第15章热力学5
FundamentalsofEngineeringThermodynamics第八版教学设计 (2)

Fundamentals of Engineering Thermodynamics 第八版教学设计课程简介本课程为大学全日制本科生工程热力学基础课程,主要介绍热力学原理、状态方程、热力学过程、热力学第一定律和第二定律等基本知识,以及应用热力学的各种方法和技术。
教材为《Fundamentals of Engineering Thermodynamics》第八版,作者为Michael J. Moran、Howard N. Shapiro、Dsie D. Boettner和Margaret B. Bley。
其目的是帮助学生掌握基本的热力学概念,发展其分析和解决实际工程问题的能力。
教学目标1.掌握基本的热力学概念,包括热力学原理、状态方程、热力学过程、热力学第一定律和第二定律等;2.熟悉应用热力学的各种方法和技术,包括汽车轮机、船舶、建筑、发电厂等;3.提高学生分析和解决实际工程问题的能力,培养其工程实践能力。
教学内容第一章热力学基本概念1.热力学的定义和分支学科2.宏观和微观热力学3.系统和控制体4.热气体状态方程第二章热力学第一定律1.热力学第一定律的描述和应用2.热力学内能和焓的概念3.工作和热交换系统第三章热力学第二定律1.热量不能完全转化为工作的原因2.热力学温标和热力学效率3.可逆和不可逆过程第四章热循环技术1.热力学循环过程2.循环效率和制冷效率3.汽车轮机、船舶和飞机发动机的循环过程第五章恒稳过程热力学基本方程1.恒稳过程和能量方程2.热力学性质的测量3.热力学基本方程的应用第六章热力学方程的分析方法1.热力学基本方程的变形2.物性数据的方程形式3.热力学过程的合成和分解第七章多组分介质热力学1.多组分和多相介质的特性2.辅助热力学函数3.化学反应和相平衡教学方法1.理论讲授:通过讲授热力学基本理论和公式等,让学生了解和掌握基本热力学知识。
2.实验探究: 基于热力学知识,进行多组分和多相介质等实验,教会学生运用实验方法检测分析物质特性。
化工热力学 第三版 课后答案完整版 朱自强

临界常数
误差%
误差%
Magoulas等法
757.23
-0.16
11.896
-2.55
Teja等法
759.51
-0.46
12.156
-4.79
CG法
746.91
1.20
11.332
2.31
Hu等法
758.4
-0.32
11.347
2.18
Nikitin等也给出了 和 的推算方程如下:据此也可推算正十九烷的 和 。
(MPa)
误差%
1
2.759
-0.33
2
2.75
2.737
0.47
3
2.695
2.00
4
2.784
-1.24
由上表知,所用四种方法的计算误差都不大,但以RK方程法求得的值和实验值最为接近。其余的方法稍差。第一和第四种方法得到的是负偏差,而第二和第三种方法却是正偏差。
2-5 某气体的p-V-T关系可用RK方程表述,当温度高于 时,试推导出以下两个极限斜率的关系式:(1) ;(2) 。两式中应包含温度T和RK方程的常数a和b。
由附表1查得水蒸气的 、 和 分别为22.05Mpa, 647.3K和0.344,则
,
根据Pitzer的普遍化关联式,有
再由式(E3)和式(E2)得
故
(3)用水蒸气表计算
从水蒸气表(附表3)查得250℃,2000Kpa时的水蒸气的比容为
由于水的摩尔质量为18.02,故
同理
将三种方法计算得到的结果列表比较。
755.00
11.60
青岛化工学院等编写,化学化工物性数据手册(2002)
756
第十五次课相变热力学及期末复习1221

sub S S m ( g ) S m ( s ) S m
def g s
,2 trs Sm Sm (C ,2) Sm (C ,1) C C ,1 Sm
def
(2)不可逆相变过程相变熵
在求取不可逆相变过程的△S时,不能直接用不 可逆相变热Q除以过程温度T来计算。此不可逆相 变过程的△S的计算必须通过在相同的始末态间设 计一可逆过程,然后计算此可逆过程熵变△S。 例:计 算 101325Pa,50℃的 1molH2O(1) 变成 101325
相变G 相变H T 相变S 0
自 平
发 衡
例:已知 1molH2O(l) 在 101.325kPa , 263.15K 条件 下 凝 结 为 H2O(s) 的 △ fusH = -5650J , △ fusS= 20.7J· K-1 ,试计算该相变过程的△ fusG ,并判断该 相变过程能否自发进行。 解: fus G fus H T fus S
vap H m (142.9 C ) 40.63 ( 34.56 76.56 103 (416.1 373.2) 38.83kJ mol1
3、相变化过程熵变的计算
(1)可逆相过程相变熵
可逆相变是指在无限接近相平衡条件下进行的相 变化。
例如,373.15K时水的饱和蒸气压为101.325kPa,所以在 373.15K、101.325kPa的条件下水与水蒸气组成的系统处于 相平衡状态的系统。若将蒸气的压力减少了dp,则水与水蒸 气的平衡被破坏,于是水就要蒸发。
k AT e
A, n, Ea
n Ea / RT
动力学参数
2. 表观速率方程的参数确定 aA P
热力学第一定律

二、 外部储存能
热力系储存能
1. 宏观动能 :Ek ,单位为J或kJ
1 2 Ek mcf 2
2. 重力位能:Ep ,单位为 J 或 kJ
Ep mgz
2014-5-15
第二章
热力学第一定律
2014-5-15
热力系储存能
内动能-温度 内能U、u (热力学能) 热力系储存能E 外储存能 内位能-比体积 宏观动能 Ek
2014-5-15
2014-5-15
二、 功量
——在力差作用下,热力系与外界发生的能量交 换就是功量。 • 功量亦为过程量。 • 有各种形式的功,如电功、磁功、膨胀功、轴功等。 工程热力学主要研究两种功量形式:
体积变化功
轴功
2014-5-15
1、体积变化功
功量
——由于热力系体积发生变化(增大或缩小)而通过边
界向外界传递的机械功称为体积变化功(膨胀功或压缩功)。 • 体积变化功: W , 单位为J或kJ 。
• 1kg工质传递的体积变化功用符号w表示,单位为J/kg或kJ/kg。 • 正负规定: dv > 0 , w > 0 , 热力系对外作膨胀功 dv < 0 , w < 0 , 热力系对外作压缩功
2014-5-15
• 体积变化功的计算
体积变化功
如图2-2所示, 1kg的气体 ;可逆膨胀过程 ; p,A, dx
热力学能
比热力学能可表示为
u f (T , v)
• 热力学能是工质的状态参数。 • 在确定的热力状态下,热力系内工质具有确定的热力 学能。在实际分析和计算中,通常只需计算热力过程中 工质热力学能的变化量。因此可任意选取计算热力学能 的基本状态,如取0℃或0K时气体的热力学能为零。
工程热力学第15讲-第8章-2化学平衡、热力学第三定律

标准自由焓差
经验数据
0 GT
G RmT ln K p
0 T
≤ - 40 kJ/mol ≥ +40 kJ/mol
0 ≤ +40 GT
Kp ≥ 10+7 Kp ≤ 10–7
反应自发、完全 反应不可能
G
0 T
-40 ≤
10–7 ≤ Kp ≤ 10+7 可通过改变条件来促进反应进行
标准自由焓差的计算
aA bB dD eE
化学反应等温方程式
热力学方程:
dG SdT Vdp i dni
i
等温、等压条件下平衡条件:
dG i dni 0
i
d D eE a A bB 0
i i
i
0
化学平衡条件
i i
i
0
公式使用: (1)反应物取负号;
G RmT ln K p
0 T
理想气体应,Qp>0 ,升高温度,Kp 增加,正向反应。 对放热反应,Qp<0 ,升高温度,Kp 减小,逆向反应。
温度对化学平衡的影响
若温度变化不大,ΔH0可视为常数,得定积分式为:
0 H K p (T2 ) 1 1 ln ( ) K p (T1 ) Rm T1 T2
温度对化学平衡的影响
吉布斯-亥姆霍兹公式
G H G T T p
van’t Hoff 公式的微分式
0 0 GT GT H 0 T T p
ln K p H 0 2 T R T p m
化学平衡的特点
浓 度
速 率
工程热力学与传热学(第十五讲)10-1、2(一)

第十章水蒸气热力工程中使用的气体工质包括:气体和蒸汽两类。
蒸汽:是指刚刚脱离液态,或比较接近液态的气体工质,在被冷却或压缩时很容易回到液态。
特点:蒸汽分子之间的作用力和分子本身的体积不能忽略,不能作为理想气体处理。
工业上常用的蒸汽:水蒸气、制冷剂蒸汽等。
水蒸气的特点:①具有良好的热力性质;如比热容大、传热性好。
②价格低廉,对环境无污染。
③适用范围广。
制冷剂蒸汽主要有低沸点的氨和氟利昂,它们的性质与水蒸气类似。
本章以水蒸气为例,分析蒸汽的产生过程和性质,研究对其进行热工计算的方法,同时了解其它物质蒸汽的共性。
第一节基本概念一、汽化物质的液态与气态在一定条件是可以相互转换的。
汽化:物质由液态变为气态的过程称为汽化。
汽化有两种方式:蒸发与沸腾。
蒸发:在液体的自由表面上进行气化过程称为蒸发。
如杯中的水敞口放置一段时间后减少了;湿衣服晾干了等。
蒸发过程:液面附近动能较大的分子克服液体的表面张力,离开页面,并上升到空气中。
由于能量较大的分子的离开,会使液体内分子的平均动能减少,表现为液体温度降低,只有不断加热,才能维持液体的温度不变。
温度越高,蒸发越剧烈。
二、饱和温度、饱和压力在蒸发过程中,液面上方空间里的蒸汽分子总有可能碰液面而返回液体中,即凝结过程与蒸发过程是同时存在的。
一般的蒸发都是在自由空间中进行的,液面上除蒸汽分子外还有大量空气等其他气体,因而蒸汽分子的浓度很小,分压较低,其凝结速度小于蒸发速度,总的来看表现为蒸发过程。
若蒸发发生在封闭的容器中,随着蒸发的进行,液面上方的蒸汽分子越来越多,碰撞液面的机会也越来越多,使凝结速度加快。
当蒸发和凝结的速度相等时,气液两相将达到平衡,这时空间的蒸汽分子浓度不再改变,这种处于两相平的状态称为饱和状态。
饱和温度(t s):饱和状态时所对应的温度称为饱和温度。
饱和压力(p s):饱和状态时液体表面上方蒸汽产生的压力称为饱和压力。
对应于某一饱和温度,必有一个饱和压力与之对应,饱和温度越高,对应的饱和压力就越大。
工程热力学第五版思考题答案

工程热力学第五版思考题答案【篇一:工程热力学课后作业答案第五版(全)】kpa。
(2)标准状n2的气体常数;态下n2的比容和密度;(3)p?0.1mpa,t?500解:热力系:储气罐。
应用理想气体状态方程。
压送前储气罐中co2的质量m1?p1v1rt1℃时的摩尔容积mv。
解:(1)n2的气体常数r?r0m?831428=296.9j/(kg?k)压送后储气罐中co2的质量m2?p2v2rt2(2)标准状态下n2的比容和密度v?rtp?296.9?273101325根据题意容积体积不变;r=188.9=0.8m3/kgp1?pg1?b p2?pg2?b(1)(2)(3)(4)??1v=1.25kg/m3(3)p?0.1mpa,t?500℃时的摩尔容积mvmv =r0tpt1?t1?273 t2?t2?273=64.27m3/kmol压入的co2的质量m?m1?m2?vp2p1(?) rt2t1(5)2-3.把co2压送到容积3m3将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m3的1的储气罐里,起始表压力pg1?30kpa,终了表压力pg2?0.3mpa,温度由t1=45℃增加到t2=70℃。
试求被压入的co2的质量。
当地大气空气,如外界的温度增高到27℃,大气压降低到99.3kpa,而鼓风机每小时的送风量仍为300 m,问鼓风机送风量的质量改变多少?解:同上题m?m1?m2?3气质量m2?p2v2rt2?7?105?8.5287?288kg压缩机每分钟充入空气量m?pvrt?1?105?3287?288kg所需时间vp2p130099.3101.325m219.83min ?1000(?)?(??rt2t1287300273m=41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1mpa的空气3 m3,充入容积8.5 m3的储气罐内。
物理化学复习题

第一章 热力学第一定律练 习 1.11.下面哪一组中各热力学性质均为强度性质?( B )(A) U 、H 、P 、; (B) Vm 、C P,m 、T (C)P 、Vm 、S (D) P 、G 、Vm(摩尔体积)2. 封闭系经过任意循环过程,则有( C )。
(A)W=0 ; (B) Q=0 ; (C)W+Q=0 ; (D)均不正确。
3.理想气体向真空膨胀过程,则有( A )。
(A)W=0 ,ΔT=0 (B)W<0 ,ΔT>0 (C)W>0,ΔT<0 (D ) W=0,ΔT<04.对于理想气体,下式中不正确的是( D )。
(A)0=⎪⎭⎫ ⎝⎛∂∂T V U ; (B) 0=⎪⎭⎫ ⎝⎛∂∂T P U ;(C)0=⎪⎭⎫ ⎝⎛∂∂T V H ; (D) 0=⎪⎭⎫ ⎝⎛∂∂VP H5.1mol 理想气体,从体积V 1经过等温膨胀至V 2,该过程( B )。
(A)ΔU>0,ΔH>=0 ; (B)ΔU=0,ΔH=0 ;(C)ΔU<0,ΔH<0; (D)均不正确。
6.水在0℃、101.325kPa 压力下结冰过程中( A )。
(A)ΔP=0,ΔT=0 ; (B)ΔU=0,ΔH=0 ;(C)ΔU=0,ΔT=0; (D)均不正确。
7.1摩尔水在100℃、101.325kPa 压力下蒸发为同温同压的水蒸气,该过程的体积功为( B )。
(A)373.15R ; (B) -373.15R ; (C)0; (D)均不正确。
8.Q P =△H 的适用条件是( D )。
(A)可逆过程; (B)理想气体;(C)等压化学变化; (D)等压只作膨胀功。
9.1mol 单原子理想气体,在300K 时绝热压缩到500K ,焓变△H 约为( A )。
(A) 4157 J (B) 596 J (C) 1255 J (D) 994 J10.在绝热钢瓶中,发生一个分子数增加的放热反应,以钢瓶为体系则( C )。