数f (x )=a x+b 在上为减函数,由题意得⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,所以a +b =-32.-3210.当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x<0恒成立,则实数m 的取值范围是________.原不等式变形为m 2-m <⎝ ⎛⎭⎪⎫12x, 因为函数y =⎝ ⎛⎭⎪⎫12x在(-∞,-1]上是减函数, 所以⎝ ⎛⎭⎪⎫12x≥⎝ ⎛⎭⎪⎫12-1=2,当x ∈(-∞,-1]时,m 2-m <⎝ ⎛⎭⎪⎫12x恒成立等价于m 2-m <2,解得-1<m <2.(-1,2)11.求下列函数的定义域和值域. (1)y =⎝ ⎛⎭⎪⎫122x -x 2;(2)y = 32x -1-19. (1)显然定义域为R .因为2x -x 2=-(x -1)2+1≤1,且y =⎝ ⎛⎭⎪⎫12x 为减函数.所以⎝ ⎛⎭⎪⎫122x -x 2≥⎝ ⎛⎭⎪⎫121=12. 故函数y =⎝ ⎛⎭⎪⎫122x -x 2的值域为⎣⎢⎡⎭⎪⎫12,+∞.(2)由32x -1-19≥0,得32x -1≥19=3-2, 因为y =3x为增函数,所以2x -1≥-2,即x ≥-12,此函数的定义域为⎣⎢⎡⎭⎪⎫-12,+∞, 由上可知32x -1-19≥0,所以y ≥0. 即函数的值域为 (1)因为f (x )为偶函数, 所以对任意的x ∈R ,都有f (-x )=f (x ), 即a|x +b |=a|-x +b |,|x +b |=|-x +b |,解得b =0.(2)记h (x )=|x +b |=⎩⎪⎨⎪⎧x +b ,x ≥-b ,-x -b ,x <-b .①当a >1时,f (x )在区间 因为函数f (x )=⎝ ⎛⎭⎪⎫13x+a 的图象经过第二、三、四象限,所以a <-1.则g (a )=f (a )-f (a +1)=⎝ ⎛⎭⎪⎫13a+a -⎝ ⎛⎭⎪⎫13a +1-a =⎝ ⎛⎭⎪⎫13a ⎝ ⎛⎭⎪⎫1-13=23·⎝ ⎛⎭⎪⎫13a.因为a <-1,所以⎝ ⎛⎭⎪⎫13a>3,则23·⎝ ⎛⎭⎪⎫13a>2,故g (a )的取值范围是(2,+∞). 14.(2017·济南模拟)已知函数f (x )=⎩⎪⎨⎪⎧x +1,0≤x <1,2x -12,x ≥1,设a >b ≥0,若f (a )=f (b ),则b ·f (a )的取值范围是________.画出函数图象如图所示,由图象可知要使a >b ≥0,f (a )=f (b )同时成立,则12≤b <1. b ·f (a )=b ·f (b )=b (b +1)=b 2+b =⎝ ⎛⎭⎪⎫b +122-14,所以34≤b ·f (a )<2.⎣⎢⎡⎭⎪⎫34,215.已知函数y =2-x 2+ax +1在区间(-∞,3)内递增,求a 的取值范围. 函数y =2-x 2+ax +1是由函数y =2t 和t =-x 2+ax +1复合而成.因为函数t =-x 2+ax +1在区间 (-∞,a 2]上单调递增,在区间[a2,+∞)上单调递减,且函数y =2t在R 上单调递增,所以函数y =2-x 2+ax +1在区间(-∞,a 2]上单调递增,在区间[a2,+∞)上单调递减. 又因为函数y =2-x 2+ax +1在区间(-∞,3)上单调递增,所以3≤a2,即a ≥6.16.已知函数f (x )=1-42a x+a(a >0且a ≠1)是定义在(-∞,+∞)上的奇函数. (1)求a 的值; (2)求函数的值域;(3)当x ∈(0,1]时,tf (x )≥2x-2恒成立,求实数t 的取值范围. (1)因为f (x )是定义在(-∞,+∞)上的奇函数, 所以f (0)=0,即1-42a 0+a =0.解得a =2.(2)因为y =f (x )=2x-12x +1,所以2x=1+y 1-y .由2x>0知1+y 1-y >0,所以-1<y <1.即f (x )的值域为(-1,1). (3)不等式tf (x )≥2x -2等价于t (2x -1)2x+1≥2x -2,即(2x )2-(t +1)2x+t -2≤0.令2x =u ,因为x ∈(0,1],所以u ∈(1,2]. 又u ∈(1,2]时,u 2-(t +1)u +t -2≤0恒成立.所以⎩⎪⎨⎪⎧12-(t +1)+t -2≤0,22-2(t +1)+t -2≤0,解得t ≥0.故所求t 的取值范围为[0,+∞).。

2013年全国各地高考文科数学试题分类汇编2:函数

2013年全国各地高考文科数学试题分类汇编2:函数

2013年全国各地高考文科数学试题分类汇编2:函数一、选择题1 .(2013年高考重庆卷(文))函数21log (2)yx =-的定义域为( )A .(,2)-∞B .(2,)+∞C .(2,3)(3,)+∞ D .(2,4)(4,)+∞【答案】C2 .(2013年高考重庆卷(文))已知函数3()sin 4(,)f x ax b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f =( )A .5-B .1-C .3D .4【答案】C3 .(2013年高考大纲卷(文))函数()()()-121log 10=f x x f x x ⎛⎫=+> ⎪⎝⎭的反函数( )A .()1021x x >- B .()1021xx ≠- C .()21x x R -∈ D .()210x x -> 【答案】A4 .(2013年高考辽宁卷(文))已知函数())()1ln31,.lg 2lg 2f x x f f ⎛⎫=++= ⎪⎝⎭则 ( )A .1-B .0C .1D .2【答案】D5 .(2013年高考天津卷(文))设函数22,()ln )3(x x g x x x x f e +-=+-=. 若实数a , b 满足()0,()0f a g b ==,则( )A .()0()g a f b <<B .()0()f b g a <<C .0()()g a f b <<D .()()0f b g a <<【答案】A6 .(2013年高考陕西卷(文))设全集为R ,函数()f x M , 则C M R 为( )A .(-∞,1)B .(1, + ∞)C .(,1]-∞D .[1,)+∞【答案】B7 .(2013年上海(文科))函数()()211f x x x =-≥的反函数为()1f x -,则()12f -的值是( )AB.C.1D.1【答案】A 8 .(2013年湖北(文))x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为( )A .奇函数B .偶函数C .增函数D .周期函数【答案】D9 .(2013年高考四川卷(文))设函数()f x =a R ∈,e 为自然对数的底数).若存在[0,1]b ∈使(())f f b b =成立,则a 的取值范围是( )A .[1,]eB .[1,1]e +C .[,1]e e +D .[0,1]【答案】A10.(2013年高考辽宁卷(文))已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -=( ) A .2216a a --B .2216a a +-C .16-D .16【答案】C11.(2013年高考北京卷(文))下列函数中,既是偶函数又在区间(0,+ ∞)上单调递减的是( )A .1y x=B .xy e -=C .21y x =-+D .lg ||y x =【答案】C12.(2013年高考福建卷(文))函数)1ln()(2+=x x f 的图象大致是( )A .B .C .D .【答案】A13.(2013年高考浙江卷(文))已知a.b.c ∈R,函数f(x)=ax 2+bx+c .若f(0)=f(4)>f(1),则( )A .a>0,4a+b=0B .a<0,4a+b=0C .a>0,2a+b=0D .a<0,2a+b=0[来源:学+科+网]【答案】A14.(2013年高考山东卷(文))已知函数)(x f 为奇函数,且当0>x 时,xx x f 1)(2+=,则=-)1(f ( ) A .2B .1C .0D .-2【答案】D15.(2013年高考广东卷(文))函数lg(1)()1x f x x +=-的定义域是 ( )A .(1,)-+∞B .[1,)-+∞C .(1,1)(1,)-+∞ D .[1,1)(1,)-+∞【答案】C16.(2013年高考陕西卷(文))设a , b , c 均为不等于1的正实数, 则下列等式中恒成立的是( )A .·log log log a c c b a b =B .·log lo log g a a a b a b = C .()log g o lo g a a a b c bc =D .()log g og o l l a a a b b c c +=+【答案】B17.(2013年高考山东卷(文))函数()f x =的定义域为 ( )A .(-3,0]B .(-3,1]C .(,3)(3,0]-∞-- D .(,3)(3,1]-∞--【答案】A 18.(2013年高考天津卷(文))已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递增. 若实数a满足212(log )(log )2(1)f a f f a ≤+, 则a 的取值范围是( )A .[1,2]B .10,2⎛⎤⎥⎝⎦C .1,22⎡⎤⎢⎥⎣⎦D .(0,2]【答案】C19.(2013年高考湖南(文))函数f(x)=㏑x 的图像与函数g(x)=x 2-4x+4的图像的交点个数为______( )A .0B .1C .2D .3【答案】C20.(2013年高考课标Ⅰ卷(文))已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-【答案】D;21.(2013年高考陕西卷(文))设[x ]表示不大于x 的最大整数, 则对任意实数x , y , 有( )A .[-x ] = -[x ]B .[x +12] = [x ] C .[2x ] = 2[x ] D .1[][][2]2x x x ++= 【答案】D22.(2013年高考安徽(文))函数()y f x =的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,,,n x x x ,使得1212()()()n nf x f x f x x x x ===,则n 的取值范围为 ( )A .{}2,3B .{}2,3,4C .{}3,4D .{}3,4,5【答案】B 23.(2013年湖北(文))小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是【答案】C24.(2013年高考湖南(文))已知f(x)是奇函数,g(x)是偶函数,且f(-1)+g(1)=2,f(1)+g(-1)=4,则g(1)等于( )A .4B .3C .2D .1【答案】B二、填空题25.(2013年高考安徽(文))定义在R 上的函数()f x 满足(1)2()f x f x +=.若当01x ≤≤时.()(1)f x x x =-,则当10x -≤≤时,()f x =________________.【答案】(1)()2x x f x +=-26.(2013年高考大纲卷(文))设()[)()21,3=f x x f x ∈是以为周期的函数,且当时,____________.【答案】-127.(2013年高考北京卷(文))函数f(x)=12log ,12,1x x x x ≥⎧⎪⎨⎪<⎩的值域为_________. 【答案】(-∞,2)28.(2013年高考安徽(文))函数1ln(1)y x=++的定义域为_____________. 【答案】(]0,129.(2013年高考浙江卷(文))已知函数f(x)=x-1 若f(a)=3,则实数a= ____________.【答案】1030.(2013年高考福建卷(文))已知函数⎪⎩⎪⎨⎧<≤-<=20,tan 0,2)(3πx x x x x f ,则=))4((πf f ________ 【答案】2- .31.(2013年高考四川卷(文))___________.【答案】132.(2013年上海高考数学试题(文科))方程91331x x+=-的实数解为_______. 【答案】3log 4 三、解答题33.(2013年高考江西卷(文))设函数1,0()1(1),11x x a af x x a x a⎧≤≤⎪⎪=⎨⎪-<≤⎪-⎩ a 为 常数且a ∈(0,1).(1) 当a=12时,求f(f(13)); (2) 若x 0满足f(f(x 0))= x 0,但f(x 0)≠x 0,则称x 0为f(x)的二阶周期点,证明函数()f x 有且仅有两个二阶周期点,并求二阶周期点x 1,x 2;(3) 对于(2)中x 1,x 2,设A(x 1,f(f(x 1))),B(x 2,f(f(x 2))),C(a 2,0),记△ABC 的面积为s(a),求s(a)在区间[13,12]上的最大值和最小值. 【答案】解:(1)当12a=时,121222(),(())()2(1)333333f f f f ==-==(2222221,01(),(1)2)(())1(),1(1)1(1),11(1)x x a a a x a x a a a f f x x a a x a a a x a a x a a ⎧≤≤⎪⎪⎪-<≤⎪-⎪=⎨⎪-<<-+-⎪⎪⎪--+≤≤⎪-⎩当20x a ≤≤时,由21x x a =解得x=0,由于f(0)=0,故x=0不是f(x)的二阶周期点; 当2a x a <≤时由1()(1)a x x a a -=-解得21a x a a =-++2(,),a a ∈因222211()1111a a af a a a a a a a a a =∙=≠-++-++-++-++故21ax a a =-++是f(x)的二阶周期点; [来源:Z,xx,]当21a x a a <<-+时,由21()(1)x a x a -=-解得12x a =-2(,1)a a a ∈-+因1111()(1)2122f a a a a =∙-=----故12x a=-不是f(x)的二阶周期点; 当211a a x -+≤≤时,1(1)(1)x x a a -=-解得211x a a =-++ 2(1,1)a a ∈-+ 因22221111()(1)11111a f a a a a a a a a a =∙-=≠-++--++-++-++故211x a a =-++是f(x)的二阶周期点. 因此,函数()f x 有且仅有两个二阶周期点,121a x a a =-++,2211x a a =-++. (3)由(2)得222211(,),(,)1111a a A B a a a a a a a a -++-++-++-++ 则2322221(1)1(222)(),()212(1)a a a a a a s a s a a a a a ---+'=∙=∙-++-++因为a 在[13,12]内,故()0s a '>,则11()[]32s a 在区间,上单调递增, 故111111()[]32333220s a 在区间,上最小值为s()=,最大值为s()=34.(2013年高考安徽(文))设函数22()(1)f x ax a x =-+,其中0a >,区间{}|()0I x f x =>.(Ⅰ)求I 的长度(注:区间(,)αβ的长度定义为βα-;(Ⅱ)给定常数()0,1k ∈,当11k a k -≤≤+时,求I 长度的最小值.【答案】解:(1)令2()-10f x x a a x ⎡⎤=+=⎣⎦()解得 10x = 221a x a =+ 2|01a I x x a ⎧⎫∴=<<⎨⎬+⎩⎭I ∴的长度212-1a x x a =+ (2) ()0,1k ∈ 则0112k a k <-≤≤+< 由 (1)21aI a =+ 2221'0(1)a I a -=>+,则01a << 故I 关于a 在(1,1)k -上单调递增,在(1,1)k +上单调递减. ()1221-1-2211-k kI k k k ==+++ 22111k I k +=++() min 21-22k I k k =++。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四节 指数函数与对数函数题型24 指(对)数运算及指(对)数方程 1. (2013浙江理3)已知y x ,为正实数,则(). A.y x yx lg lg lg lg 222+=+ B.lg()lg lg 222x y x y +=⋅C.lg lg lg lg 222x yx y ⋅=+ D.lg()lg lg 222xy x y =⋅2.(2014 陕西理 11) 已知42,lg a x a ==,则x =_______.3.(2015浙江理12) 若4log 3a =,则22aa-+=.3.解析 因为242221log 3log 3log 3log 2a ====所以log log 22223--+=+==a a . 4.(2015江苏7)不等式224x x-<的解集为.4.解析 由题意22242x x-<=,根据2x y =是单调递增函数,得22x x -<,即()()22210--=-+<x x x x ,故不等式的解集为()1,2-或写成{}12-<<x x 均可. 5.(2015重庆理4)“1x >”是“12og ()l 20x +<”的( ).A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件 5.解析 由12(og 0l 2)+<x 得1x >-,且“1x >”是“1x >-”的充分不必要条件.故选B .6.(2015四川理8)设,a b 都是不等于1的正数,则“333ab>>”是“log 3log 3a b <”的( ). A.充要条件 B.充分不必要条件 C.必要不充分条件 D. 既不充分也不必要条件 6. 解析 若333ab>>,则1a b >>,所以log 3log 3a b <,故为充分条件; 若log 3log 3a b <不一定有1a b >>,比如,13a =,3b =,所以333a b>>不成立. 故选B.7.(2016浙江理12)已知1a b >>.若5log log 2a b b a +=,b aa b =,则a =,b =. 7.4;2解析设log b a t =,因为1a b >>,则1t >.由题知152t t+=,解得2t =,所以2a b =.由b a a b =,将2a b =带入,得22b b b b =,22b b =,得2,4b a ==.8.(2017北京理8)根据有关资料,围棋状态空间复杂度的上限M 约为3613,而可观测宇宙中普通物质的原子总数N 约为8010,则下列各数中与M N最接近的是( ).(参考数据:lg30.48≈)A.3310B.5310C.7310D.93108.解析 设36180310M x N ==,两边取对数36180lg lg3lg10361lg380x =-=⨯-,即93.28x =,所以接近9310.故选D.9.(2017全国1理11)设x ,y ,z 为正数,且235x y z==,则( ).A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z << 9.解析 设235x y z t ===,两边取对数得ln 2ln 3ln 5ln x y z t ===,则2ln 2ln 2tx =3ln 3ln 3t y =,5ln 5ln 5t z =,ln 0t >.设()ln x f x x=,()()2ln 1ln x f x x -'=,当()0,e x ∈时, ()0f x '<,()f x 单调递减;当()e,x ∈+∞时,()0f x '>,()f x 单调递增.而()24ln x f t =,()33ln y f t =,()55ln z f t =.由e<3<4<5,得325y x z <<. 故选D.题型25 指(对)数函数的图像及应用1.(2014 浙江理 7)在同一直角坐标系中,函数()()()0,log aa f x x x g x x ==…的图像可能是( ).A. B. C. D.2.(2015山东理14)已知函数()()01xf x a b a a=+>≠,的定义域和值域都是[]10-,,则a b+=.2.解析分情况讨论:①当1a>时,()=+xf x a b在[]1,0-上递增.又()[]1,0∈-f x,所以()()1100ff-=-⎧⎪⎨=⎪⎩,无解;②当01a<<时,()=+xf x a b在[]1,0-上递减.又()[]1,0∈-f x,所以()()1001ff-=⎧⎪⎨=-⎪⎩,解得122ab⎧=⎪⎨⎪=-⎩,所以32a b+=-.3.(2015陕西理9)设()ln,0f x x a b=<<,若p f=,()2a bq f+=,1(()())2r f a f b=+,则下列关系式中正确的是().A.q r p=<B.q r p=>C.p r q=<D.p r q=>3.解析解法一:依题意()()()()111ln ln ln222p ab a b f a f b r===+=+=,ln2a bq p+=>=,所以p r q=<.故选C.解法二:令1,9a b==,ln3p==,19ln ln52q+==,()1ln1ln9ln32r=+=,所以p r q=<.故选C.4.(2015天津理7)已知定义在R上的函数()21x mf x-=-(m为实数)为偶函数,记()0.5log3a f=,()2log5b f=,()2c f m=,则a,b,c的大小关系为().A .a b c <<B .a c b <<C .c a b <<D .c b a << 4.解析 因为函数()21x mf x -=-为偶函数,所以0m =,即()21xf x =-,所以221log log 330.521(log 3)log 21213123a f f ⎛⎫===-=-=-= ⎪⎝⎭, ()()2log 502log 52142(0)210b f c f m f ==-====-=,.所以c a b <<.故选C.题型26 指(对)数函数的性质及应用1.(2013天津理7)函数0.5()2|log |1x f x x =-的零点个数为( ). A .1 B .2 C .3 D .42.(2014 重庆理 12)函数())log2f x x =的最小值为_________.3.(2016全国丙理6)已知432a =,233b =,1325c =,则( ). A.b a c << B.a b c << C.b c a << D.c a b <<3. A 解析由423324a ==,233b =,得a b >,由1223332554c ==>,则c a >因此c a b >>.故选A.4.(2016全国乙理8)若1a b >>,01c <<,则( ).A.cca b < B.ccab ba < C.log log b a a c b c < D.log log a b c c <4. C 解析对于选项A :由于01c <<,所以函数cy x =在()0,+∞上单调递增.由1a b >>,得cc ab >.故A 错误.对于选项B :要比较cab 与cba 的大小,只需比较a b 与c a b ⎛⎫ ⎪⎝⎭的大小.构造函数xa yb ⎛⎫= ⎪⎝⎭, 因为1a b >>,所以1a b >,因此函数x a y b ⎛⎫= ⎪⎝⎭在R 上单调递增.又01c <<,所以ca ab b⎛⎫< ⎪⎝⎭,即c c ba ab <.故B 错误.对于选项C:要比较log b a c 与log a b c 的大小关系,只需比较ln ln c b b 与ln ln ca a的大小,。

相关文档
最新文档