一元一次方程的讨论(3)
一元一次方程的解的分类讨论

一元一次方程的解的分类讨论一元一次方程是指只含有一个未知数,并且未知数的最高次数为1的方程。
解一元一次方程是初中数学学习的基础内容,本文将对一元一次方程的解进行分类讨论。
一、无解的情况在一元一次方程中,存在着无解的情况。
当系数a和b满足一定条件时,方程将无解。
设方程为ax + b = 0,根据一元一次方程的解的判定条件可知,当a=0,b≠0时,方程无解。
这是因为当a=0时,方程变为0x + b = 0,无论b的值如何,都无法找到一个x使等式成立。
二、有唯一解的情况继续讨论一元一次方程的解分类,可以发现还存在着有唯一解的情况。
当系数a和b满足一定条件时,方程仅有一个解。
设方程为ax + b = 0,根据一元一次方程的解的判定条件可知,当a≠0时,方程有唯一解。
这是因为当a≠0时,方程变为ax + b = 0,可以通过移项和除以a的方式,求得唯一解x = -b/a。
三、有无穷多解的情况除了无解和有唯一解的情况外,一元一次方程还存在有无穷多解的情况。
当系数a和b满足一定条件时,方程将有无穷多解。
设方程为ax + b = 0,根据一元一次方程的解的判定条件可知,当a=0且b=0时,方程有无穷多解。
这是因为当a=0且b=0时,方程变为0x + 0 = 0,任意实数x都可以使等式成立。
总结一元一次方程的解的分类讨论,可以得出以下结论:1. 当方程的系数a和b满足a=0且b≠0时,方程无解。
2. 当方程的系数a满足a≠0时,方程有唯一解,解为x = -b/a。
3. 当方程的系数a和b满足a=0且b=0时,方程有无穷多解。
根据以上分类讨论,我们可以更加深入地理解一元一次方程的解的特点和性质,并能够更准确地求解一元一次方程的解。
这里我们可以举一个具体的例子来说明。
假设有一个一元一次方程2x + 4 = 0,我们可以将其应用到分类讨论中。
根据分类讨论的结论,我们可以得出该方程的系数a=2,b=4。
由于a≠0,所以该方程有唯一解。
一元一次方程教案(通用11篇)

一元一次方程教案一元一次方程教案(通用11篇)作为一名老师,就不得不需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
怎样写教案才更能起到其作用呢?以下是小编精心整理的一元一次方程教案范文,希望对大家有所帮助。
一元一次方程教案篇1教学目标:1、能说出什么叫一元一次方程;2、知道“元”和“次”的含义;3、熟练掌握最简一元一次方程的解法及理论依据;能力目标:1、培养学生准确运算的能力;2、培养学生观察、分析和概括的能力;3、通过解方程的教学,了解化归的数学思想.德育目标:1、渗透由特殊到一般的辩证唯物主义思想;2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习惯和责任感;3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;重点:1、一元一次方程的概念;2、最简方程的解法;难点:正确地解最简方程。
教学方法:引导发现法教学过程一、旧知识的复习:1.什么叫等式?等式具有哪些性质?2.什么叫方程?方程的解?解方程?二、新知识的教学:(1)只含有一个未知数;(2)未知数的次数都是一次。
想一想:(1)你认为最简单的一元一次方程是什么样的?(2)怎样求最简方程(其中是未知数)的解?三、巩固练习1、通过练习,请你总结一下,解方程(是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。
2、检测:3、课堂小结:四、本节学习的主要内容1、一元一次方程定义;2、最简方程(其中是未知数);3、解最简方程的主要思路和解题的关键步骤及依据。
五、课堂作业。
一元一次方程教案篇2一、活动内容:课本第110页111页活动1和活动3二、活动目标:1、知识与技能:运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。
2、过程与方法:(1)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断。
(2)运用所学过的数学知识进行分析,演练、合作探究,体会数学知识在社会活动中的运用,提高应用知识的能力和社会实践能力。
一元一次方程的讨论

一元一次方程的讨论(二)教学目标:1、通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更为简捷明了,省时少力;掌握去括号解方程的方法,会用去分母的方法解一元一次方程.2、培养学生分析问题,解决问题的能力.3、通过列方程解决实际问题,使学生感受到数学的应用价值,激发学生学习数学的信心.教学难点:让学生逐步树立列方程解应用题的思想.教学重点:弄清列方程解应用题的思想方法;会用去括号、去分母解一元一次方程.教学过程:一、去括号同学们也许都读过俄国杰出短篇小说家契诃夫的作品《变色龙》、《套中人》、《小公务员之死》……可同学们是否还知道,在他的小说《家庭教师》中,居然写了一位教师为一道数学题大伤脑筋呢!让我们大家一起来看看这究竟是怎样的一道题:顾客用540卢布买了两种布料共138俄尺,其中蓝布料每俄尺3卢布,黑布料每俄尺5卢布,两种布料各买了多少?1、如何解决这个问题呢?2、算术方法?方程方法?两种都行吗?孰良孰莠?请同学们讨论交流.3、较之算术方法,方程解法要简易得多,展示如下:(师生共同合作)设买了蓝布料x俄尺,那么买黑布料(138-x)俄尺;因而买蓝布料花了3x卢布,买黑布料花了5(138-x)卢布,根据买两种布料共用540卢布,列得方程3x+5(138-x) = 540好,现在怎样使这个方程向x = a的形式转化呢?利用“分配律”先去括号,下面的框图表示了解这个方程的具体进程,你能说出每步的依据吗?由上可知,买了75俄尺蓝布料和63俄尺黑布料。
去括号:在解方程的过程中,我们发现去括号是解方程时常用的变形,因而,要利用方程解决实际问题,当然必须掌握去括号解方程的能力.二、去分母丢番图的墓志铭:“坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路.上帝给予的童年占六分之一又过十二分之一,两颊长胡.再过七分之一,点燃起结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进人冰冷的墓.悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途.”请你列出方程算一算,丢番图去世时的年龄?设丢番图去世时的年龄为x岁,由题意可列方程= x和以往不同的是,我们看到,上面这个方程中有些系数是分数,如果能化去分母,把系数化成整数,那么可以使解方程中的计算更方便一些.去分母的关键在于:方程两边同时乘以各分母的最小公倍数84.于是,所列方程变为整系数方程,解得:x = 84探讨归纳:解方程:1、为使方程变为整系数方程,方程两边应该同乘以什么数?2、在去分母的过程中,应该注意哪些易错的问题?解上述方程的全过程,展示了一元一次方程解法的一般步骤,试归纳、小结,并了解过程中每一步的主要依据.三、小结:1、通过这节课,你在用一元一次方程解决实际问题方面又获得了哪些收获?2、去括号解一元一次方程要注意什么?3、去分母解一元一次方程时要注意什么?4、去分母解一元一次方程时,在方程两边同时乘以各分母最小公倍数的目的是什么?。
初中七年级上册数学《解一元一次方程》教案优质范文五篇

初中七年级上册数学《解一元一次方程》教案优质范文五篇星星从不嫉妒太阳的灿烂辉煌,它在自己的岗位上尽力发光。
今天小编为大家带来的是初中七年级上册数学《解一元一次方程》教案优质范文,希望可以帮助到大家。
初中七年级上册数学《解一元一次方程》教案优质范文一教材分析:《解一元一次方程(一)合并同类项与移项》是义务教育教科书七年级数学上册第三章第二节的内容。
在此之前,学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中。
这为过渡到本节的学习起着铺垫作用。
合并同类项与移项是解方程的基础,解方程它的移项根据是等式性质1、系数化为1它的根据是等式性质2,解方程是今后进一步学习不可缺少的知识。
因而,解方程是初中数学中必须要掌握的重点内容。
设计思路:《数学课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
基于以上理念,结合本节课内容及学生情况,教学设计中采用了探究发现法和多媒体辅助教学法,在学生已有的知识储备基础上,利用课件,鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生始终处于积极探索的过程中,通过学生动手练习,动脑思考,完成教学任务。
其基本程序设计为:复习回顾、设问题导入探索规律、形成解法例题讲解、熟练运算巩固练习、内化升华回顾反思、进行小结达标测试、反馈情况作业布置、反馈情况。
教学目标:1、知识与技能:(1)通过分析实际问题中的数量关系,建立方程解决实际问题,进一步认识方程模型的重要性;(2)、掌握移项方法,学会解“a·+b=c·+d”的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。
2、过程与方法:通过解形如“a·+b=c·+d”形式的方程,体验数学的建模思想。
3、情感、态度与价值观:通过合作探究,培养学生积极思考、勇于探索的精神。
教学重点:建立方程解决实际问题,会解“a·+b=c·+d”类型的一元一次方程。
一元一次方程重难点

一元一次方程的讨论
重难点:
1、移项的定义:把方程中的某一项改变符号后,从方程的一边移向另一边,这种变形叫做移项;
2、把系数化成1,即把未知数的系数搬到方程的另一边时是作为除数,而且不要改变符号。
重难点理由:
由于一元一次是中考的重要内容之一,因此必须要精准熟练的掌握,这对我们初学者来说,方程的移项和系数的化1尤其容易迷惑,实际教学中,学生也是在这两方面经常出现差错,比如:移项未变符号了,系数化1漏除项经常在作业批改中出现问题,这也导致计算结果大大偏离。
我们必须要在学生学习的前期为他们打好基础,否则以后,对方程的理解和运用中就会变得举步维艰。
掌握方法推介:
1、多讲解经典立体,加深学生的印象、理解、思路;
2、出经典例题让学生来做、来讲解、由其他学生来弥补和评价参与进来,激发兴趣的同时也学历到了知识、解决了问题。
人教版七年级上册第三章《一元一次方程》教材分析

一元一次方程教材分析一.本章在教材中的位置:本章的主要内容包括一元一次方程的定义、解法及应用。
小学时我们主要与数打交道,到了中学我们主要与字母代数式打交道.如果从应用的角度看,小学主要学习了用数的四则运算解实际问题,到了中学我们主要是用方程、不等式、函数的知识解决实际问题,一元一次方程的解法与应用是用方程、不等式、函数解实际问题的开始.一元一次方程的解法的依据是整式的运算和等式的性质,所以本章的学习可以加强有理数与整式运算的复习,使学生了解知识的内在联系与应用意识。
同时本章的学习直接关系到一元一次不等式和二次方程以及初三的函数的学习及学生今后解决实际问题的能力。
所以一元一次方程良好的开始至关重要。
二.教材内容:三.课程学习目标:1、经历“把实际问题抽象为数学方程”的过程,体会从算式到方程是数学的进步;2、利用等式的基本性质理解一元一次方程的解法依据,掌握一元一次方程的解法;3、能够“找出实际问题中的已知数和未知数,分析它们之间的关系,设出未知数,列出方程表示问题中的等量关系”;4、通过探究实际问题,体会方程的优越性,提高分析问题解决问题的能力。
四.教材编写特点:1、与以往教材相比较,增加了由算式到方程这一节,加强了学生对算式与方程的认识;2、在方程的解法中,结合实际问题讨论解方程,加强了对学生应用意识的培养;3、通过加强探究性,培养分析解决问题的能力、创新精神和实践意识;4、从习题的选择到课后的阅读思考都在有意关注数学文化的传承;五.教学中应关注的几个问题:3.1 从算式到方程1. 要学生了解算术法与方程法解应用题的区别,体会方程的优越性; 如本节第一个例题:)1(503)35()7050(+⨯-÷+=x ; )2(570350+=-x x(1)为算术解法,未知量没有参与运算,(2)为方程解法;未知量可以参与运算。
2. 能区分用语言文字表述的一段话是相等关系还是不等关系; 例:下列哪段话表示相等关系(1)甲等于乙的2倍;(2)甲比乙的2倍小3;(3)甲乙两数和为5;(4)甲比乙大 (5)以前学习的一些公式3. 相等关系在列方程解应用题中的应用。
比较难的一元一次方程

比较难的一元一次方程一元一次方程是初中数学中的基础知识,虽然在学习过程中会遇到一些简单的一元一次方程,但也有一些比较难的一元一次方程需要我们运用一些特殊的解题方法和思路。
本文将围绕“比较难的一元一次方程”展开详细阐述,希望能引起读者的兴趣和共鸣。
一元一次方程是一个未知数的一次方程,通常可以表示为ax+b=0的形式,其中a和b为已知数,x为未知数。
我们的任务是求解方程中的未知数x的值。
对于一般的一元一次方程,我们可以通过移项、合并同类项、消元等方法来解题。
但对于比较难的一元一次方程,我们需要运用更高级的解题技巧。
首先,对于含有分数的一元一次方程,我们可以通过消去分母的方式来解题。
例如,对于方程(2/3)x-1/2=1/4,我们可以将方程两边乘以6,消去分母,得到4x-3=3/2。
接下来,我们可以通过移项将方程转化为整数形式,进而求解未知数x的值。
其次,对于含有绝对值的一元一次方程,我们可以通过分情况讨论的方式来解题。
例如,对于方程|2x-1|=3,我们可以分别讨论2x-1大于0和小于0的情况。
当2x-1大于0时,方程可简化为2x-1=3,解得x=2。
当2x-1小于0时,方程可简化为-(2x-1)=3,解得x=-1。
因此,该方程的解为x=-1和x=2。
另外,对于含有平方根的一元一次方程,我们可以通过平方的方式来解题。
例如,对于方程√(3x+1)=2,我们可以将方程两边进行平方,得到3x+1=4。
接下来,我们可以通过移项将方程转化为一元一次方程的形式,进而求解未知数x的值。
此外,对于含有开方的一元一次方程,我们可以通过变量代换的方式来解题。
例如,对于方程√(x+3)+√(x-1)=5,我们可以令y=x+3,将方程转化为√y+√(y-4)=5。
接下来,我们可以通过移项将方程转化为一元一次方程的形式,进而求解未知数y的值,再通过y=x+3的关系求解x的值。
最后,对于含有系数为参数的一元一次方程,我们可以通过参数的取值范围来求解未知数的值。
人教版 七年级上册 实际问题与一元一次方程探究3(电话计费问题)教学设计 精品

课题:§3.4实际问题与一元一次方程(探究3)-----电话计费问题(教学设计)【教学设计理念】本课的教学设计以建构主义理论为理论依据。
以学生为中心,在整个教学过程中由教师起组织者、指导者、帮助者和促进者的作用,把多媒体技术(平板电脑互动教学模式)融入课堂,利用情境、协作、会话等学习环境要素,充分发挥学生的主动性、积极性和首创精神,最终达到使学生有效地实现对当前所学知识的意义建构的目的。
以翻转课堂教学模式,在课前通过微课先让学生初步了解知识概念,有初步的感知,为本课的探究做好知识的铺垫。
在课内使用平板教学,达到多元互动的目的。
本校教学特色:把多媒体技术融入课堂,培养学生的自主学习能力,通过小组合作交流的方式来发现解决问题的途径。
【教学任务分析】12【教学过程】3(3)思考:如何选择计费方式,使用户打电话更划算?由(2)得,当t=250时,两种计费方式相同.选择两者皆可。
那么,当t<250时,神州行收费便宜,应选择神州行更划算。
当t>250时,全球通收费便宜,应选择全球通更划算。
2.完成练习,自我检测1、某市出租车计价规则如下:不超过2.5千米,收起步价10元。
超过部分每千米2.6元,某天小李去探望一位朋友,坐出租车付了19元。
设小李坐的路程为x千米,可列方程为()A.2.6x+10×3=19B. 2.6x+10=19C. 2.6x−10=19D. 2.6(x−3)+10=192、某电信公司给顾客提供了两种手机上网计费方式:方式A以每分钟0.1元的价格按上网时间计费;方式B除收月基费20元外,再以每分钟0.06元的价格按上网时间计费.假设顾客一个月手机上网的时间共有x分钟,上网费用为y元(1)用含有x的代数式分别写出顾客按A,B两种方式计费的上网费;答:按A方式计费的上网费为:y= 按B方式计费的上网费为:y=(2) 当x= 时,两种计费方式收费一样。
学生网上完成,客观题网络批改,主观题教师网上批改,学生观看网上解析和教师评语。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2005.11.26
先列方程,再解方程
1、某面粉仓库存放的面粉运 出15%后,还剩余42500千克。 仓库原来有多少面粉?
我们如何列一元一次方程?
仓库总面 粉
运走15%
剩下的
思考:
在本题中有怎样的一个 相等关系:
仓库总量=运走的+剩下的
运走15%
仓库总面 粉
剩下的
仓库总量 =运走的 + 剩下的
X
?= 15%X + 42500
15 _ X- 100 X=42500
解:设原来有X千克面粉,
那么运出了15%· X千克,
根据题意得: X=15%· X+42500 15 _ X=42500 即;X- 100
有一列数,按一定规律排成
1 , - 3, 9 , 27 , 81 , 24 3 ....
解是多少?
这种尝试检验的方法是解决问题的一种重 要的思想方法。
其中某三数之和为-1701。这三 个数各是多少?
月租费
全球通 50元/月
神州行 0元/月
本地通话 0.40元/分 0.6 0元/分
全球通 200分 300分 神州行 120 180
130 170
小结: 第一步:分析题意找相等关系
的各量。 第三步:列方程 第四步:解方程
第二步:用代数式表示等式中
第五步:作答
解方程 -2x + 5=4 - 3x 解:移项,得 3x-2x=4+5 合并,得 x=9
解下列方程:
1)10x-3=9
3) 3x=2x+1
2)5x-2=8
4) 5x-2=7x+8
5) x
6 )1
3 2
3 2
x 16
5 2
ห้องสมุดไป่ตู้
x 3x
怎样解
x 10 . 1 2
10 . 4
目前我们如何去解一元一次方程?
移项,
合并,系数化为1
(1) 2x+6=1 (2) 3x+3=2x+7
1 4
x
1 2
x3
例3解下列方程: (1) 5x=50+4x; (2) 8-2x=9-4x.
解一元一次方程就是根据是等式 的性质,把方程变形成“x=a(a为 已知数)”的形式。
下面方程的解法对吗?如果不对, 应怎样改正?