第3讲MATLAB数据建模方法(上)常用方法

合集下载

数学建模常用方法MATLAB求解

数学建模常用方法MATLAB求解

数学建模常用方法MATLAB求解数学建模是通过数学方法对实际问题进行数学描述、分析和求解的过程。

MATLAB是一款功能强大的数学软件,广泛用于数学建模中的问题求解。

在数学建模中,常用的方法有数值求解、优化求解和符号计算。

下面将介绍MATLAB在数学建模中常用的方法和求解示例。

1.数值求解方法:数值求解是利用数值计算方法来近似求解实际问题的数学模型。

MATLAB提供了许多数值求解函数,如方程求根、解线性方程组、曲线拟合、积分和微分等。

以方程求根为例,可以使用fsolve函数来求解非线性方程。

示例:求解非线性方程sin(x)=0.5```matlabx0=0;%初始点x = fsolve(fun,x0);```2.优化求解方法:优化求解是在给定约束条件下,寻找使目标函数取得最优值的变量值。

MATLAB提供了许多优化求解函数,如线性规划、二次规划、非线性规划、整数规划等。

以线性规划为例,可以使用linprog函数来求解线性规划问题。

示例:求解线性规划问题,目标函数为max(3*x1+4*x2),约束条件为x1>=0、x2>=0和2*x1+3*x2<=6```matlabf=[-3,-4];%目标函数系数A=[2,3];%不等式约束的系数矩阵b=6;%不等式约束的右端向量lb = zeros(2,1); % 变量下界ub = []; % 变量上界x = linprog(f,A,b,[],[],lb,ub);```3.符号计算方法:符号计算是研究数学符号的计算方法,以推导或计算数学表达式为主要任务。

MATLAB提供了符号计算工具箱,可以进行符号计算、微积分、代数运算、求解方程等。

以符号计算为例,可以使用syms函数来定义符号变量,并使用solve函数求解方程。

示例:求解二次方程ax^2+bx+c=0的根。

```matlabsyms x a b c;eqn = a*x^2 + b*x + c == 0;sol = solve(eqn, x);```以上是MATLAB在数学建模中常用的方法和求解示例,通过数值求解、优化求解和符号计算等方法,MATLAB可以高效地解决各种数学建模问题。

Matlab中的数学建模方法

Matlab中的数学建模方法

Matlab中的数学建模方法引言在科学研究和工程领域,数学建模是一种重要的方法,它可以通过数学模型来描述和解释真实世界中的现象和问题。

Matlab是一款强大的数值计算和数据可视化工具,因其灵活性和易用性而成为数学建模的首选工具之一。

本文将介绍一些在Matlab中常用的数学建模方法,并以实例来展示其应用。

一、线性回归模型线性回归是最常见的数学建模方法之一,用于解决变量之间呈现线性关系的问题。

在Matlab中,可以使用regress函数来拟合线性回归模型。

例如,假设我们想要分析学生的身高和体重之间的关系,并建立一个线性回归模型来预测学生的体重。

首先,我们需要收集一组已知的身高和体重数据作为训练集。

然后,可以使用regress函数来计算回归模型的参数,并进行预测。

最后,通过绘制散点图和回归直线,可以直观地观察到身高和体重之间的线性关系。

二、非线性回归模型除了线性回归外,有时数据之间的关系可能是非线性的。

在这种情况下,可以使用非线性回归模型来建立更准确的数学模型。

在Matlab中,可以使用curvefit工具箱来拟合非线性回归模型。

例如,假设我们想要分析一组实验数据,并建立一个非线性模型来描述数据之间的关系。

首先,可以使用curvefit工具箱中的工具来选择最适合数据的非线性模型类型。

然后,通过调整模型的参数,可以用最小二乘法来优化模型的拟合效果。

最后,可以使用拟合后的模型来进行预测和分析。

三、最优化问题最优化是数学建模的关键技术之一,用于在给定的限制条件下找到使目标函数取得最大或最小值的变量取值。

在Matlab中,可以使用fmincon函数来求解最优化问题。

例如,假设我们要最小化一个复杂的目标函数,并且有一些约束条件需要满足。

可以使用fmincon函数来设定目标函数和约束条件,并找到最优解。

通过调整目标函数和约束条件,以及设置合适的初始解,可以得到问题的最优解。

四、概率统计模型概率统计模型用于解决随机性和不确定性问题,在许多领域都得到广泛应用。

如何运用Matlab进行数据分析和建模

如何运用Matlab进行数据分析和建模

如何运用Matlab进行数据分析和建模第一章:Matlab数据分析的基础知识1.1 Matlab的介绍Matlab是一种用于数学计算、算法开发和数据可视化的高级技术计算环境。

它可以帮助分析师快速处理和分析大量的数据,并提供了各种分析和建模工具。

1.2 数据导入和处理在进行数据分析之前,首先需要将数据导入到Matlab中,并进行必要的预处理。

可以使用内置的函数来读取和处理各种格式的数据文件,如csv、xls等。

此外,Matlab还提供了丰富的数据处理函数,可以进行数据清洗、缺失值处理、数据转换等操作。

第二章:数据分析的常用技术2.1 描述性统计分析描述性统计分析是一种对数据进行描绘和总结的方法。

Matlab 提供了各种用于计算均值、标准差、中位数、众数等统计量的函数,并支持数据可视化工具,如直方图、箱线图等,用于展示数据的分布和特征。

2.2 数据可视化数据可视化是一种将数据以图形方式展示的方法,有助于更好地理解和分析数据。

Matlab提供了丰富的绘图函数,如scatter plot、bar plot、line plot等,可以根据数据类型和目的选择合适的图形进行绘制,并进行美化和注解,使得图形更加具有可读性和传达性。

第三章:数据建模的基本步骤3.1 数据准备和选择变量在进行数据建模之前,需要对数据进行准备和选择相关变量。

数据准备包括数据清洗、变量转换、特征选择等步骤。

Matlab提供了一系列的数据处理函数和工具箱,如数据清洗工具箱、特征选择工具箱等,可以帮助用户轻松进行数据准备。

3.2 模型选择和建立模型选择是根据问题的需求和数据的特征选择合适的模型。

Matlab提供了多种经典的机器学习和统计建模算法,如线性回归、决策树、支持向量机等,并包含了丰富的函数和工具箱,可用于模型选择和建立。

用户可以根据需要进行参数设置和优化,从而得到最优的模型。

3.3 模型评估和优化模型评估是对建立的模型进行测试和评估的过程。

matlab建模教程

matlab建模教程

matlab建模教程Matlab是一种强大的数学建模和仿真平台,广泛应用于科学、工程和金融领域。

本教程将介绍如何使用Matlab进行建模,并详细解释每个步骤。

首先,我们需要了解什么是建模。

建模是根据实际问题或系统的特性创建数学模型的过程。

这些数学模型可以帮助我们理解系统的行为并预测未来的结果。

使用Matlab进行建模可以简化模型的创建和分析过程。

在Matlab中,我们可以使用一个称为“脚本”的文件来编写和运行建模代码。

脚本是一系列Matlab命令的集合,这些命令可以被连续执行以创建所需的模型。

为了方便起见,我们可以在Matlab编辑器中创建和编辑脚本。

建模的第一步是定义问题。

要定义问题,我们需要确定所建模型的目标、输入和输出。

例如,如果我们想建立一个温度预测模型,我们需要明确模型的输入是什么(例如,环境条件)和输出是什么(例如,预测的温度值)。

接下来,我们需要收集数据。

收集数据是为了分析和验证我们的模型。

在Matlab中,我们可以使用数据存储和处理工具,如表格和数据数组,来导入和处理数据。

一旦我们有了数据,我们就可以开始建立模型。

在Matlab中,我们可以使用数学方程、统计方法和机器学习算法等多种方法来建立模型。

例如,我们可以使用线性回归来拟合数据,或者使用神经网络进行分类。

建立模型后,我们可以使用Matlab的可视化工具来分析模型的输出。

Matlab提供了各种绘图函数,如plot和scatter,来绘制图形并展示模型的结果。

我们可以使用这些图形来比较实际数据与模型的预测结果。

最后,我们可以优化我们的模型。

通过调整模型的参数和改进算法,我们可以提高模型的性能和准确性。

在Matlab中,我们可以使用遗传算法、粒子群优化和模拟退火等算法来优化我们的模型。

在建模过程中,我们还需要注意一些常见的问题和错误。

例如,过拟合是一种常见的问题,指的是模型过度适应训练数据,导致对新数据的预测效果较差。

为了避免过拟合,我们可以使用交叉验证和正则化等技术。

如何使用Matlab进行统计分析和数据建模

如何使用Matlab进行统计分析和数据建模

如何使用Matlab进行统计分析和数据建模导言:统计分析和数据建模是现代科学研究和工程实践中重要的一环,可以帮助我们从数据中发现规律、预测趋势、优化决策。

Matlab作为一种常用的科学计算软件,提供了丰富的统计分析和数据建模工具,使得我们可以方便地进行数据处理和分析,本文将介绍使用Matlab进行统计分析和数据建模的方法和技巧。

一、数据预处理在进行统计分析和数据建模之前,首先需要对原始数据进行预处理,以清洗数据、消除异常值、处理缺失数据等。

Matlab提供了丰富的数据预处理函数和工具箱,可以帮助我们完成这些任务。

1. 数据清洗:使用Matlab中的数据清洗函数,如`cleandata`等,可以去除数据中的噪声和不相关的信息,使得数据更加准确和可靠。

2. 异常值处理:使用Matlab中的异常值检测函数、过滤函数等,如`isoutlier`、`filtdata`等,可以检测和处理数据中的异常值,防止异常值对分析结果的影响。

3. 缺失数据处理:使用Matlab中的缺失数据处理函数,如`ismissing`、`fillmissing`等,可以处理数据中的缺失值,填充缺失数据或根据其他数据进行插补,保证数据的完整性和可用性。

二、描述性统计分析描述性统计分析是对数据进行总结和描述的过程,可以帮助我们了解数据的基本情况、分布特征、关联关系等。

Matlab提供了丰富的描述性统计分析函数和工具,可以帮助我们完成这些任务。

1. 基本统计量计算:使用Matlab中的`mean`、`std`、`median`等统计函数,可以计算数据的均值、标准差、中位数等基本统计量,对数据的集中趋势和离散程度进行描述。

2. 分布特征分析:使用Matlab中的`histogram`、`boxplot`等函数,可以绘制数据的直方图、箱线图等图形,了解数据的分布特征、偏态程度、异常值情况等。

3. 关联关系分析:使用Matlab中的`corrcoef`、`cov`等函数,可以计算数据的相关系数、协方差等,进一步研究数据之间的关联关系,发现变量之间的线性或非线性关系。

matlab数学建模常用模型及编程

matlab数学建模常用模型及编程

matlab数学建模常用模型及编程摘要:一、引言二、MATLAB 数学建模的基本概念1.矩阵的转置2.矩阵的旋转3.矩阵的左右翻转4.矩阵的上下翻转5.矩阵的逆三、MATLAB 数学建模的常用函数1.绘图函数2.坐标轴边界3.沿曲线绘制误差条4.在图形窗口中保留当前图形5.创建线条对象四、MATLAB 数学建模的实例1.牛顿第二定律2.第一级火箭模型五、结论正文:一、引言数学建模是一种将现实世界中的问题抽象成数学问题,然后通过数学方法来求解的过程。

在数学建模中,MATLAB 作为一种强大的数学软件,被广泛应用于各种数学问题的求解和模拟。

本文将介绍MATLAB 数学建模中的常用模型及编程方法。

二、MATLAB 数学建模的基本概念在使用MATLAB 进行数学建模之前,我们需要了解一些基本的概念,如矩阵的转置、旋转、左右翻转、上下翻转以及矩阵的逆等。

1.矩阵的转置矩阵的转置是指将矩阵的一行和一列互换,得到一个新的矩阵。

矩阵的转置运算符是单撇号(’)。

2.矩阵的旋转利用函数rot90(a,k) 将矩阵a 旋转90 的k 倍,当k 为1 时可省略。

3.矩阵的左右翻转对矩阵实施左右翻转是将原矩阵的第一列和最后一列调换,第二列和倒数第二列调换,依次类推。

matlab 对矩阵a 实施左右翻转的函数是fliplr(a)。

4.矩阵的上下翻转matlab 对矩阵a 实施上下翻转的函数是flipud(a)。

5.矩阵的逆对于一个方阵a,如果存在一个与其同阶的方阵b,使得:a·bb·a=|a|·|b|·I,则称矩阵b 是矩阵a 的逆矩阵。

其中,|a|表示矩阵a 的行列式,I 是单位矩阵。

在MATLAB 中,我们可以使用函数inv(a) 来求解矩阵a 的逆矩阵。

三、MATLAB 数学建模的常用函数在MATLAB 数学建模过程中,我们经常需要使用一些绘图和数据处理函数,如绘图函数、坐标轴边界、沿曲线绘制误差条、在图形窗口中保留当前图形、创建线条对象等。

MATLAB中常见的自动化建模方法介绍

MATLAB中常见的自动化建模方法介绍

MATLAB中常见的自动化建模方法介绍随着科技的不断进步,自动化建模在各个领域中变得越来越重要。

MATLAB作为一种强大的数学建模与仿真工具,为研究人员和工程师们提供了许多自动化建模方法。

本文将介绍几种常见的MATLAB中的自动化建模方法,包括系统辨识、机器学习和优化方法。

一、系统辨识系统辨识是在无法直接获得系统模型的情况下,通过对系统输入和输出数据的观测来估计系统模型。

MATLAB提供了多种用于系统辨识的函数和工具箱,其中最常用的是System Identification Toolbox。

System Identification Toolbox提供了参数估计、模型结构选择和模型验证等功能。

在MATLAB中,使用系统辨识工具箱进行模型辨识一般包括以下步骤:收集系统输入和输出数据、选择适当的模型结构、参数估计和模型验证。

通过这些步骤,研究人员可以获得一个能够准确描述系统动态特性的模型。

二、机器学习机器学习是一种通过让计算机从数据中学习,并且在新的数据上做出预测或决策的方法。

在MATLAB中,有多种机器学习算法可供选择,包括支持向量机(SVM)、人工神经网络(ANN)和决策树等。

支持向量机是一种基于统计学习理论的二分类器,其主要思想是通过在高维特征空间中找到一个最优超平面来实现数据分类。

MATLAB中的Support Vector Machines Toolbox提供了一系列用于支持向量机模型的训练和应用的函数。

人工神经网络是一种模拟人脑神经元网络的算法,它可以通过学习样本数据来进行分类、回归、聚类等任务。

MATLAB中的Neural Network Toolbox提供了一系列用于构建、训练和应用神经网络的函数和工具。

决策树是一种通过对数据进行分割来实现分类的方法。

决策树模型通过一系列的判定条件将数据分为不同的类别。

在MATLAB中,可以利用Classification Learner App来构建和训练决策树模型,同时还可利用TreeBagger函数进行随机森林模型的构建和训练。

如何用MATLAB进行数学建模

如何用MATLAB进行数学建模

如何用MATLAB进行数学建模下面是一个关于如何用MATLAB进行数学建模的文章范例:MATLAB是一种强大的数学软件工具,广泛应用于各种数学建模问题的解决。

通过合理利用MATLAB的功能和特性,可以更加高效地进行数学建模,并得到准确的结果。

本文将介绍如何使用MATLAB进行数学建模,并给出一些实际例子。

一、数学建模的基本步骤数学建模是指将实际问题转化为数学模型,并利用数学方法对其进行求解和分析的过程。

在使用MATLAB进行数学建模之前,我们需要明确问题的具体要求,然后按照以下基本步骤进行操作:1. 理解问题:深入了解问题背景、影响因素以及目标要求,确保对问题有一个清晰的认识。

2. 建立模型:根据问题的特性,选择合适的数学模型,并将问题转化为相应的数学表达式。

3. 编写MATLAB代码:利用MATLAB的计算功能和算法库,编写用于求解数学模型的代码。

4. 数据处理和结果分析:在获得计算结果后,根据需要进行数据处理和结果分析,评估模型的准确性和可行性。

二、MATLAB的数学建模工具MATLAB提供了一系列用于数学建模的工具箱和函数,这些工具可以帮助我们快速构建数学模型,并进行求解。

下面是一些常用的数学建模工具:1. 符号计算工具箱:MATLAB的符号计算工具箱可以实现符号运算,用于建立和求解复杂的数学表达式。

2. 优化工具箱:优化工具箱可以用于求解多种优化问题,如线性规划、非线性规划、整数规划等。

3. 数值解工具箱:数值解工具箱提供了各种数值方法和算法,用于求解微分方程、积分方程、差分方程等数学问题。

4. 统计工具箱:统计工具箱可以进行统计建模和分析,包括假设检验、回归分析、时间序列分析等。

5. 控制系统工具箱:控制系统工具箱用于建立和分析控制系统模型,包括经典控制和现代控制方法。

三、数学建模实例为了更好地展示使用MATLAB进行数学建模的过程,我们给出一个实际的数学建模例子:求解物体的自由落体运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3讲MATLAB数据建模方法(上):常用方法作者:卓金武, MathWorks 中国以数据为基础而建立数学模型的方法称为数据建模方法,包括回归、统计、机器学习、深度学习、灰色预测、主成分分析、神经网络、时间序列分析等方法,其中最常用的方法还是回归方法。

本讲主要介绍在数学建模中常用几种回归方法的MATLAB实现过程。

根据回归方法中因变量的个数和回归函数的类型(线性或非线性)可将回归方法分为:一元线性、一元非线性、多元回归。

另外还有两种特殊的回归方式,一种在回归过程中可以调整变量数的回归方法,称为逐步回归,另一种是以指数结构函数作为回归模型的回归方法,称为Logistic回归。

本讲将逐一介绍这几个回归方法。

3.1 一元回归3.1.1 一元线性回归【例3-1】近10年来,某市社会商品零售总额与职工工资总额(单位:亿元)的数据见表3-1,请建立社会商品零售总额与职工工资总额数据的回归模型。

表3-1 商品零售总额与职工工资总额回归方法建立他们之间的回归模型了,具体实现的MATLAB代码如下:(1)输入数据(2)采用最小二乘回归据的散点图,这样就可以从图形上判断这些数据是否近似成线性关系。

当发现它们的确近似在一条线上后,再用线性回归的方法进行回归,这样也更符合我们分析数据的一般思路。

图3-1 职工工资总额和商品零售总额关系趋势图(3)采用LinearModel.fit函数进行线性回归运行结果如下:(4)采用regress函数进行回归运行结果如下:只要根据自己的需要选用一种就可以了。

函数LinearModel.fit 输出的内容为典型的线性回归的参数。

关于regress ,其用法多样,MATLAB 帮助中关于regress 的用法,有以下几种:b = regress(y,X)[b,bint] = regress(y,X) [b,bint,r] = regress(y,X) [b,bint,r,rint] = regress(y,X)[b,bint,r,rint,stats] = regress(y,X) [...] = regress(y,X,alpha) 输入y (因变量,列向量),X (1与自变量组成的矩阵)和(alpha ,是显著性水平, 缺省时默认0.05)。

输出01ˆˆ(,)b ββ=,bint 是01ββ,的置信区间,r 是残差(列向量),rint 是残差的置信区间,s 包含4个统计量:决定系数2R (相关系数为R ),F 值,F(1,n-2)分布大于F 值的概率p ,剩余方差2s 的值。

2s 也可由程序sum(r.^2)/(n-2)计算。

其意义和用法如下:2R 的值越接近1,变量的线性相关性越强,说明模型有效;如果满足1(1,2)F n F α--<,则认为变量y 与x 显著地有线性关系,其中1(1,2)F n α--的值可查F 分布表,或直接用MATLAB 命令finv(1-α,1, n-2)计算得到;如果p α<表示线性模型可用。

这三个值可以相互印证。

2s 的值主要用来比较模型是否有改进,其值越小说明模型精度越高。

3.1.2 一元非线性回归在一些实际问题中,变量间的关系并不都是线性的,此时就应该用非线性回归。

用用非线性回归首先要解决的问题是回归方程中的参数如何估计。

下面通过一个实例来说明如何利用非线性回归技术解决实例的问题。

【例3-2】 为了解百货商店销售额x 与流通率(这是反映商业活动的一个质量指标,指每元商品流转额所分摊的流通费用)y 之间的关系,收集了九个商店的有关数据(见表3-2)。

请建立它们关系的数学模型。

表3-2 销售额与流通费率数据925.5 2.2为了得到x与y之间的关系,先绘制出它们之间的散点图,如图3-2所示的“雪花”点图。

由该图可以判断它们之间的关系近似为对数关系或指数关系,为此可以利用这两种函数形式进行非线性拟合,具体实现步骤及每个步骤的结果如下:(1)输入数据(2)对数形式非线性回归运行结果如下:运行结果如下:在该案例中,选择两种函数形式进行非线性回归,从回归结果来看,对数形式的决定系数为0.973,而指数形式的为0.993,优于前者,所以可以认为指数形式的函数形式更符合y 与x之间的关系,这样就可以确定他们之间的函数关系形式了。

3.2 多元回归【例3-3】某科学基金会希望估计从事某研究的学者的年薪Y与他们的研究成果(论文、著作等)的质量指标X1、从事研究工作的时间X2、能成功获得资助的指标X3之间的关系,为此按一定的实验设计方法调查了24位研究学者,得到如表3-3所示的数据(i为学者序号),试建立Y 与123,,X X X 之间关系的数学模型,并得出有关结论和作统计分析。

表3-3 从事某种研究的学者的相关指标数据他们之间的变化趋势,如何近似满足线性关系,则可以执行利用多元线性回归方法对该问题进行回归。

具体步骤如下:(1)作出因变量Y 与各自变量的样本散点图作散点图的目的主要是观察因变量Y 与各自变量间是否有比较好的线性关系,以便选择恰当的数学模型形式。

图7-3分别为年薪Y 与成果质量指标1X 、研究工作时间2X 、获得资助的指标3X 之间的散点图。

从图中可以看出这些点大致分布在一条直线旁边,因此,有比较好的线性关系,可以采用线性回归。

绘制图3-3的代码如下:Y 与x1的散点图 Y 与x2的散点图 Y 与x3的散点图图3-3 因变量Y 与各自变量的样本散点图(2)进行多元线性回归这里可以直接使用regress 函数执行多元线性回归,具体代码如下:运行后即得到结果如表3-4所示。

表3-4 对初步回归模型的计算结果计算结果包括回归系数b=(0123,,,ββββ)=(18.0157, 1.0817, 0.3212, 1.2835)、回归系数的303540455055303540455055303540455055置信区间,以及统计变量stats (它包含四个检验统计量:相关系数的平方2R ,假设检验统计量F,与F 对应的概率p ,2s 的值)。

因此我们得到初步的回归方程为:123ˆ18.0157 1.08170.3212 1.2835yx x x =+++由结果对模型的判断:回归系数置信区间不包含零点表示模型较好,残差在零点附近也表示模型较好,接着就是利用检验统计量R,F,p 的值判断该模型是否可用。

1)相关系数R的评价:本例R的绝对值为0.9542,表明线性相关性较强。

2)F 检验法:当1(,1)FF m n m α->--,即认为因变量y 与自变量12,,,m x x x 之间有显著的线性相关关系;否则认为因变量y 与自变量12,,,m x x x 之间线性相关关系不显著。

本例F=67.919>10.05(3,20)F -= 3.10。

3)p 值检验:若p α<(α为预定显著水平),则说明因变量y 与自变量12,,,m x x x 之间显著地有线性相关关系。

本例输出结果,p<0.0001,显然满足P<α=0.05。

以上三种统计推断方法推断的结果是一致的,说明因变量y 与自变量之间显著地有线性相关关系,所得线性回归模型可用。

2s 当然越小越好,这主要在模型改进时作为参考。

3.3 逐步归回【例3-4】 (Hald,1960)Hald 数据是关于水泥生产的数据。

某种水泥在凝固时放出的热量Y (单位:卡/克)与水泥中4种化学成品所占的百分比有关:3213:O Al CaO X ⋅223:SiO CaO X ⋅323234:O Fe O Al CaO X ⋅⋅242:SiO CaO X ⋅在生产中测得12组数据,见表3-5,试建立Y 关于这些因子的“最优”回归方程。

表3-5 水泥生产的数据对于例3-4中的问题,可以使用多元线性回归、多元多项式回归,但也可以考虑使用逐步回归。

从逐步回归的原理来看,逐步回归是以上两种回归方法的结合,可以自动使得方程的因子设置最合理。

对于该问题,逐步回归的代码如下:程序执行后得到下列逐步回归的窗口,如图3-4所示。

图3-4 逐步回归操作界面在图3-4中,用蓝色行显示变量X1、X2、X3、X4均保留在模型中,窗口的右侧按钮上方提示:将变量X3剔除回归方程(Move X3 out),单击Next Step按钮,即进行下一步运算,将第3列数据对应的变量X3剔除回归方程。

单击Next Step按钮后,剔除的变量X3所对应的行用红色表示,同时又得到提示:将变量X4剔除回归方程(Move X4 out),单击Next Step按钮,这样一直重复操作,直到“Next Step”按钮变灰,表明逐步回归结束,此时得到的模型即为逐步回归最终的结果。

3.4 Logistic回归【例3-5】企业到金融商业机构贷款,金融商业机构需要对企业进行评估。

评估结果为0,1两种形式,0表示企业两年后破产,将拒绝贷款,而1表示企业2年后具备还款能力,可以贷款。

在表3-6中,已知前20家企业的三项评价指标值和评估结果,试建立模型对其他5家企业(企业21-25)进行评估。

表3-6 企业还款能力评价表对于该问题,很明显可以用Logistic模型来回归,具体求解程序如下:得到的回归结果与原始数据的比较如图3-5所示。

图3-5 回归结果与原始数据的比较图3.5 小结本讲主要介绍数学建模中常用的几种回归方法。

在使用回归方法的时候,首先可以判断自变量的个数,如果超过2个,则需要用到多元回归的方法,否则考虑用一元回归。

然后判断是线性还是非线性,这对于一元回归是比较容易的,而对于多元,往往是将其他变量保持不变,将多元转化为一元再去判断是线性还是非线性。

如果变量很多,而且复杂,则可以首先考虑多元线性回归,检验回归效果,也可以用逐步回归。

总之,用回归方法比较灵活,根据具体情景还是比较容易找到合适的方法的。

关于作者卓金武,MathWorks中国高级工程师,教育业务经理,在数据分析、数据挖掘、机器学习、数学建模、量化投资和优化等科学计算方面有多年工作经验,现主要负责MATLAB校园版业务;曾2次获全国大学生数学建模竞赛一等奖,1次获全国研究生数学建模竞赛一等奖;专著3部:《MATLAB在数学建模中的应用》、《大数据挖掘:系统方法与实例分析》、《量化投资:MATLAB数据挖掘技术与实践》。

相关文档
最新文档