2019-2020学年重庆八中九年级下学期定时练习数学试卷(九) (解析版)
重庆八中2019-2020学年中考数学模拟试卷

重庆八中2019-2020学年中考数学模拟试卷一、选择题1.2-的相反数是A .2B .2-C .12D .12-2.小明把一副45,30的直角三角板如图摆放,其中00090,45,30C F A D ∠=∠=∠=∠=,则αβ∠+∠等于 ( )A .0180B .0210C .0360D .02703.如图所示,点A 是双曲线y=1x(x >0)上的一动点,过A 作AC ⊥y 轴,垂足为点C ,作AC 的垂直平分线双曲线于点B ,交x 轴于点D .当点A 在双曲线上从左到右运动时,四边形ABCD 的面积( )A .不变B .逐渐变小C .由大变小再由小变大D .由小变大再由大变小 4.下列等式从左到右的变形,属于因式分解的是( ) A .8x 2 y 3=2x 2⋅4 y 3B .( x+1)( x ﹣1)=x 2﹣1C .3x ﹣3y ﹣1=3( x ﹣y )﹣1D .x 2﹣8x+16=( x ﹣4)2 5.在不透明的袋子中装有9个白球和1个红球,它们除颜色外其余都相同,现从袋子中随机摸出一个球,摸出的球是白球,则该事件是( )A .必然事件B .不可能事件C .随机事件D .以上都有可能6.某校九年级(1)班为了筹备演讲比赛,准备用200元钱购买日记本和钢笔两种奖品(两种都要买),其中日记本10元/本,钢笔l5元/支,在钱全部用完的条件下,购买的方案共有( )A .4种B .5种C .6种D .7种7.如图,在△ABC 中,CA=CB ,∠C=90°,点D 是BC 的中点,将△ABC 沿着直线EF 折叠,使点A 与点D 重合,折痕交AB 于点E ,交AC 于点F ,那么sin ∠BED 的值为( ).A .35B .53C .512D .128.如图,已知函数3y x =-与k y x =的图象在第二象限交于点()1,A m y ,点()21,B m y -在k y x=的图象上,且点B 在以O 点为圆心,OA 为半径的O 上,则k 的值为( )A .34-B .1-C .32-D .2-9.如图,从一个直径为4的圆形铁皮中剪下一个圆心角为60°的扇形ABC ,将剪下来的扇形围成一个圆锥,则圆锥的底面半径为( )A .23B .3C .3D .2 10.如果三角形的两边长分别为方程x 2﹣8x+15=0的两根,则该三角形周长L 的取值范围是( )A .6<L <15B .6<L <16C .10<L <16D .11<L <1311.如图,平行四边形ABCD 中,BE ⊥CD ,BF ⊥AD ,垂足分别为E 、F ,CE =2,DF =1,∠EBF =60°,则这个平行四边形ABCD 的面积是( )A .B .C .D .12.在整数范围内,有被除数=除数×商+余数,即a =bq+r(a≥b,且b≠0,0≤r<b),若被除数a 和除数b 确定,则商q 和余数r 也唯一确定,如:a =11,b =2,则11=2×5+1此时q =5,r =1.在实数范围中,也有a =bq+r(a≥b 且b≠0,商q 为整数,余数r 满足:0≤r<b),若被除数是,除数是2,则q 与r 的和( )A .﹣4B .﹣6C .-4D .-2 二、填空题13.写出一个解为1的分式方程:_____.14.如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与B ,C 重合),过点C 作CN 垂直DM 交AB 于点N ,连结OM ,ON ,MN .下列五个结论:①CNB DMC ∆≅∆;②ON OM =;③ON OM ⊥;④若2AB =,则OMN S ∆的最小值是1;⑤222AN CM MN +=.其中正确结论是_________.(只填序号)15.如图,在中,,点为的中点,将绕点按顺时针方向旋转,当经过点时得到,若,,则的长为___.16.如图,在△ABC 中,∠B =45°,tanC =12,AB AC =_____.17.已知不等式x 2+mx+2m >0的解集是全体实数,则m 的取值范围是_____. 18.已知a+b =8,ab =12,则222a b ab +-=_____. 三、解答题19.计算或化简:(1(12)﹣1π)0. (2)(x ﹣2)2﹣x (x ﹣3).20.定义:在平面直角坐标系中,图形G 上点P x y (,)的纵坐标y 与其横坐标x 的差y x -称为P 点的“坐标差”,记作Zp ,而图形G 上所有点的“坐标差”中的最大值称为图形G 的“特征值”.(1)①点A (3,1)的“坐标差”为 ;②求抛物线25y x x =-+的“特征值”;(2)某二次函数2(0)y x bx c c =-++≠的“特征值”为1-,点B (m ,0)与点C 分别是此二次函数的图象与x 轴和y 轴的交点,且点B 与点C 的“坐标差”相等.①直接写出m = ;(用含c 的式子表示)②求此二次函数的表达式.21.某市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克? 22.化简:(1)a (a ﹣b )﹣(a+b )(a+2b );(2)2233222a a a a a a -⎛⎫÷-- ⎪++⎝⎭23.中国“蛟龙”号深潜器目前最大深潜极限为7062.68米。
重庆八中2019-2020学年中考数学模拟试卷

重庆八中2019-2020学年中考数学模拟试卷一、选择题1.2-的相反数是A .2B .2-C .12D .12-2.小明把一副45,30的直角三角板如图摆放,其中00090,45,30C F A D ∠=∠=∠=∠=,则αβ∠+∠等于 ( )A .0180B .0210C .0360D .02703.如图所示,点A 是双曲线y=1x(x >0)上的一动点,过A 作AC ⊥y 轴,垂足为点C ,作AC 的垂直平分线双曲线于点B ,交x 轴于点D .当点A 在双曲线上从左到右运动时,四边形ABCD 的面积( )A .不变B .逐渐变小C .由大变小再由小变大D .由小变大再由大变小 4.下列等式从左到右的变形,属于因式分解的是( ) A .8x 2 y 3=2x 2⋅4 y 3B .( x+1)( x ﹣1)=x 2﹣1C .3x ﹣3y ﹣1=3( x ﹣y )﹣1D .x 2﹣8x+16=( x ﹣4)2 5.在不透明的袋子中装有9个白球和1个红球,它们除颜色外其余都相同,现从袋子中随机摸出一个球,摸出的球是白球,则该事件是( )A .必然事件B .不可能事件C .随机事件D .以上都有可能6.某校九年级(1)班为了筹备演讲比赛,准备用200元钱购买日记本和钢笔两种奖品(两种都要买),其中日记本10元/本,钢笔l5元/支,在钱全部用完的条件下,购买的方案共有( )A .4种B .5种C .6种D .7种7.如图,在△ABC 中,CA=CB ,∠C=90°,点D 是BC 的中点,将△ABC 沿着直线EF 折叠,使点A 与点D 重合,折痕交AB 于点E ,交AC 于点F ,那么sin ∠BED 的值为( ).A .35B .53C .512D .128.如图,已知函数3y x =-与k y x =的图象在第二象限交于点()1,A m y ,点()21,B m y -在k y x=的图象上,且点B 在以O 点为圆心,OA 为半径的O 上,则k 的值为( )A .34-B .1-C .32-D .2-9.如图,从一个直径为4的圆形铁皮中剪下一个圆心角为60°的扇形ABC ,将剪下来的扇形围成一个圆锥,则圆锥的底面半径为( )A .23B .3C .3D .2 10.如果三角形的两边长分别为方程x 2﹣8x+15=0的两根,则该三角形周长L 的取值范围是( )A .6<L <15B .6<L <16C .10<L <16D .11<L <1311.如图,平行四边形ABCD 中,BE ⊥CD ,BF ⊥AD ,垂足分别为E 、F ,CE =2,DF =1,∠EBF =60°,则这个平行四边形ABCD 的面积是( )A .B .C .D .12.在整数范围内,有被除数=除数×商+余数,即a =bq+r(a≥b,且b≠0,0≤r<b),若被除数a 和除数b 确定,则商q 和余数r 也唯一确定,如:a =11,b =2,则11=2×5+1此时q =5,r =1.在实数范围中,也有a =bq+r(a≥b 且b≠0,商q 为整数,余数r 满足:0≤r<b),若被除数是,除数是2,则q 与r 的和( )A .﹣4B .﹣6C .-4D .-2 二、填空题13.写出一个解为1的分式方程:_____.14.如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与B ,C 重合),过点C 作CN 垂直DM 交AB 于点N ,连结OM ,ON ,MN .下列五个结论:①CNB DMC ∆≅∆;②ON OM =;③ON OM ⊥;④若2AB =,则OMN S ∆的最小值是1;⑤222AN CM MN +=.其中正确结论是_________.(只填序号)15.如图,在中,,点为的中点,将绕点按顺时针方向旋转,当经过点时得到,若,,则的长为___.16.如图,在△ABC 中,∠B =45°,tanC =12,AB AC =_____.17.已知不等式x 2+mx+2m >0的解集是全体实数,则m 的取值范围是_____. 18.已知a+b =8,ab =12,则222a b ab +-=_____. 三、解答题19.计算或化简:(1(12)﹣1π)0. (2)(x ﹣2)2﹣x (x ﹣3).20.定义:在平面直角坐标系中,图形G 上点P x y (,)的纵坐标y 与其横坐标x 的差y x -称为P 点的“坐标差”,记作Zp ,而图形G 上所有点的“坐标差”中的最大值称为图形G 的“特征值”.(1)①点A (3,1)的“坐标差”为 ;②求抛物线25y x x =-+的“特征值”;(2)某二次函数2(0)y x bx c c =-++≠的“特征值”为1-,点B (m ,0)与点C 分别是此二次函数的图象与x 轴和y 轴的交点,且点B 与点C 的“坐标差”相等.①直接写出m = ;(用含c 的式子表示)②求此二次函数的表达式.21.某市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克? 22.化简:(1)a (a ﹣b )﹣(a+b )(a+2b );(2)2233222a a a a a a -⎛⎫÷-- ⎪++⎝⎭23.中国“蛟龙”号深潜器目前最大深潜极限为7062.68米。
2019-2020学年重庆八中九年级(下)第一次月考数学试卷(有答案解析)

2019-2020学年重庆八中九年级(下)第一次月考数学试卷一、选择题(本大题共12小题,共48.0分)1.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是A. 圆柱B. 圆锥C. 球D. 正方体2.若在实数范围内有意义,则x的取值范围在数轴上表示正确的是A. B.C. D.3.下列各线段中,能与长为4,6的两线段组成三角形的是A. 2B. 8C. 10D. 124.下列命题正确的是A. 若锐角满足,则B. 在平面直角坐标系中,点关于x轴的对称点为C. 两条直线被第三条直线所截,同旁内角互补D. 相似三角形周长之比与面积之比一定相等5.中国明代数学著作算法统宗中有这样一首古诗:“巍巍古寺在山中,不知寺内几多僧?三百六十四只碗,恰好用尽不用争.三人共餐一碗饭,四人共尝一碗羹,请问先生能算者,算出寺内几多僧?”其大意是,某古寺用餐,3个和尚合吃一碗饭,4个和尚合分一碗汤,一共用了364只碗,问有多少个和尚?根据题意,可以设和尚的个数为x,则得到的方程是A. B. C. D.6.如果,那么代数式的值为A. B. C. 2 D.7.若点,都在二次函数为常数,且的图象上,则m和n的大小关系是A. B.C. D. 以上答案都不对8.最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的小正方形组成的.设直角三角形的两直角边长为a,b,且满足,若小正方形的面积为11,则大正方形的面积为A. 15B. 17C. 30D. 349.重庆移动为了提升新型冠状肺炎“停课不停学”期间某片区网络信号,保证广大师生网络授课、听课的质量,临时在坡度为:的山坡上加装了信号塔如图所示,信号塔底端Q到坡底A的距离为米.同时为了提醒市民,在距离斜坡底A点米的水平地面上立了一块警示牌当太阳光线与水平线成角时,测得信号塔PQ落在警示牌上的影子EN长为3米,则信号塔PQ的高约为结果精确到十分位,参考数据:,,A. B. C. D.10.如图,在中,,以点A为圆心,AB长为半径作弧,交BC于点D,交AC于点G;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线AE交BC于点F,若以点G为圆心,GC长为半径作两段弧,一段弧过点C,而另一段弧恰好经过点D,则此时的度数为A. B. C. D.11.已知,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发4分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程米与甲出发的时间分钟之间的关系如图所示,则下列结论错误的是A. A、B两地相距2480米B. 甲的速度是60米分钟,乙的速度是80米分钟C. 乙出发17分钟后,两人在C地相遇D. 乙到达A地时,甲与A地相距的路程是300米12.若整数a既使得关于x的分式方程有整数解,又使得关于x,y的方程组的解为正数,则符合条件的所有a的个数为A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共24.0分)13.计算:______.14.正多边形的一个外角是,则这个多边形的内角和的度数是______.15.如图,四边形OABC的顶点O为坐标原点,以O为位似中心,作出四边形与四边形OABC位似,若的对应点为,四边形OABC的面积为27,则四边形的面积为______.16.如图,在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,任意三个格点组成的三角形面积如果不小于1,则称为“离心三角形”,而如果面积恰好等于1,则称为“环绕三角形”,B是网格图形中已知的两个格点,点C是另一格点,且满足是“离心三角形”,则是“环绕三角形”的概率是______.17.如图,在平面直角坐标系内,O为坐标原点,点A为直线上一动点,过A作轴,交x轴于点点C在原点右侧,交双曲线于点B,且,则当存在时,其面积为______.18.如图,在中,,,将绕点B顺时针旋转一定角度后得到,连接,,过点A作交于点D,若,,且,则AD的长为______.三、计算题(本大题共1小题,共10.0分)19.解不等式组:;化简:.四、解答题(本大题共7小题,共68.0分)20.如图,AB为的直径,弦,垂足为E,,连接OC,,F为圆上一点,过点F作圆的切线交AB的延长线于点G,连接BF,.求的半径;求证:;求阴影部分的面积.21.据第四次全国经济普査的数据表明,中国经济已经开始由高速度增长转向高质量发展,供给侧结构性改革初见成效.各地产品质量监管部门也严抓质量,整顿生产,促进经济更好发展.某质量监管部门对甲、乙两家工厂生产的同种产品进行检测,分别随机抽取50件产品,并对产品的某项关键质量指标做检测,获得质量指标检测值t,对数据整理分析的部分信息如下:【1】甲、乙两工厂的样本数据频数分布表如下:工厂类别合计甲工厂频数0a10350频率b乙工厂频数3151318150频率其中,乙工厂样品质量指标检测值在范围内的数据分别是:100,,99,102,97,95,101,98,100,98,102,104.【2】两工厂样本数据的部分统计数据如下:平均数中位数众数方差甲工厂96乙工厂c107根据以上信息,回答下列问题:表格中,______,______,______;已知质量指标检测值在内,属于合格产品.若乙工厂某批产品共1万件,估计该批产品中不合格的有多少件?若质量指标检测值为100时为优秀,偏离100越小,产品质量越高.现有一家公司需大量采购该种产品,根据题目给定的数据,你认为选择哪家工厂的产品更好?并请说明理由.22.如图,已知矩形ABCD,,,点M为线段BC上一动点,沿线段BC由B向C运动,连接AM,以AM为边向右侧作正方形AMNP,连接CN,设M的路程即BM的长为xcm,C、N间的距离为,D、N间的距离为.数学兴趣小组的小刚根据学习函数的经验,分别对函数,随自变量x的变化而变化的规律进行探究,过程如下:根据表中自变量x的取值进行取点,画图,测量,分别得到几组对应值,请将01234563a30b其中,______,______;在同一平面直角坐标系中,描点,,并画出,的函数图象;当为等腰三角形时,BM的长度约为______.23.随着人们的生活水平不断提高,人们越来越注重生活品质,注重食物营养水果罐头在保存鲜度和营养方面得天独厚,仅次于现摘水果,水果罐头不仅果肉好吃,水果的本色本味完全融入到糖水中,罐头水的风味甚至比果汁还要浓郁.某车间生产以甲、乙两种水果为原料的某种罐头,在一次进货中得知,花费万元购进的甲种水果与万元购进的乙种水果质量相同,乙种水果每千克比甲种水果多2元.求甲、乙两种水果的单价;车间将水果制成罐头投入市场进行售卖,已知一听罐头需要甲乙水果各千克,而每听罐头的成本除了水果成本之外,其他所有成本是水果成本的的还要多3元,调查发现,以28元的定价进行销售,每天只能卖出3000听,超市对它进行促销,每降低1元,平均每天可多卖出1000听,当售价为多少元时,利润最大?最大利润为多少?若想使得该种罐头的销售利润每天达到6万元,并且保证降价的幅度不超过定价的,每听罐头的价钱应为多少钱?24.如图,抛物线与x轴交于A,B两点,与y轴交于C点,连结AC,已知,且抛物线经过点.求抛物线的解析式;若点E是抛物线上位于x轴下方的一点,且,求E的坐标;若点P是y轴上一点,以P、A、C三点为顶点的三角形是等腰三角形,求P点的坐标.25.请阅读下列材料:问题:已知方程,求一个一元二次方程,使它的根分别是已知方程根的2倍解:设所求方程的根为y,则,所以.把代入已知方程,得化简,得故所求方程为.这种利用方程根的代换求新方程的方法,我们称为“换根法”.已知方程,求一个一元二次方程,使它的根分别是已知方程根的3倍,则所求方程为______已知关于x的一元二次方程有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数;已知关于x的方程有两个实数根,求一个方程,使它的根分别是已知方程根的平方.26.在,中,,连接BD,F为BD中点,连接AF,EF.如图1,若A,C,E三点在同一直线上,,已知,,求线段AF的长;如图2,若,求证:为等腰直角三角形;如图3,若,请判断的形状,并说明理由.答案和解析1.【答案】C【解析】解:主视图、俯视图和左视图都是圆的几何体是球.故选:C.利用三视图都是圆,则可得出几何体的形状.本题考查了由三视图确定几何体的形状,学生的思考能力和对几何体三种视图的空间想象能力.2.【答案】B【解析】解:由题意得:,解得:,在数轴上表示为:,故选:B.根据二次根式有意义的条件可得,根据分式有意义的条件可得,再解即可.此题主要考查了二次根式有意义和分式的条件,关键是掌握二次根式中的被开方数是非负数.分式分母不为零.3.【答案】B【解析】解:设组成三角形的第三边长为x,由题意得:,即:,故选:B.设组成三角形的第三边长为x,根据三角形的三边关系可得不等式,进而可得x的范围,然后可得答案.此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.三角形的两边差小于第三边.4.【答案】B【解析】解:A、若锐角满足,则,故本选项错误;B、在平面直角坐标系中,点关于x轴的对称点为,正确;C、两条平行直线被第三条直线所截,同旁内角互补,故本选项错误;D、相似三角形面积之比等于周长比的平方,故本选项错误;故选:B.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.【答案】B【解析】解:设和尚的个数为x,根据题意得,,故选:B.由“设和尚的个数为x,3个和尚合吃一碗饭“知共用饭碗只,由“4个和尚合分一碗汤“知共用汤碗只,再根据总用了364只碗,列出方程.本题考查由实际问题抽象出一元一次方程,关键以碗的只数做为等量关系列方程求解.6.【答案】A【解析】解:,,原式.故选:A.直接将括号里面通分运算进而利用分式的混合运算法则计算得出答案.此题主要考查了分式的化简求值,正确掌握分式的混合运算是解题关键.7.【答案】A【解析】解:二次函数为常数,且可知,抛物线开口向上,抛物线的对称轴为直线,.故选:A.先利用二次函数的性质得到抛物线的对称轴为y轴,然后根据二次函数的性质解决问题.本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.8.【答案】B【解析】解:如图所示:,,小正方形的面积为11,,大正方形的面积为17.故选:B.观察图形可知,小正方形的面积大正方形的面积个直角三角形的面积,利用已知,小正方形的面积为11,可以得出直角三角形的面积,进而求出答案.此题主要考查了勾股定理的应用,熟练应用勾股定理是解题关键.9.【答案】B【解析】解:过点E作于点F,延长PQ交BA于点G,可得,,QG::,设,则,,解得:,则,,故,解得:,,信号塔PQ的高约为:.故选:B.直接根据已知构造直角三角形利用坡度的定义得出QG的长,再利用锐角三角函数关系得出PF的长,进而得出答案.此题主要考查了解直角三角形的应用,正确得出EF的长是解题关键.10.【答案】A【解析】解:如图,连接AD,根据作图过程可知:AE是BD的垂直平分线,,,设,则,,,,,,,.故选:A.连接AD,根据作图过程可得,AE是BD的垂直平分线,,,设,则,,根据,求出x的值后再根据直角三角形两个锐角互余即可求得的度数.本题考查了作图复杂作图,解决本题的关键是理解作图过程,利用线段垂直平分线的性质、等腰三角形的性质、三角形外角的性质.11.【答案】C【解析】解:由图象可知,A、B两地相距2480米,故选项A不合题意;甲的速度为米分钟,乙的速度为米分钟,故选项B不合题意;甲、乙相遇的时间为分钟,故选项C符合题意;A、C两地之间的距离为米,乙到达A地时,甲与A地相距的路程为米故选项D不合题意.故选:C.根据图象可知A、B两地相距2480米;利用速度路程时间可求出甲、乙的速度,由二者相遇的时间、B两地之间的路程二者速度和,可求出二者相遇的时间,再由A、C两地之间的距离甲的速度二者相遇的时间可求出A、C两地之间的距离,由A、C两地之间的距离结合甲、乙的速度,可求出乙到达A地时甲与A地相距的路程.本题考查了一次函数的应用,利用数量关系,求出甲、乙的速度及A、C两地之间的距离是解题的关键.12.【答案】B【解析】解:解方程得,,分式方程有整数解,且,或或或1或2或4,且,或1或2或4或5,解方程组得,,方程组的解为正数,,解得,,综上,或5,故选:B.先解分式方程得x关于a的代数式,根据分式方程有整数解和不能为增根,求出a的取值,再解方程组,根据方程组的解为正数,列出a的不等式组求得a的取值范围,进而综合求得a的取值个数.本题主要考查了解分式方程,二元一次方程组,解不等式组,整数解的应用,容易忽略分式方程增根的限制条件.13.【答案】【解析】解:原式故答案为.根据二次根式的化简、负整数指数幂、特殊角的三角函数值、绝对值得到原式,然后合并即可.本题考查了二次根式的化简、负整数指数幂、特殊角的三角函数值、绝对值,熟练掌握这些运算法则是解题的关键.14.【答案】【解析】解:多边形的边数:,正多边形的内角和的度数是:.故答案为:.根据任何多边形的外角和都是,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是,把多边形的边数代入公式,就得到多边形的内角和.考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.15.【答案】12【解析】解:以O为位似中心,作出四边形与四边形OABC位似,的对应点为,四边形与四边形OABC的位似比为:4::3,四边形与四边形OABC的面积比为:4:9,四边形OABC的面积为27,四边形的面积为:.故答案为:12.直接利用位似图形的性质得出四边形与四边形OABC的位似比,进而得出面积比,即可得出答案.此题主要考查了位似变换,正确得出四边形的位似比是解题关键.16.【答案】【解析】解:满足是“离心三角形”的C点有11个,而是“环绕三角形”的C点有5,所以是“环绕三角形”的概率.故答案为.利用三角形面积公式,的面积不小于1的C点有11个,而为1的点有5个,然后根据概率公式可计算出是“环绕三角形”的概率.本题考查了概率公式:随机事件A的概率事件A所占有的结果数除以与总的等可能的结果数.也考查了三角形面积公式.17.【答案】1【解析】解:根据题意设点,,所以,.,可列方程,即解得:或1,或,或,存在,舍去,.的面积.故答案为1.根据题意表示出AC,BC的长,进而得出等式求出m的值,进而得出答案.此题主要考查了反比例函数图象上点的坐标特征与一次函数图象上点的坐标特征,正确表示出各线段长是解题关键.18.【答案】【解析】解:过点作于Q,交AM于P.由题意:≌,,,,,,∽,,,,设,,则,,,,,设,,则有,解得或,或,,.故答案为.过点作于Q,交AM于利用相似三角形的性质证明,推出,设,,则,可得,解得,推出,,设,,构建方程组解决问题即可.本题考查旋转变换,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.19.【答案】解:由不等式得:由不等式得:不等式组的解集为解:原式【解析】分别求出两个不等式的解集,找出解集的公共部分即可;根据整式的乘法法则计算即可.本题主要考查解不等式组和整式的运算,重点侧重考查运算能力,熟练掌握运算的方法是解题的关键.20.【答案】解:设的半径为r,则,,,在中,,即,解得,,答:的半径为6;证明:连接OF,是的切线,,即,为的直径,,即,,,,,,,;解:,,,在和中,,≌,为等边三角形,,,由勾股定理得,,阴影部分的面积.【解析】根据垂径定理求出CE,根据勾股定理列式计算求出的半径;连接OF,根据切线的性质得到,根据圆周角定理得到,根据等腰三角形的性质和判定证明结论;证明≌,根据全等三角形的性质得到,得到为等边三角形,根据圆的面积公式、三角形的面积公式计算,得到答案.本题考查的是切线的性质、垂径定理、圆周角定理、全等三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.21.【答案】25【解析】解:甲工厂的频数,甲工厂的频数为,甲工厂的频率,甲工厂在范围内的数据从小大大排列95,97,98,98,,99,100,100,101,102,102,104.中位数.故答案为25,,;由题,乙工厂产品抽查中,样品中不合格的占,件,答:大约有800件不合格.选择甲工厂的产品.因为在质量指标检测中,甲工厂产品高质量件数多于乙工厂的.说明甲工厂产品质量更高,样品质量指标检测值的平均数相同时,甲的方差更小,说明产品质量更稳定.根据频率频数总数计算;由题,乙工厂产品抽查中,样品中不合格的占,件;择甲工厂的产品.因为在质量指标检测中,甲工厂产品高质量件数多于乙工厂的.说明甲工厂产品质量更高,样品质量指标检测值的平均数相同时,甲的方差更小,说明产品质量更稳定.本题主要考查了统计与概率的相关知识应用问题,也考查了对数据处理能力的应用问题.22.【答案】0或或或【解析】解:当时,以AM为边向右侧构造正方形AMNP,连接NC,测得NC的长约为,所以a约为.当时,以BM为边向右侧构造正方形AMNP,连接ND,测得ND的长约为,所以b约为;故答案为:、;如图所示,即为,的函数图象;当时,由图可得,BM约为;当时,因为,由图可得,BM约为或;当时,因为,由图可得,或3,但是当时,,不能构成三角形,需舍去.综上所述:BM约为0或或或.故答案为:0或或或.当时,测得NC的长约为,当时,测得ND的长约为,即可;根据表格数据即可画出,的函数图象;根据为等腰三角形,分三种情况讨论:当时,由图可得,BM约为;当时,因为,由图可得,BM约为或;当时,因为,由图可得,或3,进而得BM的大致长度.本题考查了动点问题的函数图象,解决本题的关键是分三种情况进行讨论解答.23.【答案】解:设甲种水果的单价为x元千克,乙种水果的单价为元千克,根据题意得,,解得:,经检验,是方程的根,,答:甲、乙两种水果的单价分别为6元千克,8元千克;由知每听罐头的水果成本为:元,每听罐头的总成本为:元,设降价m元,则利润,,当时,W有最大值为64000,当售价为23元时,利润最大,最大利润为64000元;由知,,解得:或,但是降价的幅度不超过定价的,,售价为元,答:每听罐头的价钱应为25元.【解析】设甲种水果的单价为x元千克,乙种水果的单价为元千克,根据题意列方程健康得到结论;由知每听罐头的水果成本为:元,每听罐头的总成本为:元,设降价m元,根据题意得到函数解析式,然后根据二次函数的性质健康得到结论;根据题意列方程健康得到结论.本题考查了二次函数的应用,分式方程的应用,正确的理解题意是解题的关键.24.【答案】解:把,代入得,解得:.故抛物线的解析式为;当时,,解得,,,,当时,,,,,设AC的解析式为,把,代入得,解得.,如图1,过点E作x轴的垂线交直线AC于点F,设点,点,其中,,,或,解得舍去,,,,,,;在中,当时,,,,如图2,设,则,,,当时,则,;当时,即,,;当时,点P在AC的垂直平分线上,则∽,,,,,当时,,综上所述,P点的坐标或或或【解析】根据待定系数法可求抛物线的解析式;在中,当时,,可得,当时,,得到,根据待定系数法可求AC的解析式,如图1,过点E作x轴的垂线交直线AC于点F,设点,点,其中根据,得到关于a的方程,解方程即可求解;如图2,设,则,,根据勾股定理得到,当时,则,当时,当时,点P在AC的垂直平分线上,根据相似三角形的性质得到,当时,于是得到结论.本题考查了二次函数综合题,涉及待定系数法求函数解析式,等腰三角形的判定和性质,三角形的面积公式,正确地作出辅助线是解题的关键.25.【答案】;设所求方程的根为y,则,于是把代入方程,得去分母,得.若,有,于是方程有一个根为0,不符合题意,,故所求方程为;设所求方程的根为y,则,所以.当时,把代入已知方程,得,即;当时,把代入已知方程,得,即.【解析】解:设所求方程的根为y,则,所以.把代入已知方程,得化简,得,故所求方程为.故答案是:;见答案;见答案.根据所给的材料,设所求方程的根为y,再表示出x,代入原方程,整理即可得出所求的方程.本题主要考查了一元二次方程的解、根的判别式.本题是一道材料题,是一种新型问题,解题时,要提取材料中的关键性信息.26.【答案】解:连接CF,在,中,,,,,,C,E三点在同一直线上,,为BD的中点,,,≌,,同理:≌,,为等腰直角三角形,,,.证明:取BC的中点M,CD的中点N,连接AM,MF,EN,FN,为BD的中点,为的一条中位线,,,四边形MCNF为平行四边形,,,,在中,M为BC的中点,,,同理:,,,,.,≌,,,.为等腰直角三角形;证明:取BC的中点M,CD的中点N,连接AM,MF,EN,FN,为BD的中点,为的一条中位线,,,四边形MCNF为平行四边形,,,,在中,M为BC的中点,,,同理:,,,,.,≌,,,.为等边三角形.【解析】连接CF,根据SSS可证明≌,同理可得≌,则为等腰直角三角形,可求出答案;取BC的中点M,CD的中点N,连接AM,MF,EN,FN,可得四边形MCNF为平行四边形,证明≌,可得,,则可得结论;取BC的中点M,CD的中点N,连接AM,MF,EN,FN,证得四边形MCNF为平行四边形,证明≌,可得,,则结论得证.本题属于三角形综合题,考查了等腰直角三角形的性质,中位线定理,平行四边形的判定与性质,等边三角形的判定,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
重庆八中初2020级初三(下)第一次月考答案

重庆八中2019-2020学年度(下)初三年级第一次月考数学试题参考答案一.选择题(每小题4分,共12小题)1-5BBBBB6-10AABBA11-12CB二.填空题(每小题4分,共6小题)13.314.︒54015.1216.17.118.12.17.1152412-Ba a a a a a a a a a a a y a x y x y ax a a x x a a a ax x x x ax 故选:个题意>即>>>>即>>方程组得解为正数得解方程组即为整数,即分式方程有整数解得解:解方程2 5 有4,的整数符合综上,5,4255,25050,52,0525,0523525,523:,12517,13411,7,1,5,2,44,2,133434:,1216=∴-∴+--+-∴-+=-=⎩⎨⎧-=-=-≠≠-=∴≠-=∴±±±=--∴+=-=--- ?,此时,答案又是如何轴于点交交反比例函数于点变式思考:直线舍去所以存在由题意或得:解方程即)(可设点轴上在直线由点)(可设点上在直线由点C x B AB x AB S a OAB B A B A a a a a a a aa BC AC aBC a AC a a B x AB x y B a a A x y A A OAB ,112212121,)2,21(),2,21()1,1(),3,1(1,21,01320132,411241,121,,,112,,122122=⨯⨯=⋅=∴=∆∴===+-=+-=++∴=+=+=∴⊥=++=∆2412241224122282282282281612,,,1612,)(4,4,)3(16)5()3(16)5(,3,5,53sin sin 5353∽,,,≌2221111111212222222221111111111111111111-=∴-+=∴⎪⎩⎪⎨⎧+=-=⎪⎩⎪⎨⎧-=+=⎩⎨⎧=+=+==⊥=====∴-==+=+=+===∆=∠=∠∴=∴=∆∆∴∠=∠∴∠+∠=∠∠+∠=∠∠=∠==∴∆∆AD BC AD AD y x y x y x y x yCQ x PC P Q AN BC BC Q C C C A AC DC BC BC x x x x x x BC AC AB x BC x AB ABC RT D BA BAC BCAB AA CC BC C BA A BC C BA A ABC BC C BC A ABC BA A ABC BC A ABC C B BC B A AB BC A ABC <或或解得设点于点交作过舍得解方程即设中在解:据题,可得 18.三.解答题20.(1)解:设半径为r ,则OC =OB =rCD AB AB ^ ,为圆的直径1252CE DE CD \===2OE EB = 2233OE OB r \==222Rt OCE OC CE EC D =+中在,…………………………………………1分分<不等式组的解集为分<由不等式②得:分由不等式①得:②>①)解(565124625121232)5(23:1.19 x x x xx x x ≤∴≥⎪⎩⎪⎨⎧-≥--分分)解:原式(54233344222222y xy x xy x xy y x +--=+--+=2222()3r r =+即:6r =解得6\半径为(2)证明:GF F BF 为切线,为切点,为弦BFG FAG\Ð=ÐBGF FGA Ð=Ð又BGF FGA \D D BF BG= AF FG\=(3)连接OF ,则∠OFG =90°,而∠AFB =90°OFG OFB AFB OFBÐ-Ð=Ð-Ð\AFO GFB Ð=Ð即由(2)AF=GF A G \Ð=ÐAFO GFB D 在与中2260302=12=612112211662218O AFBA G AF GF AFO GFB AFO GFB OF BFOFB BOF A AB r BF AF S S S r BF AF p p p D ìÐ=Ðïï=íïÐ=Ðïî\D @D \=D \Ð=°\Ð=°=\=\=-=-=-=- 阴影即为等边三角形又,21.(1)25,0.20,99.5;……………………………………………………6分()450410000800()508002´=解:由题,乙工厂产品抽查中,件答:大约样品中不合格的有占件不合格.(3)答:选择甲工厂的产品,因为在质量指标检测中,甲工厂产品高质量件数多于乙工厂的,说明甲工厂产品质量更高,样品质量指标检测值的平均数相同时,甲的方差更小,说明产品质量更稳定.………………………………………………2分…………………………………………………………3分…………………………………………………………6分………………………………………………………………8分……………………………………………………………………10分…………………………………………………………9分…………………………………………………………7分…………………………………………………………8分……………10分22.当BM =2时,以AM 为边向右侧构造正方形AMNP ,连接NC ,测得NC 的长约为2.23,所以a 约为2.23;当BM =4时,以BM 为边向右侧构造正方形AMNP ,连接ND ,测得ND 的长约为 1.42,,所以b 约为1.42;(2)(3)当DN =NC 时,由图可得,BM 约为1.50;当DN =DC 时,因为DC =3,由图,BM 约为0.89或5.12当NC =DC 时,因为DC =3,由图,BM =0或3.但是,当BM =3时,DN =0,不构成三角形,需舍掉.综上:BM 约为0或1.50或0.89或5.1223.解:(1)设甲种水果的单价为x 元/千克,则乙种水果的单价为(x +2)元/千克180********66628x x x x =+==+=\由题:解得:经检验,为方程的根且符合题意而甲的单价为6元/千克,乙的单价为8元/千克.2257+7+3=157=(2815)(3000+1000)=100010000390001000(5)640001000160.580.570=56400023m W m m m m m m W ´---++´=--+-<\+\´=由题,每听罐头的总成本为元设降价元,则利润当时,有最大值为当售价(2)由为元时()每听罐头的水果成本,利润最大,为64为:元000元…………………………………1分…………………………………………………………2分……………………………………………………4分…………………………………………………6分………………………………………………10分………………………………………………………………1分………………………………………………2分………………………………………………3分………………………………………………4分……………………………………………………………………5分………………………………………………6分31),23432,(),232,(,1232232,203)2,0(),0,3(,:2<<其中点设点于点轴的垂线交作过点如图解得得代入将点设a a a a E a a F Fl x E x y b k b b k bkx y C A b kx y l Ac Ac -----=∴⎪⎩⎪⎨⎧-==⎩⎨⎧-==++=-+=图121000(5)64000600007315%2815%4.23283=25256W m m m m m =--+==\£\=\-(3)由(2),解得:或者但是,降价幅度不超过定价的,即售价为元答:售价为元时,利润为万元.分抛物线解析式:解得可得代入点将点解:223432232,238403434)2,2(),0,1()1(.2422 --=∴⎪⎩⎪⎨⎧-==⎪⎪⎩⎪⎪⎨⎧-=+-=+++-=--x x y c a c a c a cx ax y D B 分时当得解方程时,当34242121)2,0(2,04)0,3(3,10,234320234320)2(2122 =⨯⨯=⋅=∴-∴-===∴∴=-==--=--=∆c ABC y AB S C y x AB A x x x x x x y …………………………………………………………7分…………………………………………………………………………8分………………………………………………10分.6)2,2(38,1(),3171,2173(2,1,2173),(217323232130,301,32322321321432122222问题利用平行线可快速解决之比,形面积之比可转化为高有两个公共顶点,三角与法二:提示:由分舍解得:或可得由<<<<ABC ACE E E E a a a a a a a a S S a a a a a a a a x x EF S ABC ACE c A ACE ∆∆----∴==-=+==+-=-=⎪⎩⎪⎨⎧+---=-=-=∴∆∆∆图3图2图425.解:(1)设所求方程的根为y ,则y x =-,所以x y =-.把x y =-代入已知方程,得()()210y y -+--=化简,得210y y --=,故所求方程为210y y --=.…………………3分(2)设所求方程的根为y ,则()10y x x =≠,于是()10x y y=≠把1x y =代入方程20++=ax bx c ,得2110a b c y y ⎛⎫+⋅+= ⎪⎝⎭去分母,得2a by cy ++=若0c =,有20ax bx +=,于是方程20++=ax bx c 有一个根为0,不符合题意,分),(综上所述:时当又由中点坐标公式可得轴于点作垂线交的中点过线段如图的顶点时为等腰当点情形三分如图的顶点时为等腰当点情形二分),(点如图的顶点时为等腰当点情形一10)45,0(),132,0(132,0(,2045,0(45,04523:23321)1,23(4,,:9)132,0(),132,0(133,,:7202, 2,,:)3(43214321 P P P P P y x x y l k k k k AC PD D Py D AC CP CA PAC P P P CP CA CP CA PAC C P OP CO CP OA AP AC AP AC PAC A PD PD AC PD AC --+-∴==+-=∴-=∴=-=⋅∴⊥-=∆--+-∴===∆∴==∴⊥==∆∴0c ≠,故所求方程为()200cy by a c ++=≠…………………6分(3)设所求方程的根为y ,则2y x =,所以x y =±,①当x y =时,把x y =代入已知方程,得()20ym y n -+=,即0y m y n -+=;…………………8分②当x y =-时,把x y =-代入已知方程,得()()20y m y n ---+=,即0y m y n ++=.所以,所求方程为0y m y n -+=或0y m y n ++=…………………10分26.解(1)连接CF∵在,Rt ABC Rt CDE ∆∆中,45ABC EDC ∠=∠=︒∴45ACB ECD ∠=∠=︒,,AB BC ED CE ==∵,,A C E 三点在同一直线上∴90BCD ∠=︒∵F 为BD 中点∴CF DF BF ==∵在ACF ABF ∆∆和中AB AC AF AF CF BF =⎧⎪=⎨⎪=⎩∴()ACF ABF SSS ∆∆≌∴1452CAF CAB ∠=∠=︒同理:()ECF EDF SSS ∆∆≌,1452CEF CED ∠=∠=︒∴AEF ∆为等腰直角三角形∵3,5AC AB CE DE ====∴28,422AE AF AE ===…………………3分另解:如图,延长,AF ED 交于点M易证:ABF MDF ∆∆≌,,AEM AEF ∆∆为等腰直角(2)证明:取BC 中点M ,CD 中点N ,连接,,,AM MF EN FN ∵F BD 为中点∴FM 为BCD ∆的一条中位线∴1,2FM CD FM CD CN==∥∴四边形MCNF 为平行四边形,,,CM FN MF CN CMF FNC ==∠=∠∵在Rt ABC ∆中,M 为BC 中点∴90,AMC AM CM ∠=︒=同理:90,ENC EN CN ∠=︒=∴,AM FN MF EN==AMF AMC CMF ENC CNF FNE∠=∠+∠=∠+∠=∠∵AMF ∆和FNE ∆中AM FN AMF FNE MF NE =⎧⎪∠=∠⎨⎪=⎩∴()AMF FNE SAS ∆∆≌∴AF EF =13∠=∠∵()121803290AFE MFN FNC ENC ∠=∠-∠-∠=︒-∠-∠-∠=∠=︒∴AEF ∆为等腰直角三角形…………………6分另解1:过点D 作DM AB ∥交AF 的延长线于M ,连接EM 易证ABF MDF ∆∆≌,DM AB AC ==,ED EC =,又3601236090901218012EDM EDB BDM EDB DBA BAC DECACE∠=∠+∠=∠+∠=︒-∠-∠-∠-∠=︒-︒-︒-∠-∠=︒-∠-∠=∠∴EDM ECA ∆∆≌,AEM ∆,AEF ∆为等腰直角另解2:取BC 中点M ,连接,AM MF 易得:212,222AM AC MF CD CE ===∵9090180270AMF CMF MCD MCD ∠=︒+∠=︒+︒-∠=︒-∠,270ACE MCD ∠+∠=︒∴AMF ACE ∠=∠∴AMF ACE ∆∆∽,22AF AE =,45FAE ∠=︒,AMC AFE ∆∆∽,AEF ∆为等腰直角三角形(3)证明:取BC 中点M ,CD 中点N ,连接,,,AM MF EN FN ∵F BD 为中点∴FM 为BCD ∆的一条中位线∴1,2FM CD FM CD CN==∥∴四边形MCNF 为平行四边形,,,CM FN MF CN CMF FNC ==∠=∠∵在Rt ABC ∆中,M 为BC 中点∴60,AMC AM CM ∠=︒=同理:60,ENC EN CN ∠=︒=∴,AM FN MF EN==AMF AMC CMF ENC CNF FNE∠=∠+∠=∠+∠=∠∵AMF ∆和FNE ∆中AM FN AMF FNE MF NE =⎧⎪∠=∠⎨⎪=⎩∴()AMF FNE SAS ∆∆≌∴AF EF =13∠=∠∵()121803260AFE MFN FNC ENC ∠=∠-∠-∠=︒-∠-∠-∠=∠=︒∴AEF ∆为等边三角形…………………8分另解1:过点D 作DM AB ∥交AF 的延长线于M ,连接EM易证ABF MDF ∆∆≌,DM AB ==,ED =,又3601236090901218012EDM EDB BDM EDB DBA BAC DECACE∠=∠+∠=∠+∠=︒-∠-∠-∠-∠=︒-︒-︒-∠-∠=︒-∠-∠=∠∴EDM ECA ∆∆∽,1DEM ∠=∠,EM =AEM ∆为直角三角形,260EFA EMF ∠=∠=︒,AEF ∆为等边三角形另解2:取BC 中点M ,连接,AM MF 易得:1,2AM AC MF CD CE===∵6060180240AMF CMF MCD MCD ∠=︒+∠=︒+︒-∠=︒-∠,240ACE MCD ∠+∠=︒∴AMF ACE∠=∠∴AMF ACE ∆∆≌,AF AE =,60FAE ∠=︒,AEF ∆为等边三角形拓展:,ABC CDE ∆∆中,90BAC DEC ∠=∠=︒,ABC EDC α∠=∠=,连接BD ,F 为BD 中点,连接,AF EF ,均可证明AF EF =,2AFE α∠=(对于任意角,边的证明用三角函数)。
2019-2020学年重庆市九龙坡区南开中学九年级(下)定时练习数学试卷(9)(解析版)

2019-2020学年重庆市九龙坡区南开中学九年级(下)定时练习数学试卷(9)一.选择题(共12小题)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2B.∠3C.∠4D.∠52.在,0,,,,﹣1.414中,有理数有()A.1个B.2个C.3个D.4个3.如图下列各曲线中表示y是x的函数的是()A.B.C.D.4.下列说法中错误的是()A.两条对角线互相平分的四边形是平行四边形B.两条对角线相等的四边形是矩形C.两条对角线互相垂直的矩形是正方形D.两条对角线相等的菱形是正方形5.如图,AD是⊙O的直径,=,若∠AOB=40°,则圆周角∠BPC的度数是()A.40°B.50°C.60°D.70°6.如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B,F的坐标分别为(﹣4,4),(2,1),则位似中心的坐标为()A.(0,3)B.(0,2.5)C.(0,2)D.(0,1.5)7.已知x是整数,当|x﹣5|取最小值时,x的值是()A.6B.7C.8D.98.众所周知,“石头、剪刀、布”游戏规则是比赛时双方任意出“石头”、“剪刀”、“布”这三种手势中的一种.石头胜剪刀,剪刀胜布,布胜石头,若双方出相同手势,则算打平.小明和小红玩这个游戏,他们随机出一种手势,则小明获胜的概率为()A.B.C.D.9.某校“研学”活动小组在一次野外实践时,发现一种植物的1个主干上长出x个支干,每个支干上再长出x个小分支.若在1个主干上的主干、支干和小分支的数量之和是43个,则x等于()A.4B.5C.6D.710.若数a使关于x的二次函数y=x2+(a﹣1)x+b,当x<﹣1时,y随x的增大而减小;且使关于y的分式方程+=2有非负数解,则所有满足条件的整数a的值之和是()A.﹣2B.1C.0D.311.如图,在△ABC中AB=2,将△ABC绕点A按逆时针方向旋转,使得点B恰好落在BC的中点B′处,得到△AB′C′.若tan∠CB′C′=,则BC的长为()A.4B.6C.8D.1012.如图,已知在平面直角坐标系xOy中,直线y=x﹣1分别交x轴,y轴于点A和点B,分别交反比例函数y1=(k>0,x>0),y2=(x<0)的图象于点C和点D,过点C 作CE⊥x轴于点E,连结OC,OD,若△COE的面积与△DOB的面积相等,则k的值是()A.1B.C.2D.4二.填空题(共6小题)13.计算:(π+1)0+|﹣2|﹣()﹣2+tan60°=.14.点P(a,b)是直线y=x﹣2上一点,则代数式a2﹣2ab﹣1+b2的值为.15.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=6,以点C为圆心,CB长为半径作弧,交AB于点D,再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为.16.如图,矩形ABCD中,AB=1,AD=,以BC的中点E为圆心的与AD相切,则图中阴影部分的面积为.17.如图,Rt△ABC中,∠ACB=90°,点D是AC上一点,过点D作DE⊥AC交AB于点E.动点P从D点出发,以每秒1个单位长度的速度,按D→E→B→C的路径匀速运动,设P点的运动时间为t秒,△PCD的面积为S,S关于t的函数图象如图所示,则△ABC 的周长为.18.如图,在△ABC中,AB=AC=5,tan∠ABC=,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为.三.解答题(共8小题)19.计算:(1)(x﹣3y)2﹣(x+3y)(x﹣3y);(2)解方程:=.20.如图,海中有两个小岛C、D,某渔船在海中的A处测得小岛D位于东北方向上,且相距30海里,该渔船自西向东航行一段时间到达B处,此时测得小岛C恰好在点B的正北方向上,且相距75海里,又测得点B与小岛D相距30海里.(1)求sin∠ABD的值;(2)求小岛C、D之间的距离(计算过程中的数据不取近似值).21.某公司在国内有多家门店,共有600名销售人员,为了解该公司各门店销售人员上个月的销售业绩,随机抽取了甲、乙两个门店各30名销售人员在上月的销售数量,并将数据进行整理分析,给出了下面部分信息:①数据分为五组,分别为A组:x≤40,B组:40<x≤60,C组:60<x≤80,D组:80<x≤100,E组:x>100;②样本中甲、乙两门店的最高销售数量都是120件,甲店的最低数量比乙店少两件;③甲店C组数据:62,69,71,69,78,73,69,79,78,68乙店C组数据:78,76,69,62,69,71,80,69,73,79,75④两组数据的平均数、中位数、众数、极差(单位:件)如表所示:平均数中位数众数极差甲店706969b乙店70a6986⑤甲店销售数量频数分布直方图和乙店销售数量扇形统计图如下:(1)扇形统计图A组学生对应的圆心角的度数为,中位数a=,极差b =;(2)通过以上的数据分析,你认为甲、乙两个门店哪个门店的销售人员上月的业绩更好,并说明理由;(3)若该公司计划将上月销售数量在80件以上(不含80)的员工评为“优秀销售员”,请你估计该公司能评为“优秀销售员”的人数.22.小明根据学习函数的经验,对函数y=+x+b进行了探究,已知当x=0时,y=;当x=2时,y=1.探究过程如下,请补充完整:(1)k=,b=.(2)在给出的平面直角坐标系中,画出函数图象,并写出这个函数的一条性质:;(3)若一次函数y2=mx+1的图象与该函数有两个交点,则m的取值范围为:.23.受“新冠”疫情影响,全国中小学延迟开学,很多学校都开展起了“线上教学”,市场上对手写板的需求激增.重庆某厂家准备3月份紧急生产A,B两种型号的手写板,若生产20个A型号和30个B型号手写板,共需要投入36000元;若生产30个A型号和20个B型号手写板,共需要投入34000元.(1)请问生产A,B两种型号手写板,每个各需要投入多少元的成本?(2)经测算,生产的A型号手写板每个可获利200元,B型号手写板每个可获利400元,该厂家准备用10万元资金全部生产这两种手写板,总获利w元,设生产了A型号手写板a个,求w关于a的函数关系式;(3)在(2)的条件下,若要求生产A型号手写板的数量不能少于B型号手写板数量的2倍,请你设计出总获利最大的生产方案,并求出最大总获利.24.已知抛物线y=ax2﹣3ax+m与x轴交于A(﹣1,0)、B(x2,0)两点,与y轴正半轴交于点C,且满足S△ABC=5.(1)求此抛物线的对称轴和解析式;(2)点D是抛物线的对称轴与x轴的交点,在直线BC上找一点Q,使QA+QD最小,求QA+QD的最小值;(3)在第一象限的抛物线上是否存在点P,使得∠PCA+∠ABC=180°?若存在,请你求出P点的坐标;若不存在,请说明理由.25.求一元二次方程x2﹣2x﹣3=0时,可以先将左边(x2﹣2x﹣3)分解成(x﹣3)(x+1),该方程变为(x﹣3)(x+1)=0,解得x1=3,x2=﹣1;求一元三次方程x3﹣2x2﹣2x+4=0也可以将左边(x3﹣2x2﹣2x+4)分解成(x﹣2)(x2﹣2),则该方程变为(x﹣2)(x2﹣2)=0,从而求出该方程的解为:x1=2,x2=,x3=﹣;这种利用分解因式将高次方程转化成一元一次方程和一元二次方程,从而求出其解的方法称为降次法.请根据材料,完成下列解答:(1)解方程:①x3﹣2x2﹣x+2=0②x4+2x3﹣7x2﹣8x+12=0(2)解决下面问题:①若关于x的方程x3﹣5x2+(4+k)x﹣k=0的三个根可作为一个等腰三角形的三边长,求实数k的值;②若关于x的方程x4+2x3+(3+m)x2+(2+m)x+2m=0有实根,若所有实根之积为﹣2,求所有实数根的平方和.26.在△ABC中,AC=BC,点G是直线BC上一点,CF⊥AG,垂足为点E,BF⊥CF于点F,点D为AB的中点,连接DF.(1)如图1,如果∠ACB=90°,且G在CB边上,设CF交AB于点R,且E为CR的中点,若CG=1,求线段BG的长;(2)如图2,如果∠ACB=90°,且G在CB边上,求证:EF=DF;(3)如图3,如果∠ACB=60°,且G在CB的延长线上,∠BAG=15°,请探究线段EF、BD之间的数量关系,并直接写出你的结论.参考答案与试题解析一.选择题(共12小题)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2B.∠3C.∠4D.∠5【分析】根据同位角的定义进行选择即可.【解答】解:∠1的同位角是∠3,故选:B.2.在,0,,,,﹣1.414中,有理数有()A.1个B.2个C.3个D.4个【分析】直接化简二次根式,再利用有理数的定义判断得出答案.【解答】解:在,0,,,=2,﹣1.414中,有理数有:,0,,﹣1.414共4个.故选:D.3.如图下列各曲线中表示y是x的函数的是()A.B.C.D.【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【解答】解:A、图象满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A符合题意;B、图象不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B不符合题意;C、图象不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故C不符合题意;D、图象不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D不符合题意;故选:A.4.下列说法中错误的是()A.两条对角线互相平分的四边形是平行四边形B.两条对角线相等的四边形是矩形C.两条对角线互相垂直的矩形是正方形D.两条对角线相等的菱形是正方形【分析】根据矩形的对角线相等且平分,和正方形的对角线互相垂直、相等平分进行判定即可得出结论.【解答】解:A、对角线互相平分的四边形是平行四边形,故A选项正确;B、对角线相等的平行四边形才是矩形,故B选项错误;C、对角线互相垂直的矩形是正方形,故C选项正确;D、两条对角线相等的菱形是正方形,故D选项正确;综上所述,B符合题意,故选:B.5.如图,AD是⊙O的直径,=,若∠AOB=40°,则圆周角∠BPC的度数是()A.40°B.50°C.60°D.70°【分析】根据圆周角定理即可求出答案.【解答】解:∵=,∠AOB=40°,∴∠COD=∠AOB=40°,∵∠AOB+∠BOC+∠COD=180°,∴∠BOC=100°,∴∠BPC=∠BOC=50°,故选:B.6.如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B,F的坐标分别为(﹣4,4),(2,1),则位似中心的坐标为()A.(0,3)B.(0,2.5)C.(0,2)D.(0,1.5)【分析】连接BF交y轴于P,根据题意求出CG,根据相似三角形的性质求出GP,求出点P的坐标.【解答】解:如图,连接BF交y轴于P,∵四边形ABCD和四边形EFGO是矩形,点B,F的坐标分别为(﹣4,4),(2,1),∴点C的坐标为(0,4),点G的坐标为(0,1),∴CG=3,∵BC∥GF,∴==,∴GP=1,PC=2,∴点P的坐标为(0,2),故选:C.7.已知x是整数,当|x﹣5|取最小值时,x的值是()A.6B.7C.8D.9【分析】根据绝对值的意义,由与5最接近的整数是7,可得结论.【解答】解:∵<5<,∴7<5<8,且与5最接近的整数是7,∴当|x﹣5|取最小值时,x的值是7,故选:B.8.众所周知,“石头、剪刀、布”游戏规则是比赛时双方任意出“石头”、“剪刀”、“布”这三种手势中的一种.石头胜剪刀,剪刀胜布,布胜石头,若双方出相同手势,则算打平.小明和小红玩这个游戏,他们随机出一种手势,则小明获胜的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明获胜的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,小明获胜的有3种情况,∴小明获胜的概率P==;故选:B.9.某校“研学”活动小组在一次野外实践时,发现一种植物的1个主干上长出x个支干,每个支干上再长出x个小分支.若在1个主干上的主干、支干和小分支的数量之和是43个,则x等于()A.4B.5C.6D.7【分析】根据在1个主干上的主干、支干和小分支的数量之和是43个,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:依题意,得:1+x+x2=43,整理,得:x2+x﹣42=0,解得:x1=6,x2=﹣7(不合题意,舍去).故选:C.10.若数a使关于x的二次函数y=x2+(a﹣1)x+b,当x<﹣1时,y随x的增大而减小;且使关于y的分式方程+=2有非负数解,则所有满足条件的整数a的值之和是()A.﹣2B.1C.0D.3【分析】解分式方程可先确定出a的取值范围,再由二次函数的性质可确定出a的范围,从而可确定出a的取值,可求得答案.【解答】解:解分式方程+=2可得y=,∵分式方程+=2的解是非负实数,∴a≥﹣2且a≠2,∵y=x2+(a﹣1)x+b,∴抛物线开口向上,对称轴为x=,∴当x<时,y随x的增大而减小,∵在x<﹣1时,y随x的增大而减小,∴≥﹣1,解得a≤3,综上可知满足条件的a的值为﹣2,1,0,1,3,∴所有满足条件的整数a的值之和是﹣2+1+0+1+3=1,故选:B.11.如图,在△ABC中AB=2,将△ABC绕点A按逆时针方向旋转,使得点B恰好落在BC的中点B′处,得到△AB′C′.若tan∠CB′C′=,则BC的长为()A.4B.6C.8D.10【分析】作B′H⊥AB于H,如图,利用旋转的性质得∠AB′C′=∠B,AB′=AB=2,再证明即∠CB′C′=∠BAB′,根据正切的定义得tan∠HAB′==tan∠CB′C′=,设B′H=4x,则AH=3x,则AB′=5x=2,解得x=,所以B′H=,BH=,然后利用勾股定理计算出BB′,从而得到BC的长.【解答】解:作B′H⊥AB于H,如图,∵△ABC绕点A按逆时针方向旋转,∴∠AB′C′=∠B,AB′=AB=2,∵∠AB′C=∠B+∠BAB′,即∠AB′C′+∠CB′C′=∠B+∠BAB′,∴∠CB′C′=∠BAB′,在Rt△HAB′中,tan∠HAB′==tan∠CB′C′=,设B′H=4x,则AH=3x,∴AB′=5x,即5x=2,解得x=,∴B′H=,AH=,∴BH=2﹣=,在Rt△BB′H中,BB′==4,而B′为BC的中点,∴BC=2BB′=8.故选:C.12.如图,已知在平面直角坐标系xOy中,直线y=x﹣1分别交x轴,y轴于点A和点B,分别交反比例函数y1=(k>0,x>0),y2=(x<0)的图象于点C和点D,过点C 作CE⊥x轴于点E,连结OC,OD,若△COE的面积与△DOB的面积相等,则k的值是()A.1B.C.2D.4【分析】由反比例k的几何意义可得S△OCE=k,设D(x,),所以S△BOD=﹣x,再由已知可得k=﹣x,求得D(﹣k,﹣2),再将点D代入y=x﹣1即可求k的值.【解答】解:由题意可求B(0,﹣1),∵直线y=x﹣1与y1=交于点C,∴S△OCE=k,设D(x,),∴S△BOD=×1×(﹣x)=﹣x,∵△COE的面积与△DOB的面积相等,∴k=﹣x,∴k=﹣x,∴D(﹣k,﹣2),∵D点在直线y=x﹣1上,∴﹣2=﹣k﹣1,∴k=2,故选:C.二.填空题(共6小题)13.计算:(π+1)0+|﹣2|﹣()﹣2+tan60°=﹣1.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=1+2﹣﹣4+=﹣1,故答案为:﹣114.点P(a,b)是直线y=x﹣2上一点,则代数式a2﹣2ab﹣1+b2的值为3.【分析】先把P点坐标代入函数解析式,求得a﹣b的值,再将代数式转化成a﹣b的形式,整体代入计算便可.【解答】解:∵P(a,b)是直线y=x﹣2上一点,∴b=a﹣2,∴a﹣b=2,∴原式=(a﹣b)2﹣1=22﹣1=3,故答案为3.15.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=6,以点C为圆心,CB长为半径作弧,交AB于点D,再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为9.【分析】根据作图过程可得,CE是BD的垂直平分线,即CF⊥AB于点F,根据30度角所对直角边等于斜边一半即可求得AF的长.【解答】解:根据作图过程可知:CE是BD的垂直平分线,∴CF⊥AB于点F,∴∠CFB=90°∵∠ACB=90°,∠A=30°,BC=6,∴∠CBF=60°,AB=2BC=12,∴∠BCF=30°,∴BF=BC=3,∴AF=AB﹣BF=9.故答案为9.16.如图,矩形ABCD中,AB=1,AD=,以BC的中点E为圆心的与AD相切,则图中阴影部分的面积为.【分析】连接MN、PE,则PE⊥MN,在直角△MEF中利用三角函数即可求得∠MEF的度数,然后求得∠MEN的度数,利用扇形的面积公式即可求解.【解答】解:连接MN、PE,则PE⊥MN,∵在直角△MEF中,MF=MN=,ME=1,sin∠MEF===,∴∠MEF=60°,∴∠MEN=120°,∴S阴影==.故答案是:.17.如图,Rt△ABC中,∠ACB=90°,点D是AC上一点,过点D作DE⊥AC交AB于点E.动点P从D点出发,以每秒1个单位长度的速度,按D→E→B→C的路径匀速运动,设P点的运动时间为t秒,△PCD的面积为S,S关于t的函数图象如图所示,则△ABC 的周长为16.【分析】先由当t=6秒时,S有最大值8,当t=10秒时,S=0,得出BC的值,进而根据t=6时,S=8,得出CD的值,从而可进一步求得DE和BE的值;然后证明△ADE ∽△ACB,利用相似三角形的性质可得AD和AE的值,从而△ABC的周长可求.【解答】解:∵当t=6秒时,S有最大值8,当t=10秒时,S=0∴BC=10﹣6=4∵当t=6时,S=8∴×CD×4=8∴CD=4∵CD×DE=2∴×4×DE=2∴DE=1∴BE=6﹣1=5∵DE⊥AC∴∠ADE=90°∵∠ACB=90°∴DE∥BC∴△ADE∽△ACB∴==∴==解得:AD=,AE=∴AC=+4=,AB=+5=∴△ABC的周长为++4=16故答案为:16.18.如图,在△ABC中,AB=AC=5,tan∠ABC=,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为8.【分析】过点C作CG⊥BA于点G,作EH⊥AB于点H,作AM⊥BC于点M.由AB=AC=5,tan∠ABC=,得出BC=4,得到BM=CM=2,易证△AMB∽△CGB,求得GB=8,设BD=x,则DG=8﹣x,易证△EDH≌△DCG,EH=DG=8﹣x,所以S=,当x=4时,△BDE面积的最大值为8.△BDE【解答】解:过点C作CG⊥BA于点G,作EH⊥AB于点H,作AM⊥BC于点M.∵AB=AC=5,tan∠ABC=,∴BC=4,∴BM=CM=2,∵∠B=∠B,∠AMB=∠CGB=90°,∴△AMB∽△CGB,∴,即,∴GB=8,设BD=x,则DG=8﹣x,∵∠EDH=∠CDG,∠DHE=∠DGC=90°,ED=DC,∴△EDH≌△DCG(AAS),∴EH=DG=8﹣x,∴S△BDE=,当x=4时,△BDE面积的最大值为8.故答案为8.三.解答题(共8小题)19.计算:(1)(x﹣3y)2﹣(x+3y)(x﹣3y);(2)解方程:=.【分析】(1)原式利用完全平方公式,以及平方差公式化简,去括号合并即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=x2﹣6xy+9y2﹣x2+9y2=﹣6xy+18y2;(2)去分母得:2(2x+1)=4,去括号得:4x+2=4,移项合并得:4x=2,解得:x=,经检验x=是分式方程的解.20.如图,海中有两个小岛C、D,某渔船在海中的A处测得小岛D位于东北方向上,且相距30海里,该渔船自西向东航行一段时间到达B处,此时测得小岛C恰好在点B的正北方向上,且相距75海里,又测得点B与小岛D相距30海里.(1)求sin∠ABD的值;(2)求小岛C、D之间的距离(计算过程中的数据不取近似值).【分析】(1)过D作DE⊥AB于E,解直角三角形即可得到结论;(2)过D作DF⊥BC于F,解直角三角形即可得到结论.【解答】解:(1)过D作DE⊥AB于E,在Rt△AED中,AD=30,∠DAE=45°,∴DE=30×sin45°=30,在Rt△BED中,BD=30,∴sin∠ABD=;(2)过D作DF⊥BC于F,在Rt△BED中,DE=30,BD=30,∴BE=,∵四边形BFDE是矩形,∴DF=EB=60,BF=DE=30,∴CF=BC﹣BF=45,在Rt△CDF中,CD=,∴小岛C,D之间的距离为75nmile21.某公司在国内有多家门店,共有600名销售人员,为了解该公司各门店销售人员上个月的销售业绩,随机抽取了甲、乙两个门店各30名销售人员在上月的销售数量,并将数据进行整理分析,给出了下面部分信息:①数据分为五组,分别为A组:x≤40,B组:40<x≤60,C组:60<x≤80,D组:80<x≤100,E组:x>100;②样本中甲、乙两门店的最高销售数量都是120件,甲店的最低数量比乙店少两件;③甲店C组数据:62,69,71,69,78,73,69,79,78,68乙店C组数据:78,76,69,62,69,71,80,69,73,79,75④两组数据的平均数、中位数、众数、极差(单位:件)如表所示:平均数中位数众数极差甲店706969b乙店70a6986⑤甲店销售数量频数分布直方图和乙店销售数量扇形统计图如下:(1)扇形统计图A组学生对应的圆心角的度数为12°,中位数a=72,极差b =88;(2)通过以上的数据分析,你认为甲、乙两个门店哪个门店的销售人员上月的业绩更好,并说明理由;(3)若该公司计划将上月销售数量在80件以上(不含80)的员工评为“优秀销售员”,请你估计该公司能评为“优秀销售员”的人数.【分析】(1)根据表格中的数据和扇形统计图中的数据可以计算出扇形统计图A组学生对应的圆心角的度数,a的值,极差b的值;(2)根据表格中的数据,可以得到甲、乙两个门店哪个门店的销售人员上月的业绩更好,并说明理由;(3)根据题意和表格中的数据可以计算出该公司能评为“优秀销售员”的人数.【解答】解:(1)∵乙店C组数据:78,76,69,62,69,71,80,69,73,79,75,∴乙组数据中心C组中有11人,按照从小到大排列是:62,69,69,69,71,73,75,76,78,79,80,∴扇形统计图A组学生对应的圆心角的度数为:360°×=12°,A组学生有30﹣11﹣30×(10%+20%+30%)=1(人),B组有学生:30×30%=9(人),∴中位数a是C组的第5个数和第6个数的中位数,即a=(71+73)÷2=72,∵样本中甲、乙两门店的最高销售数量都是120件,甲店的最低数量比乙店少两件,乙的极差是86,∴极差b=86+2=88,故答案为:12°,72,88;(2)乙店门店的销售人员上月的业绩更好,理由:由表格可知,两个销售人员的平均数相同,众数相同,但是乙的中位数高于甲,说明乙店门店的销售人员上月的业绩更好;(3)600×=180(人),答:该公司能评为“优秀销售员”的有180人.22.小明根据学习函数的经验,对函数y=+x+b进行了探究,已知当x=0时,y=;当x=2时,y=1.探究过程如下,请补充完整:(1)k=2,b=﹣1.(2)在给出的平面直角坐标系中,画出函数图象,并写出这个函数的一条性质:y随x值的增大而增大;(3)若一次函数y2=mx+1的图象与该函数有两个交点,则m的取值范围为:<m <.【分析】(1)将x=0,y=,x=2,y=1分别代入y=+x+b即可求k与b的值;(2)画出图象,写出一条符合图象的性质即可;(3)当x≥2时,y=x﹣,当x<2时,y=x+,通过观察图象可得<m<时,y2=mx+1的图象与该函数有两个交点.【解答】解:(1)当x=0,y=时,=+b,∴b=﹣1;当x=2,y=1时,1=+2﹣1,∴k=2,故答案为2,﹣1;(2)如图:y随x值的增大而增大,故答案为y随x值的增大而增大;(3)由(1)可知,y=+x﹣1,当x≥2时,y=x﹣,当x<2时,y=x+,∴<m<时,y2=mx+1的图象与该函数有两个交点,故答案为<m<.23.受“新冠”疫情影响,全国中小学延迟开学,很多学校都开展起了“线上教学”,市场上对手写板的需求激增.重庆某厂家准备3月份紧急生产A,B两种型号的手写板,若生产20个A型号和30个B型号手写板,共需要投入36000元;若生产30个A型号和20个B型号手写板,共需要投入34000元.(1)请问生产A,B两种型号手写板,每个各需要投入多少元的成本?(2)经测算,生产的A型号手写板每个可获利200元,B型号手写板每个可获利400元,该厂家准备用10万元资金全部生产这两种手写板,总获利w元,设生产了A型号手写板a个,求w关于a的函数关系式;(3)在(2)的条件下,若要求生产A型号手写板的数量不能少于B型号手写板数量的2倍,请你设计出总获利最大的生产方案,并求出最大总获利.【分析】(1)根据生产20个A型号和30个B型号手写板,共需要投入36000元;若生产30个A型号和20个B型号手写板,共需要投入34000元,可以列出相应的二元一次方程组,从而可以求得生产A,B两种型号手写板,每个各需要投入多少元的成本;(2)根据题意和(1)中的结果可以得到w与a的函数关系式;(3)要求生产A型号手写板的数量不能少于B型号手写板数量的2倍,可以得到a的取值范围,再根据(2)中的函数关系式和一次函数的性质可以得到总获利最大的生产方案,并求出最大总获利.【解答】解:(1)设生产A种型号的手写板需要投入成本a元,生产B种型号的手写板需要投入成本b元,,得,即生产A种型号的手写板需要投入成本600元,生产B种型号的手写板需要投入成本800元;(2)∵该厂家准备用10万元资金全部生产这两种手写板,生产了A型号手写板a个,∴生产B型号的手写板的数量为:=(个),∴w=200a+400×=﹣100a+50000,即w关于a的函数关系式为w=﹣100a+50000;(3)∵要求生产A型号手写板的数量不能少于B型号手写板数量的2倍,∴a≥×2,∴a≥100,∵w=﹣100a+50000,∴当a=100时,w取得最大值,此时w=40000,=50,答:总获利最大的生产方案是生产A型号的手写板100台,B型号的手写板50台,最大总获利是40000元.24.已知抛物线y=ax2﹣3ax+m与x轴交于A(﹣1,0)、B(x2,0)两点,与y轴正半轴交于点C,且满足S△ABC=5.(1)求此抛物线的对称轴和解析式;(2)点D是抛物线的对称轴与x轴的交点,在直线BC上找一点Q,使QA+QD最小,求QA+QD的最小值;(3)在第一象限的抛物线上是否存在点P,使得∠PCA+∠ABC=180°?若存在,请你求出P点的坐标;若不存在,请说明理由.【分析】(1)先求出点B坐标,由三角形面积公式可求OC长,可得点C坐标,由待定系数法可求解;(2)作点D关于直线BC的对称点D'(,),连接AD'交BC于点Q,由两点距离公式可求解;(3)连接AC,延长PC交x轴于E,设E(m,0).由△ECA∽△EBC,得到EC2=EA •EB,可得方程m2+4=(﹣1﹣m)(4﹣m),求出点E坐标,再求出直线PC的解析式,利用方程组求交点坐标即可.【解答】解:(1)∵抛物线解析式为:y=ax2﹣3ax+m,∴对称轴为x==,且点A(﹣1,0),∴点B(4,0),∴AB=5,∵S△ABC=5.∴×AB×OC=5,∴OC=2,∴点C(0,2)∴设抛物线解析式y=a(x+1)(x﹣4),且过点(0,2)∴2=﹣4a,∴a=﹣∴抛物线解析式为:y=﹣(x+1)(x﹣4)=﹣x2+x+2;(2)如图,作点D关于直线BC的对称点D'(,2),连接AD'交BC于点Q,∵点A(﹣1,0),D'(,2),∴AD'==,∴QA+QD的最小值为;(3)如图,连接AC,延长PC交x轴于E,设E(m,0).∵∠PCA+∠ABC=180°,∠PCA+∠ECA=180°,∴∠ECA=∠EBC,又∵∠CEA=∠CEB,∴△ECA∽△EBC,∴EC2=EA•EB,∴m2+4=(﹣1﹣m)(4﹣m),∴m=﹣,∴点E(﹣,0),∵点C(0,2),点E(﹣,0),∴直线EC解析式为:y=x+2,联立方程组可得:∴或∴点P(,)25.求一元二次方程x2﹣2x﹣3=0时,可以先将左边(x2﹣2x﹣3)分解成(x﹣3)(x+1),该方程变为(x﹣3)(x+1)=0,解得x1=3,x2=﹣1;求一元三次方程x3﹣2x2﹣2x+4=0也可以将左边(x3﹣2x2﹣2x+4)分解成(x﹣2)(x2﹣2),则该方程变为(x﹣2)(x2﹣2)=0,从而求出该方程的解为:x1=2,x2=,x3=﹣;这种利用分解因式将高次方程转化成一元一次方程和一元二次方程,从而求出其解的方法称为降次法.请根据材料,完成下列解答:(1)解方程:①x3﹣2x2﹣x+2=0②x4+2x3﹣7x2﹣8x+12=0(2)解决下面问题:①若关于x的方程x3﹣5x2+(4+k)x﹣k=0的三个根可作为一个等腰三角形的三边长,求实数k的值;②若关于x的方程x4+2x3+(3+m)x2+(2+m)x+2m=0有实根,若所有实根之积为﹣2,求所有实数根的平方和.【分析】(1)①将式子变形为x3﹣2x2﹣x+2=(x﹣2)(x+1)(x﹣1)=0即可求解;②将式子变形为x4+2x3﹣7x2﹣8x+12=(x+2)(x﹣1)(x+3)(x﹣2)=0即可求解;(2)①x3﹣5x2+(4+k)x﹣k=(x﹣1)(x2﹣4x+k)=0,则x2﹣4x+k=0,则由△=0可求k;②x4+2x3+(3+m)x2+(2+m)x+2m=(x2+x+m)(x2+x+2)=0,由根与系数的关系可求m=﹣2,再由x12+x22+x32+x42=(x1+x2)2﹣2x1x2+(x3+x4)2﹣2x3x4可求解.【解答】解:(1)①x3﹣2x2﹣x+2=x2(x﹣2)﹣(x﹣2)=(x﹣2)(x2﹣1)=(x﹣2)(x+1)(x﹣1)=0,∴x=2或x=1或x=﹣1;②x4+2x3﹣7x2﹣8x+12=(x2+x﹣2)(x2+x﹣6)=(x+2)(x﹣1)(x+3)(x﹣2)=0,∴x=﹣2或x=1或x=﹣3或x=2;(2)①x3﹣5x2+(4+k)x﹣k=(x﹣1)(x2﹣4x+k)=0,∴x=1或x2﹣4x+k=0,∵方程的解是等腰三角形的三边长,∴一条边长为1,当1为等腰三角形的腰长时,则x2﹣4x+k=0的一个解是1,∴k=3,此时x2﹣4x+3=0的两个根为x=1或x=3,∴三角形的三条边长为1,1,3,不成立;当1为等腰三角形的底边时,x2﹣4x+k=0有两个相等的实数根,∴16﹣4k=0,∴k=4;②x4+2x3+(3+m)x2+(2+m)x+2m=(x2+x)2+(2+m)(x2+x)+2m=(x2+x+m)(x2+x+2)=0,∴x2+x+m=0或x2+x+2=0,∵x2+x+2=0中△=1﹣8<0,∴x2+x+2=0无解,∵所有实根之积为﹣2,∴x2+x+m=0有两个实数根,∴m=﹣2,∴x2+x﹣2=0时x1+x2=﹣1,x1x2=﹣2,x2+x+2=0时,x3+x4=﹣1,x3x4=2,∴x12+x22+x32+x42=(x1+x2)2﹣2x1x2+(x3+x4)2﹣2x3x4=1+4+1﹣4=2.26.在△ABC中,AC=BC,点G是直线BC上一点,CF⊥AG,垂足为点E,BF⊥CF于点F,点D为AB的中点,连接DF.(1)如图1,如果∠ACB=90°,且G在CB边上,设CF交AB于点R,且E为CR的中点,若CG=1,求线段BG的长;(2)如图2,如果∠ACB=90°,且G在CB边上,求证:EF=DF;(3)如图3,如果∠ACB=60°,且G在CB的延长线上,∠BAG=15°,请探究线段EF、BD之间的数量关系,并直接写出你的结论.【分析】(1)如图1中,在CA上取一点H,使得CH=CG.求出GH,证明GH=AH=BG即可解决问题.(2)连接CD,DE,根据等腰直角三角形的性质得到CD=BD,∠CDB=90°,根据余角的性质得到∠FBD=∠DCE,由全等三角形的性质得到AE=CF,CE=BF,推出△BFD ≌△CDE,由全等三角形的性质得到DF=DE,∠FDB=∠EDC,证得△DEF是等腰直角三角形,即可得到结论.(3)如图3中,结论:=.连接AF,在EC上取一点H,使得CH=AH,连接AH.首先证明△BCF,△AEF是等腰直角三角形,设EF=AE=m,求出BD(用m 表示)即可解决问题.【解答】(1)解:如图1中,在CA上取一点H,使得CH=CG.∵CA=CB,∠ACB=90°,∴∠CAB=45°,∵AE⊥CR,CE=ER,∴AC=AR,∴∠CAG=∠GAB=22.5°∵CG=CH=1,∴GH===,∠CHG=45°,∵∠CHG=∠HAG+∠HGA,∴∠HAG=∠HGA=22.5°,∴HA=HG=,∵CB=CA,CG=CH,∴BG=AH=.(2)解:如图2中,连接CD,DE.∵CF⊥AG,BC⊥CF,∴∠BCF=∠CAE=90°﹣∠ACE在△AEC和△CFB,,∴△AEC≌△CFB(AAS),∴AE=CF,CE=BF,∵等腰Rt△ABC中,∠ACB=90°,AC=BC,∴CD=BD,∠CDB=90°,∵∠CDB=∠CFB=90°,∴∠FBD=∠DCE,在△BFD与△CED中,,∴△BFD≌△CED(SAS),∴DF=DE,∠FDB=∠EDC,∴∠EDC+∠EDB=∠BDF+∠BDE=90°,∴△DEF是等腰直角三角形,∴EF=DF.(3)如图3中,结论:=.理由:连接AF,在EC上取一点H,使得CH=AH,连接AH.∵AC=BC,∠ACB=60°,∴△ABC是等边三角形,∴∠CAB=60°,AB=AC=BC,∵∠BAG=15°,∴∠CAE=75°,∵CE⊥AG,∴∠CEA=90°,∴∠ACE=15°,∴∠BCF=∠ACB﹣∠ACE=45°,∵BF⊥CE,∴∠FCB=∠FBC=45°,∴FB=FC,∵AB=AC,∴AF垂直平分线段BC,∴AF平分∠CAB,∴∠F AB=∠CAB=30°,∴∠EAF=∠EF A=45°,∴EF=AE,设EF=AE=m,∵HC=HA,∴∠HCA=∠HAC=15°,∴∠EHA=∠HCA+∠HAC=30°,∴AH=2AE=2m,EH=m,∴EC=2m+m,∴AC===(+)m,∵BD=AB=AC=m,∴=.。
2019-2020学年人教新版重庆八中九年级第二学期(3月份)定时练习数学试卷 含解析

2019-2020学年九年级第二学期(3月份)定时练习数学试卷一、选择题1.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°2.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF 3.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()A.6B.8C.10D.124.如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,若∠FBE=40°,则∠DFE=()A.35°B.40°C.50°D.30°5.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10B.12C.16D.186.如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD上,AE=AF,∠EAF =60°,则CF的长是()A.B.C.﹣1D.二.填空题7.如图,在矩形ABCD中,AD=4,DC=3,将△ADC按逆时针方向绕点A旋转到△AEF (点A、B、E在同一直线上),连接CF,则CF=.8.如图平行四边形ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△BGC=.9.已知矩形ABCD的两对角线交于点O,该矩形的周长为24,△AOD与△AOB的周长之差为2,则矩形ABCD的面积为.10.四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',当变形后图形面积是原图形面积的一半时,则∠A'=.三.解答题11.如图,四边形ABCD是平行四边形,延长AD至点E,使DE=AD,连接BD.(1)求证:四边形BCED是平行四边形;(2)若DA=DB=2,cos A=,求点B到点E的距离.12.如图,在矩形ABCD中,EF垂直平分BD.(1)判断四边形BEDF的形状,并说明理由.(2)已知BD=20,EF=15,求矩形ABCD的周长.13.在平行四边形ABCD中,BE⊥AD,F为CD边上一点,满足BF=BC=BE.(1)如图1,若BC=12,CD=13,求DE的长;(2)如图2,过点G作DG∥BE交BF于点G.求证:BG=AE+DG.14.如图,正方形ABCD中,点E为边BC边上一点,连接AE,以AE为边在正方形内部作等腰直角△AEF,且∠AFE=90°,连接DF.(1)如图1,点M为AE的中点,若∠BAE=30°,BM=2,求四边形ABEF的周长;(2)如图2,求证:AB=DF+BE.参考答案一.选择题1.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.2.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF 解:正确选项是D.理由:∵∠F=∠CDF,∠CED=∠BEF,EC=BE,∴△CDE≌△BFE,CD∥AF,∴CD=BF,∵BF=AB,∴CD=AB,∴四边形ABCD是平行四边形.故选:D.3.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()A.6B.8C.10D.12解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,∴AO'=AC+O'C=6,∴AB'===10;故选:C.4.如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,若∠FBE=40°,则∠DFE=()A.35°B.40°C.50°D.30°解:如图,延长EF、BC交于点G.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠CGF=∠DEF,∵F为DC中点,∴DF=CF=CD,在△EDF和△GCF中:∴△EDF≌△GCF(AAS),∴EF=GF,∵BE⊥AD,∴BE⊥BG,∴∠EBG=90°,∴BF=EF=GF,∴∠FEB=∠FBE=40°,∴∠BFG=∠FEB+∠FBE=80°,∴∠FBG=∠FGB=50°,∵CD=2AD,∴CF=BC,∴∠CFB=∠FBG=50°,∴∠CFG=∠BFG﹣∠CFB=30°,∴∠DFE=∠CFG=30°.故选:D.5.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10B.12C.16D.18解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=×2×8=8,∴S阴=8+8=16,(本题也可以证明两个阴影部分的面积相等,由此解决问题)故选:C.6.如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD上,AE=AF,∠EAF =60°,则CF的长是()A.B.C.﹣1D.解:∵四边形ABCD是正方形,∴∠B=∠D=∠BAD=90°,AB=BC=CD=AD=1,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴∠BAE=∠DAF,∵∠EAF=60°,∴∠BAE+∠DAF=30°,∴∠DAF=15°,在AD上取一点G,使∠GFA=∠DAF=15°,如图所示:∴AG=FG,∠DGF=30°,∴DF=FG=AG,DG=DF,设DF=x,则DG=x,AG=FG=2x,∵AG+DG=AD,∴2x+x=1,解得:x=2﹣,∴DF=2﹣,∴CF=CD﹣DF=1﹣(2﹣)=﹣1;故选:C.二.填空题(每题6分,共24分)7.如图,在矩形ABCD中,AD=4,DC=3,将△ADC按逆时针方向绕点A旋转到△AEF (点A、B、E在同一直线上),连接CF,则CF=5.解:∵△ADC按逆时针方向绕点A旋转到△AEF,∴△ADC≌△AEF,∴∠EAF=∠DAC,AF=AC,∴∠EAF+∠EAC=∠DAC+∠EAC,∴∠FAC=∠BAD,又∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠FAC=90°,又∵在Rt△ADC中,AC===5,∴在Rt△FAC中,CF===5.8.如图平行四边形ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△BGC=2:9.解:如图,连接BG∵四边形ABCD是平行四边形∴AD∥BC,AD=BC∴∠E=∠CFG∵F为BC中点∴FC=BC=AD∵DE:AD=1:3∴DE:BC=1:3∴DE:CF=2:3∵∠E=∠CFG,∠DGE=∠CGF∴△DGE∽CGF∴S△DEG:S△CFG=4:9∵F为BC中点∴S△BGC=2S△CFG∴S△DEG:S△BGC=4:18=2:9故答案为:2:9.9.已知矩形ABCD的两对角线交于点O,该矩形的周长为24,△AOD与△AOB的周长之差为2,则矩形ABCD的面积为120.解:∵四边形ABCD是矩形,∴AD=BC,AB=DC,∠BAD=90°,BO=DO,∵矩形的周长为24,△AOD与△AOB的周长之差为2,∴2AB+2AD=24,(AD+AO+OD)﹣(AB+AO+BD)=2,∴AB+AD=12,AD﹣AB=2,∴AD=12,AB=10,∴矩形ABCD的面积为AD×AB=12×10=120,故答案为:120.10.四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',当变形后图形面积是原图形面积的一半时,则∠A'=30°.解:∵,∴平行四边形A'B'C'D'的底边A′D′边上的高等于A′D′的一半,∴∠A'=30°.故答案为:30°三.解答题(每题10分)11.如图,四边形ABCD是平行四边形,延长AD至点E,使DE=AD,连接BD.(1)求证:四边形BCED是平行四边形;(2)若DA=DB=2,cos A=,求点B到点E的距离.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=AD,∴DE=BC,DE∥BC,∴四边形BCED是平行四边形;(2)解:连接BE,∵DA=DB=2,DE=AD,∴AD=BD=DE=2,∴∠ABE=90°,AE=4,∵cos A=,∴AB=1,∴BE==.12.如图,在矩形ABCD中,EF垂直平分BD.(1)判断四边形BEDF的形状,并说明理由.(2)已知BD=20,EF=15,求矩形ABCD的周长.解:(1)四边形BEDF是菱形.在△DOF和△BOE中,∠FDO=∠EBO,OD=OB,∠DOF=∠BOE=90°,所以△DOF≌△BOE,所以OE=OF.又因为EF⊥BD,OD=OB,所以四边形BEDF为菱形.(2)如图,在菱形EBFD中,BD=20,EF=15,则DO=10,EO=7.5.由勾股定理得DE=EB=BF=FD=12.5.S菱形EBFD=EF•BD=BE•AD,即所以得AD=12.根据勾股定理可得AE=3.5,有AB=AE+EB=16.由2(AB+AD)=2(16+12)=56,故矩形ABCD的周长为56.13.在平行四边形ABCD中,BE⊥AD,F为CD边上一点,满足BF=BC=BE.(1)如图1,若BC=12,CD=13,求DE的长;(2)如图2,过点G作DG∥BE交BF于点G.求证:BG=AE+DG.解:(1)如图1中,作DM⊥BC于M.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=12∵BC=BE,∴BE=12,∵BE⊥AD,AD∥BC,DM⊥BC,∴四边形DMBE是矩形,∴DE=BM=BC﹣MC,DM=BE=12,在Rt△DCM中,MC===5,∴BM=BC﹣CM=12﹣5=7,∴DE=BM=7.(2)如图2中,延长GD到N,使得DN=AE,则GN=GD+DN=AE+DG.连接BN,AN.∵BE=AD,∠AEB=∠ADN=90°,AE=DN,∴△AEB≌△NDA(SAS),∴AN=AB,∠BAE=∠AND,∵BF=BC,∴∠C=∠BFC,∵四边形ABCD是平行四边形,∴AB∥CD,∠BAE=∠C,∴∠ABF=∠BFC,∴∠ABF=∠AND,∵AN=AB,∴∠ANB=∠ABN,∴∠GNB=∠GBN,∴BG=NG=AE+DG.14.如图,正方形ABCD中,点E为边BC边上一点,连接AE,以AE为边在正方形内部作等腰直角△AEF,且∠AFE=90°,连接DF.(1)如图1,点M为AE的中点,若∠BAE=30°,BM=2,求四边形ABEF的周长;(2)如图2,求证:AB=DF+BE.解:(1)∵点M为AE的中点,∠ABC=90°,∴AE=2BM=4,∵∠BAE=30°,∠ABC=90°,∴BE=AE=2,AB=BE=2,∵△AEF是等腰直角三角形,∴AF=EF==2,∴四边形ABEF的周长=AB+BE+EF+AF=2+4+2,(2)如图,过点F作MN⊥AD,交AD于N,交BC于M,∵BC∥AD,MN⊥AD,∴MN⊥BC,∴∠MEF+∠MFE=90°,且∠MFE+∠AFN=90°,∴∠MEF=∠AFN,且EF=AF,∠EMF=∠ANF=90°,∴△MEF≌△NFA(AAS),∴AN=MF,EM=FN,∵四边形ABCD是正方形,∴AB=AD,∠CBD=∠ADB=45°,∵MN⊥BC,MN⊥AD,∴MF=BM,FN=DN=FD,∴BM=AN,EM=FD,∴AB=AD=AN+DN=BM+FD=BE+EM+FD=FD+BE.。
2019-2020学年重庆市九年级下期中数学试卷及答案解析

.
23.(10分)重庆一中开学初在重百商场第一次购进A、B两种品牌的足球,购买A品牌足球花费了3200元,购买B品牌足球花费了2400元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌的足球多花20元.
A.60B.70C.80D.90
11.(4分)如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数y= 上,顶点B在反比例函数y= 上,点C在x轴的正半轴上,则平行四边形OABC的面积是( )
A. B. C.4D.6
12.(4分)若数a使关于x的不等式组 恰有3个整数解,且使关于y的分式方程 =3的解为整数,则符合条件的所有整数a的和为( )
A.2B.4C.9D.11
8.(4分)下列四个命题中,真命题有( )
①两条直线被第三条直线所截,内错角相等.
②如果∠1和∠2是对顶角,那么∠1=∠2.
③三角形的一个外角大于任何一个内角.
④如果x2>0,那么x>0.
A.1个B.2个C.3个D.4个
9.(4分)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=59°,则∠P的度数为( )
18.(4分)一堆玩具分给若干个小朋友,若每人3件,则剩4件,若前面每人分4件,则最后一人分到玩具,但不足3件,那么最多有件玩具.
三.解答题(共7小题,满分70分,每小题10分)
19.(10分)计算:
(1)(a﹣b)2﹣a(a+b);
(2) .
20.(10分)如图,△ABC中,AB=AC,AD、CE是高,连接DE.
(1)直接写出动点M的运动速度为cm/s,BC的长度为cm;
重庆八中2019-2020学年九年级下学期月考数学试题(有解析)

【分析】
根据多边形内角和公式可对A进行判定;根据矩形的性质可对B进行判定;根据全等三角形的性质可对C进行判定;根据平行线的性质可对D进行判定.
【详解】
A.多边形的内角和为(n-2)·180°(n≥3),故该选项是假命题,
B.矩形的对角线不一定平分每一组对角,故该选项是假命题,
C.全等三角形的对应边相等,故该选项是真命题,
接着,年级对早读打卡“不太严格”的全体学生进行了第一次基础知识检测,同时召开专题家长会提醒,督促这些家长落实责任,并告知将再次进行检测.两周后,年级又对之前早读打卡“不太严格”的这部分学生进行了第二次基础知识检测.
[整理、描述数据]
以下是抽查的家长打卡“不太严格”的对应学生的两次检测(满分均为 分)情况:
24.阅读下列材料:
对于任意正实数a、b,
∵ ,
当且仅当 时,等号成立.
结论:在 均为正实数)中,若 为定值 则 当且仅当 时,a+b有最小值 .
拓展:对于任意正实数 ,都有 当且仅当 时,等号成立.
在 (a、b、c均为正实数)中,若 为定值 ,则 当且仅当 时, 有最小值
例如: 则 ,当且仅当 ,即 时等号成立.
16.从 两个数中随机选取一个数记为 再从 三个数中随机选取一个数记为 ,则 的取值使得直线 不过第二象限的概率是______.
17.如图,在 中, ,将 绕点 逆时针旋转 ,得到 ,其中点 的对应点分别为点 连接 在旋转过程中,若 ,则 的长为_________.
18.如图,矩形OABC在直角坐标系中,延长AB至点E使得BE=BC连接CE,过A作AD//CE交CB延长线于点D,直线DE分别交x轴、y轴于F、G点,若EG:DF=1:4,且△BCE与△BAD面积之和为 ,则过点 的双曲线 中 的值为____.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年重庆八中九年级第二学期定时练习数学试卷一、选择题(共12小题).1.(4分)在0,1,﹣,﹣1四个数中,最小的数是()A.0B.1C.﹣D.﹣12.(4分)下列图形中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.3.(4分)如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是()A.40°B.50°C.90°D.130°4.(4分)已知分式,当x=2时,分式的值为零;当x=﹣2时,分式没有意义,则分式有意义时,a+b的值为()A.﹣2B.2C.6D.﹣65.(4分)一个空间几何体的主视图和左视图都是边长为4的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.24πB.64πC.32πD.48π6.(4分)如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论不一定正确的是()A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC 7.(4分)下列命题是假命题的是()A.一个有理数不是整数就是分数B.在三角形内部到三边距离相等的点是三个内角平分线的交点C.菱形的对角线互相垂直平分D.点(﹣2,3)关于y轴对称的点的坐标是(﹣2,﹣3)8.(4分)如图,点A、C是⊙O上两点,连接AC并延长交切线BD于点D,连接OB、OC、BC、AB,若∠A=35°,则∠CBD的度数为()A.35°B.45°C.55°D.65°9.(4分)如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)10.(4分)按如图所示的运算程序,能使运算输出的结果为2的是()A.x=﹣1,y=﹣1B.x=5,y=﹣1C.x=﹣3,y=1D.x=0,y=﹣2 11.(4分)中考结束后,小明和好朋友一起前往三亚旅游.他们租住的宾馆AB坐落在坡度为i=1:2.4的斜坡上.宾馆AB高为129米.某天,小明在宾馆顶楼的海景房A处向外看风景,发现宾馆前有一座雕像C(雕像的高度忽略不计),已知雕像C距离海岸线D的距离CD为260米,与宾馆AB的水平距离为36米,远处海面上一艘即将靠岸的轮船E的俯角为27°.则轮船E距离海岸线D的距离ED的长为()米(参考数据:tan27°≈0.5,sin27°≈0.45)A.262B.212C.244D.27612.(4分)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:①abc>0,②4a+2b+c <0,③2a﹣b<0,④b2+8a>4ac,⑤a<﹣1,其中结论正确的有()A.1个B.2个C.3个D.4个二、填空题(共6小题).13.(4分)计算20200+(﹣1)2019﹣|﹣cos60°|=.14.(4分)边形内角和为1260°.15.(4分)分别从0、1、2、3四个数中随机选取两个不同的数,分别记为a,c,则a,c 的取值使得关于x的一元二次方程ax2﹣3x+c=0无实数解的概率为.16.(4分)在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点,已知点A(0,4),点B是x轴正半轴上的点,记△AOB内部(不包括边界)的整点个数为m,当m=3时,点B的横坐标a的取值范围是.17.(4分)如图,在平面直角坐标系中,O为坐标原点,正比例函数y=x的图象与反比例函数y=(x>0)的图象都经过点A(3,m).点B在x轴上,且OA=BA,反比例函数图象上有一点C,且∠ABC=90°,则点C坐标为.18.(4分)如图,有一直角三角形纸片ABC,∠ACB=90°,∠B=30°,AC=2,CD ⊥AB于点D.F,G分别是线段AD,BD上的点,H,I分别是线段AC,BC上的点,沿HF,GI折叠,使点A,B恰好都落在线段CD上的点E处,当FG=EG时,FD的长是.三、解答题:(本大题共8小题,第26题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤.19.(10分)(1)(2)÷(﹣x﹣3)20.(10分)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=6,∠CBD=30°,求图中阴影部分的面积.21.(10分)距离中考体考时间越来越近,年级想了解初三年级1512名学生周末在家体育锻炼的情况,在初三年级随机抽取了18名男生和18名女生,对他们周末在家的锻炼时间进行了调查,并收集得到了以下数据(单位:分钟)男生:28,30,32,46,68,39,80,70,66,57,70,95,100,58,69,88,99,105女生:36,48,78,99,56,62,35,109,29,88,88,69,73,55,90,98,69,72统计数据,并制作了如下统计表:时间x0≤x≤3030<x≤6060<x≤9090<x男生2m n4女生1593分析数据:两组数据的极差、平均数、中位数、众数如表所示极差平均数中位数众数方差男生7766.7b70617.3女生a69.770.5c547.2(1)请将上面的表格补充完整:m=,n=,a=,b=,c=;(2)已知该年级男女生人数差不多,根据调查的数据,估计初三年级周末在家锻炼的时间在90分钟以上(不包含90分钟)的同学约有多少人?(3)体育老师看了表格数据后认为初三年级的女生周末锻炼做得比男生好,请你结合统计数据,写出两条支持体育老师观点的理由.22.(10分)小帆同学根据函数的学习经验,对函数y1=进行探究,已知函数过(﹣2,2),(1,2),(2,1).(1)求函数y1解析式;(2)如图,在平面直角坐标系中画y1的图象,根据函数图象,写出函数的一条性质;(3)结合函数图象回答下列问题:①方程y1=x+5的近似解的取值(精确到个位)是;②若一次函数y2=kx+2与y1有且仅有两个交点,则k的取值范围是.23.(10分)某公司购进一批新产品进行销售,已知该产品的进货单价为8元/件,该公司对这批新产品上市后的销售情况进行了跟踪调查.销售过程中发现,该产品每月的销售量y(万件)与销售单价x(元)之间的关系满足如表.销售单价x(元/件)…10121415…每月销售量y(万件)…40363230…(1)请你从所学过的一次函数、二次函数和反比例函数三个模型中确定哪种函数能比较恰当地表示y与x的变化规律,并求出y与x之间的函数关系式;(2)当销售单价为多少元时,该产品每月获得的利润为240万元?(3)如果该产品每月的进货成本不超过160万元,那么当销售单价为多少元时,该产品每月获得的利润最大?最大利润为多少万元?24.(10分)如图,直线y=﹣x+4与x轴交于点C,与y轴交于点B,抛物线y=﹣2+bx+c 经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是抛物线上的一动点(不与B,C两点重合),当S△BEC=S△BOC时,求点E的坐标;(3)若点F是抛物线上的一动点,当S△BFC为什么取值范围时,对应的点F有且只有两个?25.(10分)在菱形ABCD中,∠ABC=60°,点M是对角线BD上一动点,将线段CM 绕点C顺时针旋转120°到CN,连接DN,连接NM并延长,分别交AB、CD于点P、Q.(1)如图1,若CM⊥BD且PQ=4,求菱形ABCD的面积;(2)如图2,求证:PM=QN.26.(8分)“构造图形解题”,它的应用十分广泛,特别是有些技巧性很强的题目,如果不能发现题目中所隐含的几何意义,而用通常的代数方法去思考,经常让我们手足无措,难以下手,这时,如果能转换思维,发现题目中隐含的几何条件,通过构造适合的几何图形,将会得到事半功倍的效果,下面介绍两则实例:实例一:1876年,美国总统伽非尔德利用实例一图证明了勾股定理:由S四边形ABCD=S△ABC+S△ADE+S△ABE得(a+b)2=2×ab c2,化简得:a2+b2=c2.实例二:欧几里得的《几何原本》记载,关于x的方程x2+ax=b2的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=|b|,再在斜边AB上截取BC=,则AD的长就是该方程的一个正根(如实例二图).根据以上阅读材料回答下面的问题:(1)如图1,请利用图形中面积的等量关系,写出甲图要证明的数学公式是,乙图要证明的数学公式是,体现的数学思想是;(2)如图2,按照实例二的方式构造Rt△ABC,连接CD,请用含字母a、b的代数式表示AD的长,AD的表达式能和已学的什么知识相联系;(3)如图3,已知⊙O,AB为直径,点C为圆上一点,过点C作CD⊥AB于点D,连接CO,设DA=a,BD=b,求证:≥.参考答案一、选择题(本大题12个小题,每小题4分,共48分)1.(4分)在0,1,﹣,﹣1四个数中,最小的数是()A.0B.1C.﹣D.﹣1解:∵,∴,∴,∴在0,1,﹣,﹣1四个数中,最小的数是﹣1.故选:D.2.(4分)下列图形中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.解:A、不是中心对称图形,不是轴对称图形,故此选项不合题意;B、既是中心对称图形,又是轴对称图形,故此选项符合题意;C、不是中心对称图形,是轴对称图形,故此选项不合题意;D、是中心对称图形,不是轴对称图形,故此选项不合题意;故选:B.3.(4分)如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是()A.40°B.50°C.90°D.130°解:∵将直线l1沿着AB的方向平移得到直线l2,∴l1∥l2,∵∠1=50°,∴∠2的度数是50°.故选:B.4.(4分)已知分式,当x=2时,分式的值为零;当x=﹣2时,分式没有意义,则分式有意义时,a+b的值为()A.﹣2B.2C.6D.﹣6解:∵x=2时,分式的值为零,∴2﹣b=0,解得b=2.∵x=﹣2时,分式没有意义,∴2×(﹣2)+a=0,解得a=4.∴a+b=4+2=6.故选:C.5.(4分)一个空间几何体的主视图和左视图都是边长为4的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.24πB.64πC.32πD.48π解:根据题意可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为2,高为4,那么它的表面积=4π×2+2π×2×4=24π,故选:A.6.(4分)如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论不一定正确的是()A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC解:∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°;∵∠ACB=90°,∴CD=BD;∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED;∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选:D.7.(4分)下列命题是假命题的是()A.一个有理数不是整数就是分数B.在三角形内部到三边距离相等的点是三个内角平分线的交点C.菱形的对角线互相垂直平分D.点(﹣2,3)关于y轴对称的点的坐标是(﹣2,﹣3)解:A、一个有理数不是整数就是分数,是真命题;B、在三角形内部到三边距离相等的点是三个内角平分线的交点,是真命题;C、菱形的对角线互相垂直平分,是真命题;D、点(﹣2,3)关于y轴对称的点的坐标是(2,3),原命题是假命题;故选:D.8.(4分)如图,点A、C是⊙O上两点,连接AC并延长交切线BD于点D,连接OB、OC、BC、AB,若∠A=35°,则∠CBD的度数为()A.35°B.45°C.55°D.65°解:∵∠A=35°,∴∠BOC=2∠A=70°,∵BD切⊙O于B,∴∠OBD=90°,∵OB=OC,∴∠OBC=∠OCB=55°,∴∠CBD=90°﹣55°=35°,故选:A.9.(4分)如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选:A.10.(4分)按如图所示的运算程序,能使运算输出的结果为2的是()A.x=﹣1,y=﹣1B.x=5,y=﹣1C.x=﹣3,y=1D.x=0,y=﹣2解:∵﹣1=﹣1,∴输出结果是:(﹣1)2﹣(﹣1)=2.∵5>﹣1,∴输出结果是:5+(﹣1)2=6.∵﹣3<1,∴输出结果是:(﹣3)2﹣1=8.∵0>﹣2,∴输出结果是:0+(﹣2)2=4.故选:A.11.(4分)中考结束后,小明和好朋友一起前往三亚旅游.他们租住的宾馆AB坐落在坡度为i=1:2.4的斜坡上.宾馆AB高为129米.某天,小明在宾馆顶楼的海景房A处向外看风景,发现宾馆前有一座雕像C(雕像的高度忽略不计),已知雕像C距离海岸线D的距离CD为260米,与宾馆AB的水平距离为36米,远处海面上一艘即将靠岸的轮船E的俯角为27°.则轮船E距离海岸线D的距离ED的长为()米(参考数据:tan27°≈0.5,sin27°≈0.45)A.262B.212C.244D.276解:如图,延长AB交ED的延长线于G,作CH⊥DG于H,CF⊥BG于F.在Rt△CDH中,∵CD=260米,CH:DH=1:2.4,∴CH=100(米),DH=240(米),在Rt△BCF中,∵CF=36米,BF:CF=1:2.4,∴BF=15(米),∵四边形CFGH是矩形,∴HG=CF=36(米),FG=CH=100(米),∴DG=DH+HG=276(米),AG=AB+BF+FG=244(米),∵tan27°==0.5,∴=0.5,∴DE=212(米),故选:B.12.(4分)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:①abc>0,②4a+2b+c <0,③2a﹣b<0,④b2+8a>4ac,⑤a<﹣1,其中结论正确的有()A.1个B.2个C.3个D.4个解:∵抛物线的开口向下,∴a<0,∵抛物线与y轴的交点为在y轴的正半轴上,∴c>0,∵0<﹣<1,又∵a<0,∴b>0,∴abc<0,所以①错误;∴b>2a,即2a﹣b<0,所以③正确;∵x=2,y<0,∴4a+2b+c<0,所以②正确;∵>2,而a<0,∴4ac﹣b2<8a,∴b2+8a>4ac,所以④正确;当x=1时,a+b+c=2①.∵a﹣b+c<0②,4a+2b+c<0③,由①+②得到2a+2c<2,由③﹣①×2得到2a﹣c<﹣4,即4a﹣2c<﹣8,上面两个相加得到6a<﹣6,∴a<﹣1.故⑤正确,故选:D.二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算20200+(﹣1)2019﹣|﹣cos60°|=.解:20200+(﹣1)2019﹣|﹣cos60°|=1﹣1﹣=.故答案为:﹣.14.(4分)九边形内角和为1260°.解:设所求多边形边数为n,则(n﹣2)•180°=1260°,解得n=9.故答案为:九.15.(4分)分别从0、1、2、3四个数中随机选取两个不同的数,分别记为a,c,则a,c 的取值使得关于x的一元二次方程ax2﹣3x+c=0无实数解的概率为.解:∵关于x的一元二次方程ax2﹣3x+c=0无实数根,∴b2﹣4ac<0且a≠0,即:9﹣4ac<0且a≠0,也就是ac>,且a≠0;从0、1、2、3四个数中随机选取两个不同的数,记为a,c,则ac的所有可能出现的结果如下:共有12种可能出现的结果,其中ac>,且a≠0的情况有4种;∴P(一元二次方程ax2﹣3x+c=0无实数解)=,故答案为:.16.(4分)在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点,已知点A(0,4),点B是x轴正半轴上的点,记△AOB内部(不包括边界)的整点个数为m,当m=3时,点B的横坐标a的取值范围是.解:由图可得,点B的横坐标a的取值范围是17.(4分)如图,在平面直角坐标系中,O为坐标原点,正比例函数y=x的图象与反比例函数y=(x>0)的图象都经过点A(3,m).点B在x轴上,且OA=BA,反比例函数图象上有一点C,且∠ABC=90°,则点C坐标为(23,6﹣3).解:作AD⊥x轴于D,CE⊥x轴于E,设点C的坐标为,∵AO=AB,AD⊥x轴,∴OD=BD=3,∴,∵作AD⊥x轴,CE⊥x轴,∠ABC=90°,∴△ADB∽△BEC,∴,∴,解得:(舍去),x2=2+3,则点C的坐标为,故答案为:.18.(4分)如图,有一直角三角形纸片ABC,∠ACB=90°,∠B=30°,AC=2,CD ⊥AB于点D.F,G分别是线段AD,BD上的点,H,I分别是线段AC,BC上的点,沿HF,GI折叠,使点A,B恰好都落在线段CD上的点E处,当FG=EG时,FD的长是.解:∵∠ACB=90°,∠B=30°,AC=2,∴AB=4,,∵CD⊥AB,∴∠CDB=90°,∴BD=3,∴AD=AB﹣BD=1,由折叠的性质得,AF=EF,EG=BG,∵FG=EG,∴FG=BG,设FD=x,∴AF=1﹣x,BF=3+x,∴BG=EG=FG=,∴,∵EF2﹣DF2=EG2﹣DG2=DE2,∴,解得:.∴.故答案为:.三、解答题:(本大题共8小题,第26题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤.19.(10分)(1)(2)÷(﹣x﹣3)解:(1)由①得,2x≥﹣2即x≥﹣1由②得,3x<5即故原不等式组的解集为:.(2)原式==.20.(10分)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=6,∠CBD=30°,求图中阴影部分的面积.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,又∵OC为半径,∴AE=ED,(2)解:连接CD,OD,∵OC∥BD,∴∠OCB=∠CBD=30°,∵OC=OB,∴∠OCB=∠OBC=30°,∴∠AOC=∠OCB+∠OBC=60°,∵∠COD=2∠CBD=60°,∴∠AOD=120°,∵AB=6,∴BD=3,AD=3,∵OA=OB,AE=ED,∴,∴S阴影=S扇形AOD﹣S△AOD=﹣=3π﹣.21.(10分)距离中考体考时间越来越近,年级想了解初三年级1512名学生周末在家体育锻炼的情况,在初三年级随机抽取了18名男生和18名女生,对他们周末在家的锻炼时间进行了调查,并收集得到了以下数据(单位:分钟)男生:28,30,32,46,68,39,80,70,66,57,70,95,100,58,69,88,99,105女生:36,48,78,99,56,62,35,109,29,88,88,69,73,55,90,98,69,72统计数据,并制作了如下统计表:时间x0≤x≤3030<x≤6060<x≤9090<x男生2m n4女生1593分析数据:两组数据的极差、平均数、中位数、众数如表所示极差平均数中位数众数方差男生7766.7b70617.3女生a69.770.5c547.2(1)请将上面的表格补充完整:m=5,n=7,a=80,b=68.5,c=88和69;(2)已知该年级男女生人数差不多,根据调查的数据,估计初三年级周末在家锻炼的时间在90分钟以上(不包含90分钟)的同学约有多少人?(3)体育老师看了表格数据后认为初三年级的女生周末锻炼做得比男生好,请你结合统计数据,写出两条支持体育老师观点的理由.解:(1)分别统计男生数据,可得在30<x≤60组的频数m=5,在60<x≤90组的频数n=7;女生数据的极差a=109﹣29=80,将男生数据从小到大排列后,处在第9、10位的两个数的平均数为=68.5,因此中位数b=68.5,女生数据出现次数最多的是69和88,因此众数是69和88,故答案为:5,7,80,68.5,69和88;(2)据表格,可得锻炼时间在90分钟以上的男生有4人,女生有3人,(人),答:初三年级锻炼时间在90分钟以上的同学有294人.(3)理由一:因为69.7>66.7,所以女生锻炼时间的平均时间更长,因此女生周末做得更好.理由二:因为70.5>68.5,所以锻炼时间排序后在中间位置的女生比男生更好,因此女生周末做得更好.22.(10分)小帆同学根据函数的学习经验,对函数y1=进行探究,已知函数过(﹣2,2),(1,2),(2,1).(1)求函数y1解析式;(2)如图,在平面直角坐标系中画y1的图象,根据函数图象,写出函数的一条性质;(3)结合函数图象回答下列问题:①方程y1=x+5的近似解的取值(精确到个位)是﹣3<x<﹣2或﹣1<x<0;②若一次函数y2=kx+2与y1有且仅有两个交点,则k的取值范围是或k>0.【解答】(1)将点(﹣2,2),(1,2)代入可得,解得,因此,将点(2,1)代入,可得,解得k=2,因此,所以y1=;(2)如图为所求当时,函数y1有最大值,函数y1无最小值;(3)由图象可知:①方程y1=x+5的近似解﹣3<x<﹣2或﹣1<x<0②或k>023.(10分)某公司购进一批新产品进行销售,已知该产品的进货单价为8元/件,该公司对这批新产品上市后的销售情况进行了跟踪调查.销售过程中发现,该产品每月的销售量y(万件)与销售单价x(元)之间的关系满足如表.销售单价x(元/件)…10121415…每月销售量y(万件)…40363230…(1)请你从所学过的一次函数、二次函数和反比例函数三个模型中确定哪种函数能比较恰当地表示y与x的变化规律,并求出y与x之间的函数关系式;(2)当销售单价为多少元时,该产品每月获得的利润为240万元?(3)如果该产品每月的进货成本不超过160万元,那么当销售单价为多少元时,该产品每月获得的利润最大?最大利润为多少万元?解:(1)由表格中数据可知,y与x之间的函数关系式为一次函数关系,设y=kx+b(k≠0),,得即y与x之间的函数关系式为y=﹣2x+60;(2)设总利润为w元,由题意得,w=y(x﹣8)=(﹣2x+60)(x﹣8)=﹣2x2+76x﹣480,当w=240时,﹣2x2+76x﹣480=240,解得,x1=18,x2=20,答:当销售单价为18元或20元时,每月获得的利润为240万元;(3)∵进货成本不超过160万元,每件的成本为8元,∴每月的进货量不超过万件,∴y=﹣2x+60≤20,解得,x≥20,∵w=﹣2x2+76x﹣480=﹣2(x﹣19)2+242,∵﹣2<0开口向下,对称轴为x=19,且x≥20,∴x=20时,w取得最大值,此时w为240万元,答:当销售单价为20元时,每月获得的利润最大,最大利润为240万元.24.(10分)如图,直线y=﹣x+4与x轴交于点C,与y轴交于点B,抛物线y=﹣2+bx+c 经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是抛物线上的一动点(不与B,C两点重合),当S△BEC=S△BOC时,求点E的坐标;(3)若点F是抛物线上的一动点,当S△BFC为什么取值范围时,对应的点F有且只有两个?解:(1)由y=﹣x+4知点B(0,4),点C(4,0),将B(0,4),C(4,0)代入,可得,解得,∴;(2)如图,过点E作x轴的垂线交BC于点N,如下图所示,设点,则点N(a,﹣a+4),∴,∵,∴,解得,,,,将x1,x2代入抛物线解析式,可得,,,,∴,,,;(3)由题意得,当F点在直线BC的下方的抛物线上时,一定有两个对应的F点满足△BCF面积为S,所以当F点在直线BC的上方的抛物线上时,此时无F点满足△BCF 面积为S才符合题意,故只需讨论当点F在直线BC的上方的情况即可,设点,由(2)同理可得,∴当m=2时S△BFC的最大值为,∴当S△BFC取大于时,无法找到F点,综上所述:当时,对应的点F有且只有两个.答:(1);(2),,,;(3)当时,对应的点F有且只有两个.25.(10分)在菱形ABCD中,∠ABC=60°,点M是对角线BD上一动点,将线段CM 绕点C顺时针旋转120°到CN,连接DN,连接NM并延长,分别交AB、CD于点P、Q.(1)如图1,若CM⊥BD且PQ=4,求菱形ABCD的面积;(2)如图2,求证:PM=QN.解:(1)连接AC,如图1,∵在菱形AC⊥BD中,AC⊥BD,又∵CM⊥BD,∴A、C、M三点共线,∴S菱形ABCD=2S△ABC,,∵∠ABC=60°,AB=BC,∴∠ACB=∠ACD=60°,∵∠ACN=120°,∴∠ACD=∠DCN=60°,∴点M,N关于CD对称,∴MN⊥CD,∵,∴,∴MC=4,∴,∴S菱形ABCD=2×16=32;(2)证明:四边形ABCD是菱形,∴BC=DC,AB∥CD,∴,∠ABC+∠BCD=180°,∴∠BCD=180°﹣∠ABC=120°,由旋转的性质得:CM=CN,∠MCN=120°,∴∠MCN=∠BCD,∴∠BCM=∠DCN,在△BCM和△DCN中,,∴△MCB≌△NCD(SAS),∴BM=DN,∠CDN=∠CBM=∠ABD=30°,在CD上取点H,使DH=BP,如图2所示:则,在△BPM和△DHN中,∴△MPB≌△NHD(SAS),∴PM=HN,∠DHN=∠BPM,∵∠BPM=∠CQN,∴∠CQN=∠BPM,∴∠QHN=∠HQN,∴HN=QN=PM,∴QN=PM.26.(8分)“构造图形解题”,它的应用十分广泛,特别是有些技巧性很强的题目,如果不能发现题目中所隐含的几何意义,而用通常的代数方法去思考,经常让我们手足无措,难以下手,这时,如果能转换思维,发现题目中隐含的几何条件,通过构造适合的几何图形,将会得到事半功倍的效果,下面介绍两则实例:实例一:1876年,美国总统伽非尔德利用实例一图证明了勾股定理:由S四边形ABCD=S△ABC+S△ADE+S△ABE得(a+b)2=2×ab c2,化简得:a2+b2=c2.实例二:欧几里得的《几何原本》记载,关于x的方程x2+ax=b2的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=|b|,再在斜边AB上截取BC=,则AD的长就是该方程的一个正根(如实例二图).根据以上阅读材料回答下面的问题:(1)如图1,请利用图形中面积的等量关系,写出甲图要证明的数学公式是完全平方公式,乙图要证明的数学公式是平方差公式,体现的数学思想是数形结合的思想;(2)如图2,按照实例二的方式构造Rt△ABC,连接CD,请用含字母a、b的代数式表示AD的长,AD的表达式能和已学的什么知识相联系;(3)如图3,已知⊙O,AB为直径,点C为圆上一点,过点C作CD⊥AB于点D,连接CO,设DA=a,BD=b,求证:≥.解:(1)如图1中,图甲大正方形的面积=(a+b)2=a2+2ab+b2,图乙中大正方形的面积=a2=(a﹣b)2+b2+2b(a﹣b),即a2﹣b2=(a﹣b)(a﹣b+2b)=(a+b)(a﹣b).甲图要证明的数学公式是完全平方公式,乙图要证明的数学公式是平方差公式,体现的数学思想是数形结合的思想.故答案为:完全平方公式,平方差公式,数形结合的思想;(2)①在Rt△ABC中,,AC=b,∴∴;②解x2+ax=b2,由求根公式可得答:AD的表达式能和一元二次方程的求根公式相联系;(3)由已知,可得,连接AC,CB,∵AB为直径,∴∠ACB=90°∴∠ACD+∠DCB=90°,∵CD⊥AB,∴∠CAD+∠ACD=90°,∠CDA=∠CDB,又∠ACD+∠DCB=90°,∴∠DCB=∠CAD,∴△ACD∽△CBD,∴CD2=AD•BD,即,在Rt△COD中,CO2=OD2+CD2,∴CO2≥CD2,即CO≥CD,∴.。