微积分方法建模9如何预报人口的增长--数学建模案例分析
中国人口增长预测数学建模 (2)

中国人口增长预测数学建模引言中国作为世界上人口最多的国家之一,人口增长一直是一个备受关注的问题。
人口数量的增长对于国家的经济、社会、环境等方面都有着重要的影响。
因此,预测中国人口的增长趋势对于未来的发展规划具有重要意义。
本文将介绍一种基于数学建模的方法,用于预测中国人口的增长情况。
方法数据收集为了进行人口增长预测的数学建模,我们需要收集一系列历史人口数据。
这些数据可以从各种统计年鉴、人口普查、政府发布的数据等渠道获取。
通常,我们需要收集的数据包括中国的总人口数量、出生率、死亡率、迁入率和迁出率等。
建立数学模型基于收集到的数据,我们可以建立一个数学模型来描述中国人口的增长情况。
常用的数学模型包括指数增长模型、Logistic增长模型等。
在本文中,我们以Logistic增长模型为例。
Logistic增长模型基于以下假设: 1. 人口增长率与当前人口数量成正比; 2. 当人口数量接近一定的上限时,人口增长率会逐渐减小。
Logistic增长模型的公式可以表示为:dP/dt = r*P*(1-P/K)其中,P表示人口数量,t表示时间,r表示人口增长率,K表示人口的上限。
参数估计为了应用Logistic增长模型进行人口预测,我们需要估计模型中的参数。
参数估计可以通过拟合历史数据来完成。
常用的参数估计方法包括最小二乘法、最大似然估计等。
模型验证一旦完成参数估计,我们可以使用模型预测未来的人口变化情况。
为了验证模型的准确性,我们可以将预测结果与实际观测数据进行比较。
如果预测结果与实际观测数据较为接近,说明模型具有较好的预测能力。
预测未来人口增长利用建立的数学模型和参数估计,我们可以进行未来人口增长的预测。
通过不同的假设和参数值,我们可以探讨不同因素对人口增长的影响。
例如,我们可以考虑不同的出生率和死亡率情况下的人口增长,或者研究不同人口政策下的人口增长趋势。
结论本文介绍了一种基于数学建模的方法,用于预测中国人口的增长情况。
人口指数增长模型

《数学模型》实验报告实验名称:如何预报人口的增长成绩:___________实验日期: 2009 年 4 月 22 日实验报告日期: 2009 年 4 月 26 日一、实验目的预报人口的增长变化规律,作出较准确的预报,为以后有效的控制人口增长提供依据,为设计型实验。
二、实验内容根据统计资料得出的人口增长率不变的假设,建立人口指数增长模型。
利用微积分数学工具视x(t)为连续可微函数,记t=0时人口为x0,人口增长率为常数r, 变有dx/dt=rx,x(0)=x0,解出x(t)=x0*exp(rt)。
三、实验环境MATLAB6.5四、实验步骤为了用数据进行线形最小二乘法的计算,故将x(t)=x0*exp(rt)两边取对数可得lnx(t)=lnx0*exp(rt), lnx(t)=lnx0+rt,另y=lnx(t),a= lnx0,所以可得y= rt+a。
根据所提供的数据用MATLAB函数p=polyfit(t,x,1)拟合一次多项式,然后用画图函数plot(t,x,’+’,t,x0*exp(rt),’-’),画出实际数据与计算结果之间的图形,看结果如何。
利用1790-1900年的数据进行试验,程序如下:t=linspace(0,11,12);x=[3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76.0];p=polyfit(t,log(x),1);r=p(1)x0=exp(p(2))plot(t,x,'+',t,x0*exp(r*t),'-')利用1790-2000年的数据进行试验,程序如下:t=linspace(0,21,22);x=[3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76.0,92.0,106 .5,123.2,131.7,150.7,179.3,204.0,226.5,251.4,281.4];p=polyfit(t,log(x),1);r=p(1)x0=exp(p(2))plot(t,x,'+',t,x0*exp(r*t),'-')五、实验结果以1790年至1900年的数据拟合y= rt+a,用软件计算可得r=0.2743/10年,x0=4.1884,下图为拟合的图象:以1790年至2000年的数据拟合y= rt+a,用软件计算可得r=0.2022/10年,x0=6.0450,下图为拟合的图象:六、实验讨论、结论从图形1中可知,此模型基本上能够描述十九世纪以前美国人口的增长,因为+号基本上都在线上,说明拟合成功。
数学建模—微分方程之预测模型

面积 B与 t2成正比, dB/dt与 t成正比.
模型建立
b b t1 , t 2 t1 x
b
假设1)
dB dt
假设2)
t 2 t1
B(t2 )
假设3)4)
t2
x
t1
0
x
t1
t2 t
0
2 2 2 bt t t1 2 1 B(t )dt 2 2 2(x )
f1 ( x) c1B(t2 ), f 2 ( x) c2 x(t2 t1 ) c3 x
C( x) f1 ( x) f 2 ( x)
目标函数——总费用
模型建立
2
目标函数——总费用
2 2
c1 t1 c1 t1 c2 t1 x C ( x) c3 x 2 2(x ) x
1 如何预报人口的增长
背景 世界人口增长概况
年 1625 1830 1930 1960 1974 1987 1999 人口(亿) 5 10 20 30 40 50 60 中国人口增长概况 年 1908 1933 1953 1964 1982 1990 1995 2000 人口(亿) 3.0 4.7 6.0 7.2 10.3 11.3 12.0 13.0 研究人口变化规律 控制人口过快增长
阻滞增长模型(Logistic模型)
人口增长到一定数量后,增长率下降的原因: 资源、环境等因素对人口增长的阻滞作用 且阻滞作用随人口数量增加而变大 假设 r是x的减函数
r ( x) r sx (r, s 0)
r s xm
r~固有增长率(x很小时)
xm~人口容量(资源、环境能容纳的最大数量)
数学建模之中国人口增长的预测和人口结构的简析

中国人口增长的预测和人口结构的简析摘要本文根据过去数十年的人口数据,通过建立不同的数学模型,对中国人口的增长进行了短期和中长期的预测。
模型一:从中国统计年鉴—2008,查找得到2000-2007年的人口数据,然后用灰色模型进行人口的短期(2008-2017)预测。
这里,我们采用两种算法进行人口总数的预测。
一种是用灰色模型分别对城镇人口和乡村人口进行人口预测,然后求加和得到总的人口数;另一种是用灰色模型对实际的总人口数进行预测,预测未来10年的总人口数。
通过比较相对误差率知道第二种方法预测得到的数据误差较小,故采用第二种方法预测的未来10年的人口数为:模型二:对于中长期的预测我们采用Leslie模型进行预测。
我们利用题中所提供的人口数据的比例,将人分为6种类型,在考虑年龄结构的基础上,对各类人中的女性人数分别进行预测,然后根据男女的性别比例,求出男性的人口数,再将预测得到的各类人数进行汇总加和,最终得到总的人口数。
由于我们是根据年龄结构进行的预测,所以可以对人口进行简单的分析,得到老龄化变化趋势,乡镇市的人口所占比例的变化等。
关键词:人口预测;灰色模型;分类计算;Leslie模型一、模型假设模型一的假设:1、不考虑国际迁移,认为国家内部迁移不改变人口总量;2、不考虑自然灾害、疾病等因素对人口数量的影响;3、文中短期预测到2017年4、大面积自然灾害、疾病的发生以及人们的生育观念等因素会对当年的生育率和人口数量产生影响,认为这些因素在预测误差允许的范围内.模型二的假设:1、每一年龄组的女性在每一个时间段内有相同的生育率和死亡率;2、在预测的时间段内男女的性别比例保持现状不变;3、不考虑人口的迁入和迁出;4、不考虑空间等自然因素的影响,不考虑自然灾害对人口数量的影响。
二、问题分析中国是一个人口大国,随着经济的不断发展,生产力达到较高的水平,现在的问题已不是仅仅满足个人的需要,而是要考虑社会的需要。
中国未富先老,对经济的发展产生很大的影响。
毕业设计_数学建模论文中国人口增长预测

中国人口增长预测摘要本文从中国人口的实际情况和人口增长的特点出发,根据题目和中国统计年鉴中的相关数据,建立了两个关于中国人口增长的数学模型,并对中国人口做出了分析和预测。
模型一:利用中国统计年鉴中 2000—2005 年人口的数据,运用灰色理论的基本原理建立 GM(1,1) 模型。
该模型利用离散数据列进行生态处理,建立动态的微分方程,对我国近5年、10年、20年的总人口分别进行了预测。
又根据中国人口城乡分布不同且总趋势也不同的特点,把全国人口分为城市人口、城镇人口、乡村人口三部分分别进行灰色预测。
结果表明,该模型较好的反映并预测中国人口短中期和长期的变化情况。
模型二:按人口年龄结构特征,将人口分为幼年(0—14岁)男女、中年(15—49岁)男女、老年(50岁以上)男女。
各年龄段的人口变化是由出生率、死亡率和转化为其他年龄段的转化人数决定的。
根据各年龄段人口数量变化特点,对各年龄段转化人数引入转化因子,改进马尔萨斯模型,附带出生率、死亡率、生育率、出生性别比率等约束条件,建立了新的具有年龄结构的人口增长模型。
结合我国人口的特点,运用已知数据和利用微分方程的数值解,预测出男性和女性幼年、中年、老年的人口数量。
可反映中国不同年龄结构的人口分布情况。
关键词:灰色预测;小误差频率;微分方程组;人口模型;转移因子一.问题重述中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。
因此人口预测的科学性、准确性是至关重要的。
英国人口学家马尔萨斯的人口指数增长模型和荷兰生物学家的Logistic模型都是经典的人口预测模型。
但是,影响中国人口的因素较多,人口结构较复杂,这些模型对人口预测很粗略,甚至是不准确的。
因此,我们要根据我国具体的人口结构现状(如老龄化进程加速)、人口的分布现状(如乡村人口城镇化)、人口比率现状(如出生人口性别比持续升高)等特点,来较准确、较具体地对中国人口进行预测,建立人口增长的数学模型,由此对中国人口中短期和长期增长趋势做出预测。
人口增长的预测(数学建模论文

关键字:人口数平衡点方程模型运动预测曲线稳定增长人口一题目:请在人口增长的简单模型的基础上。
" (1)找到现有的描述人口增长,与控制人口增长的模型;" (2)深入分析现有的数学模型,并通过计算机进行仿真验证;" (3)选择一个你们认为较好的数学模型,并应用该模型对未来20年的某一地区或国家的人口作出有关预测;" (4)就人口增长模型给报刊写一篇文章,对控制人口的策略进行论述。
二摘要:本次建模是依照已知普查数据,利用Logistic模型,对中国人口的增长进行预测。
首先假设人口增长符合Logistic模型,即引入常数,用来表示自然环境条件所能容许的最大人口数。
并假设净增长率为,即净增长率随着人口数N(t)增长而减小,当N(t) 时,净增长率趋于零。
按照这个假设,。
用参数=3.0,r=0.0386, =1908, =14.5。
画出N=N(t)的图像,作为人口增长模型的一种近似。
做微分方程解的定性分析,求出N=N(t)的驻点和拐点,按照函数作图方法列出定性分析表,作出相轨迹的运动图。
当初始人口<时,方程的解单调递增到地趋向,这意味着如果使用Logistic模型描述人口增长,则人口发展地总趋势是渐增到最大人口数,因此可作为人口的预测值,也称谓平衡点。
用导数做稳定分析,为判断平衡点是否为稳定,可在平面上绘制f(x)的图象,然后像函数绘图那样,用导数进行定性分析,通过图看出人口数N(t)按时间是递增的,当人口数未达到饱和状态的时候,将逐渐地趋向,这意味着是稳定的平衡点。
按该模型,未来人口的数量将随着时间的演化,从初始状态出发达到极限状态,这样就给出了人口的未来预测。
三问题的提出1. Malthus模型英国统计学家Malthus(1766-1834)发现人口增长率是一个常数。
设t时刻人口为N(t),因为人口总数很大,可近似把N(t)当作连续变量处理。
Malthus的假设是:在人口的自然增长过程中,净相对增长率(出生率减去死亡率)是常数,即单位时间内人口的增长量与人口总数成正比。
应用微分方程求解世界各国人口发展问题

应用微分方程求解世界各国人口发展问题近年来,人口问题成为世界关注的热点之一。
不同国家的人口增长率不同,人口老龄化、人口减少等问题也开始受到世界各国的重视。
但是,应用微分方程求解人口问题的方法似乎比较少见。
本文将探讨如何应用微分方程解决世界各国人口发展问题。
一、人口增长率的微分方程模型首先,我们需要知道人口增长率的微分方程模型是什么。
假设一个国家的人口数量为P,其增长率为r(单位为人/人年),则有:dP/dt = rP其中,dP/dt表示P对t的导数,即人口数量随时间变化的速率。
由于r是为常数,我们可以将其写成:dP/P = rdt对上述式子两边同时求积分,得到:ln(P) = rt + C其中,C为积分常数。
解出P,得到:P = e^(rt+C)由于e^C是一个常数,我们可以将其表示为K,即:P = Ke^(rt)这个式子被称为人口数量的微分方程模型。
通过这个模型,我们可以预测一个国家在未来的某个时间点的人口数量。
二、应用微分方程预测人口数量根据上面的式子,我们可以计算未来某个时间点的人口数量。
例如,我们可以应用这个式子预测中国未来10年的人口数量。
首先,我们需要知道中国目前的人口数量和增长率。
根据联合国的统计数据,中国在2019年的人口数量为13.91亿人,增长率为0.44%。
因此,我们可以将r和P代入上面的式子,得到:P = Ke^(0.0044t)假设我们要预测中国10年后的人口数量,即t=10,则有:P = Ke^(0.044)我们可以通过以下方式计算K值:K = P/e^(rt)将t=0、P=13.91亿代入上面的式子,得到:K = 13.91亿/e^0 = 13.91亿因此,代入上面的式子,我们可以计算出中国未来10年的人口数量为:P = 13.91亿*e^(0.044*10) = 15.92亿通过微分方程模型,我们得出了中国未来10年的人口增长情况。
类似地,我们也可以预测其他国家的人口增长情况。
人口增长问题数学模型

人口增长问题数学模型人口增长问题是一个复杂的社会现象,它涉及到众多因素,如生育率、死亡率、移民、出生性别比等。
为了更好地理解和预测人口增长趋势,人们常常建立数学模型来描述人口变化的规律。
下面是一个简单的人口增长问题数学模型的示例。
假设人口数量为P(t),时间t为以年为单位。
则人口增长可以用以下微分方程表示:dP(t)/dt = rP(t)其中,r是人口自然增长率,是一个常数。
这个微分方程描述了人口数量随着时间的变化情况,即人口数量呈指数增长。
然而,实际情况要复杂得多。
以下是一个更复杂的人口增长模型,考虑到生育率、死亡率和移民等因素:dP(t)/dt = (b - d)P(t) + I其中,b是每单位时间的出生率,d是每单位时间的死亡率,I是每单位时间的移民人数。
这个模型可以更好地描述人口增长的趋势,特别是当存在外部干扰(如战争、自然灾害等)时。
除了以上两个模型,还有其他更复杂的模型,如Logistic增长模型、Malthusian模型等。
这些模型考虑的因素更加全面,可以更准确地描述人口增长的趋势。
例如,Logistic增长模型考虑了环境承载能力对人口增长的限制,而Malthusian 模型则考虑了人口增长与资源供给之间的关系。
建立数学模型有助于我们更好地理解和预测人口增长趋势。
这些模型可以帮助我们评估不同政策对人口增长的影响,如计划生育政策、移民政策等。
此外,这些模型还可以帮助我们预测未来人口数量和结构的变化情况,从而为社会发展规划提供科学依据。
然而,需要注意的是,数学模型只是对现实世界的近似描述,它可能无法完全准确地预测未来情况。
因此,在使用数学模型进行人口增长预测时,需要结合实际情况和专家意见进行综合分析。
总之,数学模型是研究人口增长问题的重要工具之一。
通过建立数学模型,我们可以更好地理解和预测人口增长的规律和趋势。
这些模型可以帮助我们评估不同政策对人口增长的影响,为社会发展规划提供科学依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§9 如何预报人口的增长
人口的增长是当前世界上引起普遍关注的问题,我们常在报刊上看见关于人口增长的预报,而且你可能注意到不同的报刊对同一时间同一国家或地区的人口预报在数字上常有较大的差别,这其实是由于使用了不同的人口模型计算的结果。
建立人口模型的意义在于利用模型中的参数及时控制人口的增长。
模型一 Malthus 指数增长模型
英国人口学家malthus 根据百余年的人口统计资料,于1787年提出著名的指数增长模型。
假设 1、某国家或地区在时刻t 的人口)(t x 为连续可微函数;
2、人口的增长率r 是常数,或者说,单位时间人口的增长量与当时的人口成正比。
建模 记0x 为初始时刻)0(=t 的人口,由假设2,t 到t t ∆+时间内的人口增量为 t t rx t x t t x ∆=-∆+)()()( 易导出下面的微分方程
⎪⎩⎪⎨⎧==0
)0(x x rx
dt dx
求解 易解出)0()(0>=r e x t x rt
分析 模型与19世纪以前欧洲一些地区和国家的人口增长率长期稳定不变的人口统计数据可以很
好地吻合,但是与19世纪以后许多国家的人口统计资料却有很大差异。
出现这种差异的原因是19世纪以后人口的增长率已不再是常数。
比如美国19世纪100年的10年增长率0.266,20世纪80年的10年增长率0.137,而1970至1980年的10年增长率为0.0307。
模型二 Logistic 阻滞增长模型 假设 1、同模型一;
2、当人口增加到一定数量后,增长率随着人口的继续增加而逐渐减少,且)(x r 为x 的线性函数sx r x r -=)()0,(>s r ,其中r 相当于0=x 时的增长率,称固有增长率;
3、自然资源和环境条件所能容纳的最大人口数量m x ,称最大人口容量。
建模 当m x x =时增长率应为0,即0)(=m x r ,从而m x r s =
,于是)1()(m
x x
r x r -
=,其中r ,m x 是根据人口统计数据确定的常数。
m x 常由经验确定。
仿模型一同样得
⎪⎩
⎪
⎨⎧=-=0)0()1(x
x x x x r dt
dx
m
求解 t
r m m
e x x
x t x --+=
)1(1)(0
表 美国的实际人口与按两种模型计算的人口的比较
分析1、模型表明人口增长率
dt dx
随着人口数x 的增加先增后减,在2
m x x =处达到最大;且当∞→t 时,m x x →。
2、模型在本世纪初曾被广泛使用,且预报效果很好,如预报美国人口时,
66010179,31.0,109.3⨯==⨯=m x r x 。
但1960以后误差越来越大,究其原因是1960年美
国实际人口已突破用过去数据确定的m x (它是用1800—1930的数据估计的),由此可知,模型的缺点之一是m x 不易准确地得到。