时间序列分析基础及模型
时间序列分析与ARIMA模型建模研究

时间序列分析与ARIMA模型建模研究第一章:引言时间序列是统计学中一个重要的研究对象,具有广泛的应用。
时间序列分析是利用已有的时间序列数据,探索其内在规律,以便在未来进行预测和决策。
ARIMA模型(自回归滑动平均模型)是时间序列分析的常用方法之一,可用于揭示时间序列的内在模式和规律。
第二章:时间序列分析基础时间序列是一列按时间顺序排列的数据,通常包括趋势、季节性、循环性和随机误差等多个成分。
时间序列分析可分为描述和推断两个层面。
描述时间序列通常采用图形和统计指标等方法,例如折线图、箱线图、ACF(自相关函数)和PACF(偏自相关函数)等。
推断时间序列通常采用平稳性检验、白噪声检验、建模和预测等方法。
第三章:ARIMA模型原理ARIMA模型包括自回归(AR)模型、滑动平均(MA)模型和差分(I)模型。
自回归模型是指基于已知的过去值,预测未来值的线性回归模型。
滑动平均模型是指基于过去预测未来的移动平均模型。
差分模型是指基于对时间序列进行差分,使其变为平稳序列的过程。
ARIMA模型的关键步骤包括选型、建模、估计、诊断和预测等。
第四章:ARIMA模型建模研究ARIMA模型的建模研究包括选型和建模两个过程。
选型是指根据ACF和PACF的结果,确定ARIMA模型的阶数。
建模是指根据选型的结果,确定ARIMA模型的参数,利用样本数据进行模型估计和诊断,最终得到可行的模型。
ARIMA模型的建模中还需考虑季节性和异常值等问题。
建模中过程需符合ARIMA模型的前提条件,如平稳性和白噪声。
第五章:ARIMA模型预测ARIMA模型预测是指基于历史时间序列,预测未来的时间序列值。
预测方法主要包括单步预测和多步预测两种。
单步预测是指根据已有数据预测下一个时间点的值;多步预测是指根据已有数据预测未来多个时间点的值。
ARIMA模型的预测方法可采用点预测和置信区间预测两种。
置信区间预测有助于了解预测误差范围和不确定性程度。
第六章:实例分析本章以某地2014-2020年每月空气质量指数为例,对时间序列分析和ARIMA建模进行实际分析。
计量经济学试题时间序列模型与ARIMA模型

计量经济学试题时间序列模型与ARIMA模型时间序列是指按照时间顺序排列的一组数据。
在计量经济学中,时间序列分析是一种重要的研究方法,它可以帮助我们理解和预测经济现象的发展趋势。
本文将介绍时间序列模型以及其中的一种常用模型——自回归滑动平均移动平均自回归(ARIMA)模型。
一、时间序列模型的基本概念时间序列模型是根据时间序列数据的特点建立的数学模型。
它假设时间序列的变动是由多个因素引起的,这些因素可以是趋势、季节性、周期性等。
时间序列模型可以帮助我们从数据中分离出这些因素,以便更好地理解和预测未来的变动。
二、自回归滑动平均移动平均自回归(ARIMA)模型ARIMA模型是一种广泛应用于时间序列分析的模型,它结合了自回归(AR)模型、滑动平均(MA)模型和差分运算的方法。
ARIMA模型可以描述时间序列的自相关性、滞后差分的影响以及移动平均误差的影响。
ARIMA模型可以从以下三个方面描述一个时间序列:1. 自回归(AR)部分:用于描述过去时间点的观测值对当前值的影响,通过延迟观测值来预测当前值。
2. 差分(I)部分:通过对时间序列进行差分运算,可以消除其非平稳性,提高模型的拟合度和预测准确性。
3. 滑动平均(MA)部分:用于描述序列中随机波动的影响,通过滞后误差预测当前值。
ARIMA模型的表示方式为ARIMA(p, d, q),其中p表示自回归阶数,d表示差分阶数,q表示滑动平均阶数。
通过对历史数据的拟合,我们可以得到模型的参数估计,从而进行未来值的预测。
三、ARIMA模型的应用ARIMA模型在经济领域有广泛的应用,其中包括销售预测、股票价格预测、宏观经济指标预测等。
它通过分析历史数据中的规律性和趋势性,将其应用于未来的预测中。
ARIMA模型的建立和应用过程可以分为以下几个步骤:1. 数据收集和准备:收集相关的时间序列数据,并对其进行清洗和格式化,以便于后续的分析和建模。
2. 模型选择和拟合:通过计算模型选择准则(AIC、BIC等)来确定模型的阶数,并使用最小二乘法或极大似然法对模型进行参数估计。
ARMA模型

方差为 2 的正态分布.随机项与滞后变量不相关。
注2: 一般假定
X t 均值为0,否则令
X
t
Xt
1 时间序列分析模型【ARMA模型 】简介
记 Bk 为 k 步滞后算子, 即 Bk X t X tk , 则
模型【1】可表示为
Xt 1BXt 2B2 Xt pBp Xt ut
实际问题中, 常会遇到季节性和趋势性同时存在的情况, 这 时必须事先剔除序列趋势性再用上述方法识别序列的季节性, 否则季节性会被强趋势性所掩盖, 以至判断错误.
包含季节性的时间序列也不能直接建立ARMA模型, 需进 行季节差分消除序列的季节性, 差分步长应与季节周期一致.
1 时间序列分析模型【ARMA模型 】简介
式【5】称为( p, q)阶的自回归移动平均模型, 记为ARMA ( p, q)
注1: 实参数 1,2 , , p 称为自回归系数, 1,2 , ,q 为移动平均系数,
都是模型的待估参数
注2: 【1】和【3】是【5】的特殊情形 注3: 引入滞后算子,模型【5】可简记为
(B) Xt (B)ut
【6】
在实际中, 常见的时间序列多具有某种趋势, 但很多序列 通过差分可以平稳
判断时间序列的趋势是否消除, 只需考察经过差分后序列 的自相关系数
(3)季节性 时间序列的季节性是指在某一固定的时间间隔上, 序列重
复出现某种特性.比如地区降雨量、旅游收入和空调销售额等 时间序列都具有明显的季节变化. 一般地, 月度资料的时间序列, 其季节周期为12个月;
Xt 1 v1B v2B2
ut
vjB
j
ut
j0
时间序列分析

第九章 时间序列分析第三节 趋势变动分析一、时间序列构成要素与模型时间序列的形成是各种不同的因素对事物的发展变化共同起作用的结果。
这些因素概括起来可以归纳为四类:长期趋势因素、季节变动因素、循环变动因素和不规则变动因素。
由此造成客观事物的变动呈现出四种不同的状态:第一,长期趋势变动。
长期趋势因素是在事物的发展过程中起着主要的、决定性作用的因素,这类因素使得事物的发展水平长期沿着一定的方向发展,使事物的变化呈现出某种长期的变化趋势。
例如,中国改革开放以来,经济是持续增长的,表现为国内生产总值逐年增长的态势。
第二,季节变动。
季节变动或称季节波动,是指某些现象由于受自然条件和经济条件的变动影响,而形成在一年中随季节变动而发生的有规律的变动。
如羽绒服装的销售量由于季节的影响而呈现出淡、旺交替变化的周期性变动;某些农产品加工企业,由于受原材料生长季节的影响,其生产也出现周期性变动等等。
第三,循环变动。
循环变动是指一年以上的周期性变化,其波动是从低到高再从高到低的周而复始的一种有规律的变动。
循环波动不同于趋势变动,它不是沿着单一的方向持续运动,而是升降相间、涨落交替的变动;它也不同于季节变动,季节变动有比较固定的规律,且变动周期长度在一年以内,而循环变动则无固定规律,变动周期多在一年以上,且周期长短不一。
第四,不规则变动。
不规则变动也有人称之为随机漂移,属于序列中无法确切解释、往往也无须解释的那些剩余波动。
引起事物发生不规则变动的因素多是一些偶然因素,由于它们的影响使事物的发展变化呈现出无规律的、不规则的状态。
时间序列构成分析就是要观察现象在一个相当长的时期内,由于各个影响因素的影响,使事物发展变化中出现的长期趋势、季节变动、循环变动和不规则变动。
形成时间序列变动的四类构成因素,按照它们的影响方式不同,可以设定为不同的组合模型。
其中,最常用的有乘法模型和加法模型。
乘法模型:Y = T·S·C·I (9-20)加法模型:Y = T+S+C+I (9-21)式中:Y:时间序列的指标数值T:长期趋势成分S:季节变动成分C:循环变动成分I:不规则变动成分乘法模型是假定四个因素对现象的发展的影响是相互作用的,以长期趋势成分的绝对量为基础,其余量均以比率表示。
时间序列分析中的ARIMA模型

时间序列分析中的ARIMA模型时间序列分析是一种对时间序列数据进行分析和预测的模型,在现代经济学、金融学、气象学、物理学、工业生产等领域中有着广泛的应用。
ARIMA模型是时间序列分析中最为基础和经典的模型之一,其对于时间序列的平稳性、趋势性及季节性进行分解后,通过自相关函数和偏自相关函数的分析,得出模型的阶数和参数,进而进行模拟、预测和检验等步骤。
一、时间序列分析简介时间序列通常是指在某个时间段内,观测某种现象的数值,如个人月收入、经济指标、气温等。
时间序列的基本特点有趋势性、季节性、周期性、自相关和非平稳性等。
时间序列分析的目的就是对序列进行建模,找出序列中的规律性和非规律性,并对序列进行预测。
时间序列建模的基础是对序列的平稳性进行分析,若序列在时间上呈现平稳性,则可以使用分析预测方法来建模;反之,若序列不满足平稳性的要求,则需要进行差分处理,将其转换为平稳时间序列,再进行建模。
二、ARIMA模型的概述ARIMA模型是自回归移动平均模型的简称,该模型由自回归模型(AR)和移动平均模型(MA)组成,是时间序列分析中最为经典的模型之一。
ARIMA模型是一种线性模型,对于简单的时间序列分析具有良好的解释性,同时模型的表现能力也比较强。
ARIMA模型对于时间序列的建模和预测主要涉及三个方面:趋势项(Trend)、季节项(Seasonal)和误差项(Error)。
趋势项指的是时间序列中的长期趋势,在某一个方向上呈现出来的变化;季节项指的是时间序列中呈现出来的周期性变化;误差项指的是时间序列的随机波动。
ARIMA模型通常用一个(p, d, q)的表示方式描述,其中,p是自回归项数,d是差分次数,q是滑动平均项数。
P 和q 分别定义了线性拟合时窗口函数的大小,模型的复杂度取决于 p,d 和 q 的选择。
ARIMA模型主要分为“定常”和“非定常”模型两大类。
在建模中,首先需要检验时间序列的平稳性,若时间序列不符合平稳性的要求,则需要进行差分操作,将其转化为平稳的时间序列。
时间序列公式指数平滑法ARIMA模型

时间序列公式指数平滑法ARIMA模型时间序列分析是指对一系列按时间顺序排列的数据进行统计分析和预测的方法。
其中,指数平滑法和ARIMA模型是时间序列分析中应用广泛的两种方法。
本文将介绍这两种方法的原理、应用及其比较。
一、指数平滑法指数平滑法是一种简单且有效的时间序列预测方法,适用于数据变动较为平稳的序列。
其基本原理是通过对历史数据进行加权平均,得到未来一段时间的预测值。
1. 简单指数平滑法简单指数平滑法是最基本的指数平滑法。
其公式如下:St = αYt + (1-α)St-1其中,St为预测值,Yt为实际观测值,St-1为前一个周期的预测值,α是平滑系数,取值范围为0到1。
2. 加权指数平滑法加权指数平滑法在简单指数平滑法的基础上,对不同时期的数据进行加权,以减小较早期数据的权重。
其公式如下:St = αYt + (1-α)(α^(t-1))Yt-1 + (1-α)(α^(t-2))Yt-2 + ...其中,α为平滑系数,t为时间周期。
3. 双重指数平滑法双重指数平滑法适用于具有趋势的时间序列数据。
其基本思想是通过指数平滑法预测趋势的影响,进而得到未来的预测值。
二、ARIMA模型ARIMA模型是一种基于时间序列预测的自回归(AR)和滑动平均(MA)模型。
ARIMA模型是一种更为复杂和全面的方法,可以应对更多类型的时间序列数据。
ARIMA模型包括三个参数:AR(p)、I(d)和MA(q),分别表示自回归项、差分项和滑动平均项。
ARIMA模型的一般形式如下:ARIMA(p,d,q):Yt = c + ϕ1Yt-1 + ϕ2Yt-2 + ... + ϕpYt-p + θ1et-1 +θ2et-2 + ... + θqet-q + et其中,Yt为观测值,c为常数,ϕ为自回归系数,θ为滑动平均系数,et为白噪声误差项。
ARIMA模型的建立包括模型识别、估计参数、检验和预测四个步骤。
在实际应用中,还可以通过模型诊断来进一步改进和优化ARIMA模型。
时间序列分析与ARIMA模型

时间序列分析与ARIMA模型时间序列分析是一种研究时间上连续测量所构成的数据的方法。
它可以用来分析数据中的趋势、周期性和随机性,并预测未来的走势。
ARIMA(自回归滑动平均模型)是时间序列分析中常用的模型之一。
本文将介绍时间序列分析的基本概念以及ARIMA模型的原理和应用。
一、时间序列分析的基本概念时间序列是按照时间顺序排列的一组连续观测数据。
在时间序列分析中,我们常常关注序列中的趋势(trend)、季节性(seasonality)和周期性(cycle)等特征。
趋势是指长期上升或下降的走势;季节性是指数据在相同周期内波动的规律性;周期性是指超过一年的时间内出现的规律性波动。
二、ARIMA模型的原理ARIMA模型是由自回归(AR)和滑动平均(MA)模型组成的。
AR模型用过去的观测值来预测未来的值,滑动平均模型则用过去的噪声来预测未来的值。
ARIMA模型是将这两种模型结合起来,对时间序列进行建模和预测。
ARIMA模型包括三个主要部分:自回归阶数(p)、差分阶数(d)和滑动平均阶数(q)。
p表示模型中的自回归项数目,d表示需要进行的差分次数,q表示模型中的滑动平均项数目。
通过对时间序列的观测值进行差分,ARIMA模型可以将非平稳的序列转化为平稳的序列。
然后,可以通过对平稳序列的自回归和滑动平均建模,预测未来的值。
三、ARIMA模型的应用ARIMA模型在实际应用中被广泛使用。
它可以用于经济学、金融学、气象学等领域中的时间序列预测和分析。
以股票市场为例,投资者可以利用ARIMA模型对历史股价进行分析,预测未来股价的走势。
在气象学中,ARIMA模型可以用于预测未来的天气情况。
除了ARIMA模型,时间序列分析还包括其他模型,如季节性分解、移动平均、指数平滑等。
这些模型都有各自的优点和应用领域。
在实际应用中,根据不同的数据特点和研究目的,选择合适的模型进行分析和预测是十分重要的。
总结时间序列分析和ARIMA模型是研究时间数据的重要方法。
时间序列分析模型

时间序列分析模型时间序列分析是一种广泛应用于统计学和经济学领域的建模方法,用于研究随时间变化的数据。
它的目的是揭示和预测数据中隐含的模式和关系,以便更好地理解和解释现象,并做出相应的决策。
时间序列分析模型可以分为统计模型和机器学习模型两类。
一、统计模型1.平稳时间序列模型:平稳时间序列是指在统计学意义上均值和方差都是稳定的序列。
常用的平稳时间序列模型包括:自回归移动平均模型(ARMA)、自回归整合移动平均模型(ARIMA)和季节性自回归整合移动平均模型(SARIMA)等。
-自回归移动平均模型(ARMA)是根据时间序列数据的自相关和移动平均性质建立的模型。
它将序列的当前值作为过去值的线性组合来预测未来值。
ARMA(p,q)模型中,p表示自回归项的阶数,q表示移动平均项的阶数。
-自回归整合移动平均模型(ARIMA)在ARMA模型基础上引入差分操作,用于处理非平稳时间序列。
ARIMA(p,d,q)模型中,d表示差分的次数。
-季节性自回归整合移动平均模型(SARIMA)是ARIMA模型的扩展,在存在季节性变化的时间序列数据中应用。
SARIMA(p,d,q)(P,D,Q)s模型中,s表示季节周期。
2.非平稳时间序列模型:非平稳时间序列是指均值和/或方差随时间变化的序列。
常用的非平稳时间序列模型包括:趋势模型、季节性调整模型、自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)等。
- 趋势模型用于描述数据中的趋势变化,例如线性趋势模型(y = ax + b)和指数趋势模型(y = ab^x)等。
-季节性调整模型用于调整季节性变化对数据的影响,常见的方法有季节指数调整和X-12-ARIMA方法。
-自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)在非平稳时间序列中引入差分操作进行模型建立。
二、机器学习模型机器学习模型在时间序列分析中发挥了重要作用,主要应用于非线性和高维数据的建模和预测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间序列分析基础及模型
平均发展速度
(要点)
1. 观察期内各环比发展速度的平均数 2. 说明现象在整个观察期内平均发展变化的程度 3. 通常采用几何法(水平法)计算 4. 计算公式为
时间序列分析基础及模型
平均发展速度与平均增长速度
(算例)
【例6】 根据表11.4中的有关数据,计算1994~1998 年间我国第三产业国内生产总值的年平均发展速度 和年平均增长率 平均发展速度
平均增率
时间序列分析基础及模型
平均发展速度
(几何法的特点)
1. 从最初水平Y0出发,每期按平均发展速度发 展,经过n期后将达到最末期水平Yn
2. 按平均发展速度推算的最后一期的数值与最 后一期的实际观察值一致
3. 只与序列的最初观察值Y0和最末观察值Yn有 关
4. 如果关心现象在最后一期应达到的水平,采 用水平法计算平均发展速度比较合适
时间序列分析基础及模型
时间序列的构成要素与模型
(构成要素与测定方法)
时间序列的构成要素
长期趋势
季节变动
循环波动 不规则波动
线性趋势 非线性趋势
按月(季)平均法
移动平均法
二次曲线 指数曲线
趋势剔出法
移动中位数法
修正指数曲线
线性模型法
Gompertz曲线 Logistic曲线
剩余法
18547.9 21617.8 26638.1 34634.4 46759.4 58478.1 67884.6 74772.4 79552.8
114333 115823 117171 118517 119850 121121 122389 123626 124810
14.39 12.98 11.60 11.45 11.21 10.55 10.42 10.06 9.53
时间序列分析基础及模型
年度化增长率
(要点)
1. 增长率以年来表示时,称为年度化增长率或年率 2. 可将月度增长率或季度增长率转换为年度增长率 3. 计算公式为
▪ m 为一年中的时期个数;n 为所跨的时期总数 ▪ 季度增长率被年度化时,m =4 ▪ 月增长率被年度化时,m =12 ▪ 当m = n 时,上述公式就是年增长率
时间序列分析基础及模型
增长速度
(要点)
1. 增长量与基期水平之比 2. 又称增长率 3. 说明现象的相对增长程度 4. 有环比增长速度与定期增长速度之分 5. 计算公式为
时间序列分析基础及模型
环比增长速度与定基增长速度
(要点)
1. 环比增长速度基
n 报告期水平与前一时期水平之比
2. 定基增长速度
时间序列分析基础及模型
年度化增长率
(计算结果)
解: 4) m=4,从1997年四季度到2000年四季度所
跨的季度总数为12,所以 n=12 年度化增长率为
即根据1998年四季度到2000年四季度的数据计 算,工业增加值的年增长率为7.72%,这实际 上就是工业增加值的年平均增长速度
时间序列分析基础及模型
时间序列分析基础及模 型
2020/11/16
时间序列分析基础及模型
时间序列分析
第一节 时间序列的对比分析 第二节 长期趋势分析 第三节 季节变动分析 第四节 循环波动分析
时间序列分析基础及模型
学习目标
1. 掌握时间序列对比分析的方法 2. 掌握长期趋势分析的方法及应用 3. 掌握季节变动分析的原理与方法 4. 掌握循环波动的分析方法
年度化增长率
(计算结果)
解: 2) m =12,n = 27
年度化增长率为
该地区财政收入的年增长率为10.43%
时间序列分析基础及模型
年度化增长率
(计算结果)
解: 3) 由于是季度数据,所以 m = 4,从一季度到
二季度所跨的时期总数为1,所以 n=1 年度化增长率为
即根据第一季度和第二季度数据计算的国内 生产总值年增长率为8.24%
速度的分析与应用
(需要注意的问题)
1. 当时间序列中的观察值出现0或负数时,不宜 计算速度
2. 例如:假定某企业连续五年的利润额分别为5 、2、0、-3、2万元,对这一序列计算速度, 要么不符合数学公理,要么无法解释其实际 意义。在这种情况下,适宜直接用绝对数进 行分析
3. 在有些情况下,不能单纯就速度论速度,要 注意速度与绝对水平的结合分析
n 现象在不同时间上的观察值 n 说明现象在某一时间上所达到的水平 n 表示为Y1 ,Y2,… ,Yn 或 Y0 ,Y1 ,Y2 ,… ,Yn
2. 平均发展水平
n 现象在不同时间上取值的平均数,又称序时平均数 n 说明现象在一段时期内所达到的一般水平 n 不同类型的时间序列有不同的计算方法
时间序列分析基础及模型
时间序列分析基础及模型
速度的分析与应用
(一个例子)
【例8】 假定有两个生产条件基本相同的企业, 各年的利润额及有关的速度值如表5
年份
1996
表11- 5 甲、乙两个企业的有关资料
甲企业
乙企业
利润额(万元) 增长率(%) 利润额(万元) 增长率(%)
500
—
60
—
1997
600
20
84
40
时间序列分析基础及模型
(实例)
【例2】设某种股票1999年各统计时点的收盘价 如表2,计算该股票1999年的年平均价格
表12 某种股票1999年各统计时点的收盘价
统计时点 1月1日 3月1日 7月1日 10月1日 12月31日
收盘价(元) 15.2 14.2 17.6
16.3
15.8
时间序列分析基础及模型
绝对数序列的序时平均数
时间序列分析基础及模型
第一节 时间序列的对比分析
一. 时间序列及其分类 二. 时间序列的水平分析 三. 时间序列的速度分析
时间序列分析基础及模型
时间序列及其分类
时间序列分析基础及模型
时间序列
(概念要点)
1. 同一现象在不同时间上的相继观察值排列 而成的数列
2. 形式上由现象所属的时间和现象在不同时 间上的观察值两部分组成
3. 各逐期增长量之和等于最末期的累积增长量
时间序列分析基础及模型
平均增长量
(概念要点)
1. 观察期内各逐期增长量的平均数 2. 描述现象在观察期内平均增长的数量 3. 计算公式为
时间序列分析基础及模型
时间序列的速度分析
时间序列分析基础及模型
发展速度
(要点)
1. 报告期水平与基期水平之比 2. 说明现象在观察期内相对的发展变化程度 3. 有环比发展速度与定期发展速度之分
时间序列分析基础及模型
年度化增长率
(实例)
【例7】已知某地区的如下数据,计算年度化增化增 长率 1) 1999年1月份的社会商品零售总额为25亿元, 2000 年1月份在零售总额为30亿元 2) 1998年3月份财政收入总额为240亿元,2000年6月 份的财政收入总额为为300亿元 3) 2000年1季度完成的国内生产总值为500亿元,2季 度完成的国内生产总值为510亿元 4) 1997年1季度完成的国内生产总值为500亿元,2季 度完成的国内生产总值为510亿元
速度的分析与应用
(增长1%绝对值)
1. 速度每增长一个百分点而增加的绝对量 2. 用于弥补速度分析中的局限性 3. 计算公式为
甲企业增长1%绝对值=500/100=5万元 乙企业增长1%绝对值=60/100=0.6万元
时间序列分析基础及模型
第二节 长期趋势分析
一.时间序列的构成要素与模型 二.线性趋势 三.非线性趋势 四.趋势线的选择
(实例)
【例3】 根据表1中年末总人口数序列,计 算1991~1998年间的年平均人口数
时间序列分析基础及模型
相对数序列的序时平均数
(计算方法)
1. 先分别求出构成相对数或平均数的分子ai 和分母 bi 的平均数
2. 再进行对比,即得相对数或平均数序列的 序时平均数
3. 基本公式为
时间序列分析基础及模型
• 时期序列:现象在一段时期内总量的排序 • 时点序列:现象在某一瞬间时点上总量的排序
2. 相对数时间序列
▪ 一系列相对数按时间顺序排列而成
3. 平均数时间序列
n 一系列平均数按时间顺序排列而成
时间序列分析基础及模型
时间序列的水平分析
时间序列分析基础及模型
发展水平与平均发展水平
(概念要点)
1. 发展水平
绝对数序列的序时平均数
(计算方法)
时期序列
计算公式:
【例1】 根据表1中的国内生产总值序列, 计算各年度的平均国内生产总值
时间序列分析基础及模型
绝对数序列的序时平均数
(计算方法)
时点序列— 间隔不相等
Y1 Y2
Y3 Y4
T1
T2
T3
Yn-1
Yn
Tn-1
时间序列分析基础及模型
绝对数序列的序时平均数
▪ 报告期水平与某一固定时期水平之比
时间序列分析基础及模型
发展速度与增长速度的计算
(实例)
【例5】 根据表3中第三产业国内生产总值序列, 计算各年的环比发展速度和增长速度,及以1994年 为基期的定基发展速度和增长速度
表4 第三产业国内生产总值速度计算表
年份
1994 1995 1996 1997 1998
803 896 1070 1331 1781 2311 2726 2944 3094
时间序列分析基础及模型
时间序列的分类
时间序列
绝对数序列 相对数序列 平均数序列
时期序列 时点序列
时间序列分析基础及模型