脂质体制备方法的研究进展
提高水溶性药物脂质体包封率制备方法的研究

提高水溶性药物脂质体包封率制备方法的研究水溶性药物脂质体包封率的提高对于药物的稳定性和治疗效果非常重要。
本文将介绍一种针对水溶性药物脂质体包封率提高的制备方法的研究。
1.优化脂质体组分配比:脂质体由脂质双分子层构成,其中磷脂是最主要的组分。
通过优化磷脂的选择和配比,可以改善脂质体的包封率。
例如,可以选用高度包封性能的磷脂,如脂质体,或加入其他辅助成分,如胆固醇,来加强脂质体的稳定性和包封率。
2.优化制备工艺参数:制备方法中的工艺参数对于脂质体的形成和包封率至关重要。
例如,超声法制备脂质体时,超声功率、超声时间和搅拌速度都会影响脂质体的形成和包封率。
通过对这些工艺参数进行优化,可以提高脂质体的包封率。
3.脂质体过滤和纯化:脂质体制备后可能会残留一些未包封的药物或其他杂质。
通过使用合适的膜过滤或柱层析纯化等方法,可以去除这些未包封的物质,提高脂质体的包封率。
4.使用添加剂或改进剂:添加剂或改进剂可以改善脂质体的包封率。
例如,可以使用表面活性剂来增强脂质体与水溶性药物之间的相互作用,从而提高包封率。
还可以利用聚合物、胶束等来增强脂质体结构的稳定性和包封率。
5.调整药物溶解度:药物的溶解度也会影响脂质体的包封率。
如果药物的溶解度较低,可以通过优化溶剂体系或添加助溶剂来提高其溶解度,从而提高脂质体的包封率。
6.优化制备方法:制备方法的选择和优化也是提高脂质体包封率的重要因素。
例如,可以选择薄膜分散法、超声法或溶剂挥发法等常用的脂质体制备方法,并对制备方法进行优化,使得药物更好地包封在脂质体内。
总结起来,提高水溶性药物脂质体包封率的方法包括:优化脂质体组分配比、优化制备工艺参数、脂质体过滤和纯化、使用添加剂或改进剂、调整药物溶解度以及优化制备方法。
这些方法的选择和优化需要结合具体的药物特性和制备条件,以期达到最佳的效果。
药物分析中的药物脂质体制备研究

药物分析中的药物脂质体制备研究药物脂质体是一种用于提高药物溶解度、生物利用度和药效的递送系统。
近年来,药物脂质体制备技术得到了广泛的研究和应用。
本文将对药物分析中的药物脂质体制备研究进行探讨。
一、药物脂质体制备技术概述药物脂质体是由药物与脂质组分之间相互作用形成的一种固体或半固体纳米粒子,其结构由药物核心、脂质壳和可能的表面修饰层组成。
药物脂质体制备技术主要包括溶剂沉淀法、乳化法、溶剂扩散法、胶束法和超声乳化法等。
1. 溶剂沉淀法溶剂沉淀法是一种简单易行的药物脂质体制备方法。
它通过将药物和脂质溶解在有机溶剂中,然后通过加入大量的非溶剂使药物脂质体成核并沉淀下来。
该方法成本低,操作简单,但容易产生大颗粒粒径和不均匀性。
2. 乳化法乳化法是将药物和脂质通过乳化剂形成微乳液,然后通过溶剂蒸发或冷冻干燥等方法制备药物脂质体。
乳化法制备的药物脂质体粒径较小,均匀性好,适用于大多数药物。
3. 溶剂扩散法溶剂扩散法是将溶剂溶解药物和脂质,然后将溶剂与大量的非溶剂混合,通过扩散过程形成药物脂质体。
溶剂扩散法制备的药物脂质体粒径较小,但制备过程较复杂。
4. 胶束法胶束法是通过表面活性剂和辅助溶剂形成胶束,然后将药物和脂质溶解在胶束中,通过溶剂蒸发或冷冻干燥等方法制备药物脂质体。
胶束法制备的药物脂质体样品均匀性好,但容易受到表面活性剂的污染。
5. 超声乳化法超声乳化法是利用超声波在液液界面上形成微小液滴,然后通过溶剂蒸发或冷冻干燥等方法制备药物脂质体。
超声乳化法制备的药物脂质体制样品粒径较小,有较好的均匀性,但制备过程中需要控制超声波的功率和时间。
二、药物脂质体制备过程中的关键因素药物脂质体制备过程中,存在着一些关键因素,这些因素会直接影响到药物脂质体的性质和性能。
1. 药物选择药物的选择直接影响到药物脂质体的可制备性和稳定性。
一般来说,极性和脂溶性较好的药物更容易制备成脂质体。
而一些水溶性较差的药物则需要通过表面修饰或改变脂质的组分和性质来增加其溶解度和稳定性。
脂质体的研究新进展

杨鹏 波
张华
山东 中医药 大学
济南
2 5 0 3 5 5
摘要: 1 日的1 综述 脂 质 体 的 应 用 和研 究进 展 , 为 药物 制 成 脂质 体 提 供 更 多的 选择 f 方法】 查 阅 近 几年 国 内相 关 的 文献 资料 并 总结 脂 质 体 在 各 方面 的 应 用、 新 的 制备 方法 和 修 饰 方 法及 其 各 自的 优 点 . 【 结 果l 从脂质体的的应用、 制备方法 、 修饰 、 质 量评 价 等 方面 , 可 看 脂质 体 与生 物 膜 有 着极 好 的 相
容性, 作为载体有很 大的优势 , 修饰后 , 能增强靶向性, 提 高药物的疗效 , 降低毒副作用 f 结论 1 随着新材料 的产生和新技术的发展 , 脂质体 的优势 将更加显现脂质体作 为一种新型的药物 载体 , 与生物膜具有相似性 , 具有 多种优 良特性 , 改 变了传统的给 药方式 经过近 4 ( ) 年的研 究, 已到广泛 的
c h mo 【 1 l L i p ( ) 、 【 ) l m h a s t h e b r o a d a p p l i c a t i o n a f t e r n e a r l y f o r t y y e a r s o f r e s e a r c h
行 比较 发现 , 姜黄素 脂质 体在皮 肤 中的滞 留量 和皮肤 累积透过量都 比较大 , 提 高 了疗效 , 降低 了毒性 。 1 . 2 . 2 眼用 载药脂 质体 目前 主要应 用 F滴 眼剂 、 玻 璃体 内注射 给药 及眼用 喷雾 剂等 。作用机 制 : 与生物 膜融合 作用 、 通过 角膜细 胞实 现跨 角膜转 运和 脂质体 与眼 角膜 的吸附 作用 。郑建 灵i I 等 采用 无膜溶 出法研 究 西 罗莫 司壳 聚 糖包 覆 脂 质 体 一 原 位 凝 胶 的 释放 机 制, 对释放 曲线进 行拟 合分析 , 与传 统 眼用 药 物相 比 ,
脂质体的制备方法及研究进展_曹宁宁

第19卷第1期2003年3月天津理工学院学报JOURNAL OF TIANJIN INSTITUTE OF TECHNOLOGYVol.19N o.1M ar.2003文章编号:1004-2261(2003)01-0030-06脂质体的制备方法及研究进展*曹宁宁,羡菲,刘金鹏(天津理工学院生物与化学工程学院,天津300191)摘要:脂质体是磷脂自聚集而形成的双分子层结构,作为药物载体具有减少药物毒副作用及靶向作用的特点.主要介绍:脂质体3种制备方法物理分散法、两相分散法和表面活性剂增溶法的原理,制备出的脂质体的结构及包封性能和各自的优缺点;脂质体作为药物载体在抗癌、抗菌药物上的应用及其在药物载体方面应用的研究进展.关键词:脂质体;制备方法;药物载体中图分类号:R94文献标识码:APreparation methods of liposome and prospectsCAO Ning-ning,XIAN Fei,LIU Jin-Peng(Colleg e of Biotechnolog y and Chemical Eng.,T ianjin Institute of T echnolog y,T ianjin300191,China)Abstract:Liposomes made from phospholipid sel-f aggregat ion can deduce the drug toxit y and have the same target property as drug delivery system.T he form principles,propert ies,structure and advantages of main three methods are reviewed.T he application prospects of liposome as drug delivery system are mainly introduced.Keywords:liposome;preparation methods;drug delivery syst em自1965年由英国的Bang ham首先发现磷脂在水中可以自发形成脂质体(liposomes)以来[1],对其实验研究日渐广泛,已遍及生命科学及膜工程学等领域,并逐渐向临床应用发展.脂质体是由脂质双分子层组成,内部为水相的闭合囊泡.它的结构类似生物膜,又称人工生物膜,在水中平衡后具有亲水性和疏水性两性性质.脂质体具有以下特征[2~3]:1)脂质体是一种囊泡,2)脂质体的囊泡壁是两层磷脂分子构成,3)脂质体很小一般在1L m以下(1000L m= 1mm),4)磷脂在一定条件下才能形成脂质体,并非把磷脂放在水中就产生脂质体,磷脂在水中或甘油中搅拌只能形成乳化颗粒,5)脂质体包裹其他物质则形成不同内容物脂质体.脂质体的应用范围非常广泛,由于它的磷脂双分子膜与细胞膜结构类似,并且可以通过对其进行修饰,使其具有某些与生物体相似的性质,从而脂质体作为细胞模型,在生物体结构功能研究和模拟等方面具有重要意义[4~5].它的另一个重要的应用是作为药物载体[1].将药物包裹在脂质体的水相和膜相内,控制脂质体的靶向作用使其富集于病变部位将药物释放,从而可以减少所需药物的剂量,也大大避免了药物对人体正常部位的损害.近年来立体稳定脂质体[6]的研制大大提高了脂质体在体内的稳定性,使得脂质体作为药物载体在治疗癌症等疾病方面正在走向实用阶段[7~9].另外脂质体还在太阳能转换、超细微粒制备等方面得到了应用.1脂质体作为药物载体的应用1.1作为抗癌药物的载体由于脂质体对淋巴系统的定向性和对癌细胞的亲*收稿日期:2002-07-05基金项目:天津市高等学校科技发展基金资助项目(20010404)第一作者:曹宁宁(1972)),女,讲师,博士研究生和性,改变了药物在组织中的分布,使药物选择性的杀死癌细胞或抑制癌细胞的繁殖,从而提高疗效,减少剂量,降低毒性,减轻变态和免疫反应.研究表明[10]脂质体猪苓多糖能显著减少黑色素瘤肝转移癌生成作用而空白脂质体和游离态猪苓多糖则无明显作用.1.2作为抗菌,抗寄生虫的药物载体利用脂质体和生物细胞膜亲和力强的特点,将抗生素包裹在脂质体内可增强抗菌效用.如消炎痛制成脂质体后,其抑制角膜穿孔伤炎性反应的作用较混悬水剂明显增强[11].同时由于脂质体和脂复合物或脂分散体的粒子相对于游离的药物来说主要聚集于网状内皮系统,因此可以用来治疗利什曼病等网状内皮系统疾病.同时由于脂质体可以很大程度的降低肾脏的摄取,当二性霉素B制成脂质体后,能显著降低在治疗过程中对真菌感染患者引起的急性肾毒症[12].1.3作为抗病毒药物载体抗病毒药物制成脂质体可显著提高抗病毒疗效,降低了用量和毒副作用.无环鸟苷[13]是一种核苷类抗病毒剂,其水溶性差,将其制成脂质体混悬液后,大大提高其水溶度,降低了用量.2脂质体的制备方法脂质体的制备方法可分为三大类:物理分散法;两相分散法;表面活性剂增溶法.2.1物理分散法物理分散法的基本原理都是将类脂材料干燥成薄膜,然后加入水溶性介质分散,工艺也不复杂,但他们都有一共同的缺点)包封率都较低(微乳化法除外).下面简述一下这些方法.1)手摇法(也称薄膜法):手摇法是脂质体制备方法中最原始,但也是至今为止最基本和应用最广泛的方法[14].类脂材料溶解在有机溶剂中,然后在旋转蒸发器上,在真空下蒸除溶剂,加入缓冲液,再加入一些小玻璃球帮助分散,这样就形成了一个奶白色的分散液.这里应注意的一点是所用的烧瓶应尽量的大些,以便使类脂干燥后形成一层均匀的薄膜,并且使包封体积达到最大值.2)非手摇法:这是一个慢慢水合的方法以提高其包封率[15].在类脂膜形成后,首先将湿的氮气流通过薄膜15m in,然后再加水膨胀、水合,并慢慢搅拌形成脂质体.它的直径可达几百微米,但是只有在无离子和蛋白质时才可形成.3)超声波分散法[16]:水溶性药物溶于磷酸盐缓冲液,加入磷脂与胆固醇及脂溶性药物共溶于有机溶剂的溶液,搅拌蒸发除去有机溶剂,残留液经超声波处理,然后分离出脂质体.本法制备的大多为单室脂质体,如维生素E脂质体[17]、5-氟脲嘧啶脂质体等[18].4)法兰西加压法:这个方法是用非常高的压力将大的类脂球(M LV)通过一个膜.此法避免了像超声波所引起的降解和不均匀的问题[19].一般这种方法制备的脂质体的粒径在30nm~80nm.将M LV经过1400大气压的法兰西压力筒一次,约600Þ0左右的颗粒直径达25nm~50nm,而通过4次后,约940Þ0的脂质体直径到31.5nm~52.5nm.这个方法比超声波法形成的脂质体粒径稍大些,但与此相比,包封率上升,而渗透性有所下降.5)膜挤压法:降低脂质体的颗粒也可在低压下(小于7个大气压)通过一个滤膜[20].这个方法的优点是可选择膜的孔径,已决定颗粒的大小.而且在经过几次后也较均匀.6)微乳化法:梅赫(M ay hew)等报告了用一个高压均质器从浓的类脂悬浮液中制备小的M LV(也有称为SUV)的方法[21].这个装置可用空气泵或电力/水压增强泵产生非常高的液体压力(可到2100at).利用高压流经过精确规限的微细通道,流体立刻被加速到极高速度,并在特制的专利反应室内产生强大的剪切、冲击及空化作用,形成预期的精细密集及极为均一的脂质体.类脂材料可用MLV悬浮液也可用未水合的类脂浆加入到微乳化其中,经过几次循环,直到达到满意的尺寸为止.一般来说,循环一次后平均直径在100nm ~200nm,确切的方法分布取决于膜的成分及水和介质.这个方法有以下几个优点:重复性好,能大规模生产;微粒均匀稳定性好;包封率高能达到750Þ0.7)预脂质体法:这个方法是通过减少水的量来增加干燥类脂的表面积而发展起来的.将类脂干燥到一个多孔的支持体上(如粉状氯化钠、山梨醇或多糖等[22])然后搅拌下加入少量水以湿润被粉末包覆的干燥类脂.当支持体溶解后,就形成了一个M LV悬浮液.一般这个过程是一点点加水,待水蒸发后再加剩余的水.最后形成一个干燥的类脂.(预脂质体).2.2两相分散法这个方法的基本原理是将类脂剂溶解在有机溶剂中,然后这个油相与水相接触.同时将溶剂蒸发,以变成脂质体.又可分为3种类型:溶剂和水可互溶,(如乙醇注入法);溶剂和水不溶解,但水相过量,(如乙醚注#31#2003年3月曹宁宁,等:脂质体的制备方法及研究进展入法);溶剂和水不溶解,但溶剂过量,(如逆相蒸发法).1)乙醇注入法[23]:将磷脂与胆固醇等类脂质及脂溶性药物溶入乙醇,该溶液经注射器迅速注射到磷酸盐缓冲溶液(或含水溶性药物)中,形成脂质体.直径约25nm.其主要缺点是包封率低,且乙醇很难除去. 2)乙醚注入法[24]:将磷脂与胆固醇等类脂质及脂溶性药物溶入有机溶剂中(多用乙醚),该溶液经注射器缓缓注入加热至50e (并用磁力搅拌)的磷酸盐缓冲溶液(或含水溶性药物)中,不断搅拌至乙醚除尽为止,即得大的多孔脂质体.将其混悬液通过高压乳均机两次,所得成品大多为单室脂质体,少量为多室脂质体,粒径绝大多数在2um 以下.优点是方法较温和,包封率高且被氧化的可能性小,缺点是速度慢不适合大量制备.如头孢菌类脂质体[26]可用此法制得. 3)逆相蒸发法[27]:将磷脂等膜材溶于有机溶剂如氯仿、乙醚等,加入待包封药物的水溶液进行短时超声,直至形成稳定的W/O 型剂,然后减压蒸发除去有机溶剂,达到胶态后,滴加缓冲液,旋转帮助器壁上的凝胶脱落,然后,在减压下继续蒸发,制得水性混悬液,通过凝胶色谱法或超速离心法,除去未包封的药物,即得到大单层脂质体.此法适用于包裹水溶性药物、大分子生物活性物质如各种抗生素、胰岛素免疫球蛋白、碱性磷脂酶、核酸等.2.3 表面活性剂增溶法脂质薄膜、多层脂质体或单层脂质体与胆酸盐、脱氧胆酸盐等表面活性剂混合[27],通过离心法或凝胶过表1 脂质体的制备方法及参数Table 1 Preparation methods and parameters of liposome类别方法直径(L m)包裹体积(l/mol)包裹效率(0Þ0)M LV 手摇法0.4~3.5 3.55~15UVL逆相蒸发法0.2~1.011.735~65乙醚注入法0.1~0.423~3138~46膜挤压法0.2 1.3824.9洗涤剂除去法0.1 2.412.0钙离子熔化法0.2~1.07.010~15S UV超声波法0.025~0.050.8)乙醇注入法0.03~0.110.5 1.0法兰西挤压法0.03~0.08))高压乳化法-0.10.6970滤法或透析法除去表面活性剂,就可获得中等大小的单层脂质体此法适用于制备脂溶性蛋白类药物的脂质体,但这个方法并不作为脂质体的主要制备方法.它的优点是:方法温和,并不产生水解和氧化;表面活性剂/类脂比随意变化,以得到满意的尺寸. 它的缺点是:除去表面活性剂时需要渗析,这一过程需要几个甚至几十个小时.3 脂质体形成原理和脂质的组成3.1 脂质组成各种脂质和脂质混合物均可用于制备脂质体,而磷脂是最常用的[28].磷脂的主要成分是磷脂酰胆碱,磷脂酰乙醇胺,磷脂酰丝氨酸,磷脂酰甘油,磷脂酸等.其结构可简述为有一个离子型(至少是强极性链)的/极性头0和两条疏水性的高级脂肪烃长链(非极性尾部)组成,在某一特定浓度条件下,其极性头与极性头部分相结合,非极性尾部与非极性尾部相结合,而形成一个稳定的双分子层结构.构成脂质的另一类物质是胆固醇,它在膜中主要起着改变纯磷脂层性质的作用,它像/缓冲剂0一样起着调节膜结构/流动性0的作用.3.2 结合超声波分散法和离心法说明脂质体形成原理如图1所示,加入到磷脂和胆固醇的有机溶剂的水溶液在超声作用下分散为小水滴.磷脂、胆固醇吸附在水滴表面形成一层单分子膜,从而生成油包水(W/O)微乳液.将微乳液转移到缓冲水溶液上后,有机溶剂中多余的磷脂、胆固醇在与缓冲液的油水界面迅速生成一层单分子膜,在离心作用下,油相中的小水滴穿过油水界面的单分子膜并被其包围,在水相中形成脂质体.图1 脂质体的形成原理Fig.1 Formation principle of liposome#32#天 津 理 工 学 院 学 报 第19卷 第1期4脂质体作为药物载体的优点及对其表面修饰的目的脂质体作为一种内层含有水相的封闭的圆球型双层膜,用于药物释放系统,具有两个独特的优点:1)可以在其内水相包封水溶性药物,也可以在外层双层膜包封脂溶性药物;2)它和天然生物膜的生物相溶性比较好,在药物学应用中,安全性可靠.然而,脂质体不论其组成、尺寸大小和表面所带电荷如何,它都能够在静脉给药1h 后被网状内皮系统(RES)截留[29].因此,对脂质体进行表面修饰的主要目的是:(1)延长脂质体的半衰期和提高它在血液循环中的稳定性;(2)改变脂质体的生物学分布;(3)产生靶向效应;(4)使脂质体具有独特的性能,如使它具有对pH、温度和光等外界刺激产生敏感性.5种新型脂质体1)温度敏感脂质体:脂质膜在由/凝胶态0转到液晶结构时,其磷脂的脂酰链紊乱度及活动度增加,膜的流动性也增大,此时包封的药物的释放速率亦增大,此温度称为脂质体的相变温度.根据这一原理制备的脂质体成为温度敏感脂质体.2)pH敏感脂质体:根据肿瘤附近的pH值比周围正常组织低的事实,设计了pH敏感脂质体.其原理是pH低时可导致脂肪酸羧基的质子化而引起六方晶体(非相层结构)的形成.而它的形成则是膜融合的主要机制.如白喉霉素A pH敏感脂质体,DNA pH敏感脂质体.3)免疫脂质体:免疫脂质体是机体修饰的脂质体的简称.近年来,将癌细胞当作抗原细胞,使产生对抗这种癌细胞的单体,然后将这种抗体结合到脂质体上,从而使这种脂质体能够将药物定向输送到癌细胞,起到良好的疗效.4)掺入糖脂的脂质体:将糖脂链的一部分用棕榈酰或具有适当间隔基的胆淄醇基取代得到糖类衍生物,再与含药脂质体混合,在适当的条件下孵育,即得到掺入糖脂的脂质体.这种脂质体可改变其在组织内的分布,且稳定性好.5)前体脂质体:前体脂质体通常为干燥,具有良好流动性能的颗粒或粉末,贮存稳定,应用前与水水合可分散或溶解成等张的脂质体,这种脂质体解决了稳定性和高温灭菌等问题,为工业生产奠定了基础.6)聚合脂质体:聚合脂质体是构成脂质体的每个类脂分子通过共价键的形式连接起来的一种新型脂质体,通过共价键把脂质体的双分子膜与表面活性剂分子连接起来.可显著提高其稳定性,降低粒子的融合与聚集,使脂质体中药物渗漏显著降低,延长了有效期.7)磁性脂质体:磁性脂质体是在脂质体中掺入铁磁性物质制成.8)声振波敏感脂质体:将含有声振波敏感分子的脂质体药物给予患者,在其体外施声振波于所选择的靶位区域,使药物在脂质体内释放出,以增加组织细胞对药物的摄取,使靶位的药物浓度升高,从而降低全身毒性.9)光敏脂质体:光敏脂质体是将光敏物质的药物包裹在脂质体内,用来进行光学治疗,当在一定波长的光照射时,脂质体膜与囊泡物质间或脂质体之间发生融合作用而释放药物.无论是何种脂质体,都可分为3种类型:小单层状囊;大单层状囊和多层状囊.这3种类型的脂质体各有优缺点.各种类型脂质体的性能比较见表2.表2不同类型脂质体的性能比较结果Table2Performance of different type of liposome 脂质体种类优点缺点多层状囊的包封体积大,包封性能好,稳定相当好形状大小不均匀,难包封聚合物;很难有效地将包封物输送入皮肤细胞小单层状囊的形状大小均匀包封的有效体积较小,难包封聚合物,容易出现互溶现象.大单层状囊的能包封聚合物,包封的性能好,包封的体积大大小不均匀6脂质体研究展望研究证实,利用神经甘酯[30]或者聚乙二醇(PEG)衍生物对脂[31~34]质体进行表面修饰可以提高其稳定性.另外,Sunamoto等人[35~37]也利用多糖衍生物包覆脂质体,能够有效地延长脂质体的体内循环时间.除此之外,一系列的生物相容性合成高分子,无论是中性的或是荷电的,都已被用于提高脂质体的稳定性而得到较多的研究.近期的研究工作证实,高分子作为脂质体的包覆材料不仅只是扮演一个被动的保护角色,而且可能在实际上通过接受外来的刺激而参与控制药物的#33#2003年3月曹宁宁,等:脂质体的制备方法及研究进展释放过程.今后随着科学技术的发展和脂质体生产工艺研究的深入,相信会创造出更多更好的新型脂质体,使脂质体得到更广泛的应用.参考文献:[1]Bangham A D,Standish M M,Watkins J C.Diffussion ofunivalent inos across the lamella of swollen phospholipids [J].J.M ol.Biol.1965,13:238)252.[2]M artin C,Woodle,Danilo D L asic.Sterically stabilizedliposomes[J].Biochimica et Biophysica Acta,1992,1113:171)199.[3]王闻珠,邓英杰.脂质体肺部给药研究进展[J].沈阳药科大学学报,2000,17(3):226)229.[4]Lasic D D.L iposomes.From Physics to Application[M].Elvev ier:Amsterdam,1993.[5]Gregoriadis G.Liposome T echnology[M].Boca Rato n:CRC Press;1984.[6]牛荣丽,李志良.阿苯达唑免疫脂质体的制备[J].新疆医科大学学报,2001,24(1):659)661.[7]陈忠斌,王升启,王弘,等.pH敏脂质体对反义寡核苷酸康流感病毒活性的影响[J].中国生物化学与分子生物学报,1999,15(4):553)557.[8]石丽萍,颜光涛,李英丽,等.酸敏脂质体的制备及其在肠缺血-再灌注小鼠体内重要脏器中的分布[J].中华危重病急救医学,2001,13(11):659)661.[9]邹一愚,顾学裘,崛越勇.肝动脉注射阿霉素温度敏感脂质体的制剂研究[J].药学学报,1991,26(8):622)626. [10]张中冕,段方龄,张明智.脂质体猪苓多糖抗肝转移癌作用的研究[J].白求恩医科大学学报,1999,8(3):180)182.[11]吕延长,母敬郁,王友联,等.消炎痛脂质体对兔角膜穿孔伤的疗效观察[J].白求恩医科大学学报,1997,23(2):139)140.[12]郭宁如,吴绍熙.二性霉素B脂质体的研究与应用[J].中国新药杂志,1996,5(4):264)265.[13]周青.无环鸟苷脂质体混悬液的分析[J].中国医院药学杂志,1997,17(3):115)116.[14]W ang C Y,Yughes K W,Huang L.Improvedcytoplasmic delivery to plant protoplasts via PH-sensitiveliposome[J].Plant Physiol,1986,82:179)186.[15]Ropert C,M alvy C,Couvreur P.Inhibit ion of the fr iendretrovirus by antisense oligonucleot ide encapsulat ed inliposome:mechamism of action[J].P harm Res,1993,10(10):1427)1433.[16]郭健新,平其能,黄罗生.柔性环孢素纳米脂质体的制备及其变行性[J].中国药科大学学报,1999,30(3):187)191.[17]李国锋,周日红,曾抗,等.维生素E脂质体的制备[J].中国应用药学,1997,14(4):18)20.[18]肖旭.5-氟脲嘧啶温度敏感性脂质体制备方法的优化[J].药学实践杂志,1998,16(6):344)346.[19]T ari A M,T ucher S D,Deisser oth A,et al.Liposomedeliv er y of methyphosphonate antisenseoligo deoxynucleotide in chromic myelogenous lerkemia[J].Blood,1994,84(2):601)607.[20]M a D D F,Wei A Q.Enhanced delivery of syntheticoligonucleotides to huaman leukaemic cells by liposomesand immunoliposomes[J].L eukemia Research,1996,20(11~12):925)930.[21]K remer J M H.V esicles of variade diameter by a modifiedinject ion method[J].Biochemistry,1977,16(17):3932)3935.[22]阎家麟,童岩,王九一.紫杉醇脂质体的制备即其抑瘤作用的研究[J].药物生物技术,1996,3(3):1) 5. [23]Szoka F,O lsom F.Preparation of liposo me o f inter mediasize by a combination of reverse phase evaporation andextr usion through polycarnonate membranes[J].BiochemBiophys Acta,1980,601:559)571.[24]全东琴,苏德森,顾学裘.药物载体空白脂质体前体的制备及性质的研究[J].沈阳药科大学学报,1999,16(3):160)164.[25]张根旺,刘晓见.脂质体化妆品及其应用[J].郑州工程学院学报,2000,21(12):4)8.[26]Senior J H.Fate and behavior of liposomes in vivo:ar ev iew of co ntrolling factors[J].T her.Drug Carr ierSyst.,1987,3:123)193.[27]Allen T M,Chonn rge unila mellar liposomes w ith lowuptake into the reticuloendothelial system[J].FEBS L ett.,1987.223:42)46.[28]K libanovA l,M ar uyama K,T orchilinV P,et al.Amphipathic polyethyleneglycols effectively prolong thecirculation time of liposomes[J].FEBS L ett.,1990,268:235)237.[29]M or i A,K libannov A L,T o rchilin V P,et al.Influence ofster ic barrier activity of amphipathic poly(ethyleneglycol)and ganglioside GM1o n the circulat ion time of liposomesand on the target binding of immunoliposomes in v ivo[J].F EBS L ett.,1991,284:263)266.[30]Woodle M C,Lasic D D.Ster ically stabilized liposomes[J].Biochim.Biophys Acta,1992,1113:171)199. [31]T orchilin V P,K libanov A L,Huang L,et al.T ar getedaccumulation of poly ethyleneg lycol-coatedimmunoliposomes in infr acted rabbit myocardium[J].FASEBJ,1992,6:2716)2719.[32]SunamotoJ,Sato T,T aguchi T,et al,N aturally o ccurr ingpolysacchar ides deriv at ives w hich behave as an artificial cell#34#天津理工学院学报第19卷第1期wall on an ar tificial cell liposome[J].M acromolecules,1992,25:5665)5670.[33]Baszkin A,Rosilio V,A lbrecht G,et al.Cholesteryl-pullulan and cholesteryl-amylopectin interact ions w ithegg phosphatidy lcholine monolayers[J].J.ColloidI nterface Sci.,1991,145:502)511.[34]Sunamo to J,Sato T,Hiro ta M,et al.A newly developedimmunoliposomes an egg phosphatidylcholine liposomecoated w ith pullulan bearing both a cholesterol moiety andan IgM s frag ment[J].Biochim.Biophys.Acta,1987,898:323)330.[35]Ozden M Y,Hasir ci V N.Enzy me im mobilizatio n inpolymer-coated liposomes[J].Br itish Poly m.,J.,1990,23:229)234.[36]Ishihara K,Nakabayashi N.Specific interaction betw eenwate-r soluble phospholipi polymer and liposome[J].J.Polm.Sic:Po lym.chem.,1991,29:831)835.[37]T omas J L,Y ou H,T irrell D A.T uning the response o f apH-sensit ive membrane switch[J].J.Am.Chem.Soc.1995,117:2949)2950.(上接第12页)5结论通过在终端系统建立一种高效的、扩展性好的、能够支持数据密集和通信密集应用的底层基础结构,并在上层网络系统将CORBA与Web的结合,大大方便了WWW应用的开发、发布和维护,有助于在WWW 上建立分布式对象环境,推动WWW进入动态的应用阶段,从而极大地提高了WWW的发布能力,实现各种高级服务策略.基于该混合模式的系统将实现资源的管理和分配、通信、安全机制、统一的资源信息服务、提供远程数据访问等功能,使传统诊断技术能够在网络上得到充分发挥,并为故障诊断技术开创了新的研究方向.参考文献:[1]季立明.基于网络的设备监测诊断开放平台的研究[D].天津:天津大学,2002.43)67.[2]胡春华,朱庆华,张智勇,等.基于COR BA的分布式网络化制造系统建模[J].机电一体化,2001,(2):16)20. [3]吴伟蔚,杨叔子.故障诊断Ag ent研究[J].振动工程学报,2000,13(3):393)399.#35#2003年3月曹宁宁,等:脂质体的制备方法及研究进展。
脂质体制备技术及其研究进展

基金项目:/重大新药创制0科技重大专项(2009ZX09308-003)作者简介:刘晓谦,女,博士研究生 研究方向:药物新剂型研究 *通讯作者:王智民,男,教授 研究方向:药物化学及中药质量标准研究 Te:l (010)84014128 E-m ai:l z hmw 123@2631net #综 述#脂质体制备技术及其研究进展刘晓谦,王锦玉,仝燕,王智民*(中国中医科学院中药研究所,北京100700)摘要:目的 综述脂质体制备技术的研究进展及其发展前景。
方法 以近年来的研究文献为基础,结合药物的性质、工艺要求,对脂质体的制备方法进行综述,并对各种方法的优缺点进行分析。
结果与结论 脂质体作为药物载体用于药物的体内传递具有独特的优势,具有巨大的发展潜力和良好的应用前景。
关键词:脂质体;药物载体;制备技术中图分类号:R 944 文献标志码:A 文章编号:1001-2494(2011)14-1084-05 脂质体系指将药物包封于类脂质双分子层内而形成的超微型球状载体制剂,亦称类脂小球或液晶微囊。
其结构为一层或多层同心脂质双分子层。
脂质体技术于20世纪60年代中期即应用于化妆品领域,但直到20世纪70年代才将脂质体应用于药物载体,并引起广泛关注。
脂质体材料与生物体细胞膜成分相似,具有良好的生物相容性和可降解性,故而对机体的刺激性较低。
此外,脂质体还具有靶向和缓释的作用,因而有高效低毒的治疗特点。
脂质体最初主要用于包封脂溶性成分,后随着贮库泡沫技术(D epofoam techno logy ,D epo -Foam TM )[1]的出现开始应用于水溶性成分。
近年来又出现了长循环脂质体[2]、隐形脂质体等新型脂质体。
目前脂质体技术正在向着基因给药、靶向定位给药等领域发展。
可以预见,随着生化物理技术的发展,脂质体在医药领域必将拥有更为辉煌的前景。
理想的脂质体应具备以下特点:包封率高、粒径分布范围窄、稳定性好。
脂质体的研究现状及主要应用

脂质体及其医药应用化学01 马高建2010012222 摘要:脂质体是一种天然脂类化合物悬浮在水中形成的具有双层封闭结构的囊泡,目前可由人工合成的磷脂化合物来制备。
它作为一种高效的载体,近年来在医药、化妆品和基因工程领域等都有广泛应用,国内外在这方面进行了大量的研究,并取得了一些进展。
本文将对脂质体的研究现状和其在医药方面的应用做一下概括,并对脂质体的发展前景做一下展望。
关键词:脂质体、制备、医药、应用脂质体最初是1965年英国学者Banyhanm和Standish将磷脂分散在水中进行电镜观察时发现的。
磷脂分散在水中自然形成多层囊泡,每层均为脂质双分子层,囊泡中央和各层之间被水隔开,双分子层厚度约4 nm,后来将这种具有类似生物膜结构的双分子小囊泡称为脂质体,又称人工膜。
1988年,第一个脂质体包裹的药物在美国进行临床试验,现在用脂质体包裹的抗癌药、新疫苗、其他各种药品、化妆品、农药等也开始上市。
我国的脂质体研究始于上世纪70年代,经过近30年的研究,我国在脂质体的研究和应用方面取得了可喜的成果。
目前我国已有多个以脂质体作载体的新药剂型进入临床验证阶段。
当前脂质体的医药应用研究主要集中在模拟膜的研究、药品的可控释放和体内的靶向给药,此外还有如何在体外培养中将基因和其他物质向细胞内传递。
由于脂质体具有生物膜的特性和功能,它作为药物载体的研究已有多种,主要用于治疗癌症的药物,它可将包封的活性物质直接运输到所选择的细胞上,故有“生物导弹”之称。
1 脂质体及其分类脂质体(或称类脂小球、液晶微囊),是一种类似微型胶囊的新剂型,是将药物包封于类脂质双分子层形成的薄膜中间所制成的超微型球状载体剂型,其内部为水相的闭合囊泡。
由于其结构类似生物膜,故又称人工生物膜。
脂质体主要有双分子层组成,磷脂(卵磷脂、脑磷脂、豆磷脂)和胆固醇是形成双分子层的基础物质,再加入其他附加剂制备而成。
1.1 结构脂质体可以是单层的封闭双层结构,也可以是多层的封闭双层结构。
脂质体作为疫苗佐剂的研究进展

脂质体 主要是 由磷脂及其 它附: I I I I 组 成 ,磷脂 在脂质 体 中形成双分子层 ,其 它 附加剂起 到提 高脂质 体的稳 定性 和靶 向性等作 用。由 于脂 质体 包封 材料 的特殊性 ,具 有很 多优点 ,如:生物相 容性 ,靶 向性 ,缓释 性 ,增加 药 物 的
稳定性等 。
基础 。经过 3 5年 以及 超过 1 3 0 0个 研究 ,很 明显 脂质 体理
化 性 质 对 其 免 疫 原 性 影 响 极 为 重 要 。对 免 疫 原 性 影 响 较 大 的包 括 :
3 . 4 缓释性
可延长抗原或半抗原 的作用时 间,协助抗 原
2 . 3 . 1 抗原 的包被方式 。决定抗原释放速度以及被 A P C识 别 的难 易 。
或半抗原诱导体液免疫和/ 或细胞免疫 。
3 . 5 可冷冻干燥
经研 究 ,以脂 质体 为佐剂 的疫 苗抗 原 ,
2 . 3 . 2脂质体组成 、电荷 、粒径等。能改变脂质体药动学性
质 从 而 获得 理 想 的停 留 和 抗 原 摄 取 、处 理 以及 递 呈 在 MH C
冻干后与冻干前相 比,其物 理性状 及免疫 原性均 无太 大差
量脂质体的制备u 。 2 . 3 脂质体理化性质对其免疫原性影 响 对脂质体 的主要 理化性质对脂质体流感 疫苗 免疫原 性 的影 响从 机制上进 行
3 . 3 靶 向性
抗原 能否准确靶 向抗原呈递 细胞上特定 的受 。在 c—S I G N) 也极 为重要
中 国 民 族 民 间 医 药
・
学 术 探 讨
Ac a d e mi c s t u d y
2 8・
C h i n e s e j o u r n a l o f e t h n o me d i c i n e a n d e t h n o p h a r ma c y
脂质体的研究新进展

脂质体的研究新进展杨鹏波;张华【摘要】[目的]综述脂质体的应用和研究进展,为药物制成脂质体提供更多的选择。
[方法]查阅近几年国内相关的文献资料并总结脂质体在各方面的应用、新的制备方法和修饰方法及其各自的优点。
[结果]从脂质体的的应用、制备方法、修饰、质量评价等方面,可看脂质体与生物膜有着极好的相容性,作为载体有很大的优势,修饰后,能增强靶向性,提高药物的疗效,降低毒副作用。
[结论]随着新材料的产生和新技术的发展,脂质体的优势将更加显现脂质体作为一种新型的药物载体,与生物膜具有相似性,具有多种优良特性,改变了传统的给药方式。
经过近40年的研究,已到广泛的应用。
%[Objective]This paper summarizes the latest literature,which can offer more choices for making liposomedrug.[Methods]This article summarizes the application of liposomes in al aspects and new preparation methods and modification methods and their respective advantages. [Results]Liposome as a new type of drugcarrier,which has similarity with biological membrane,has many good qualities and changes the traditional way to give medicine. [Con-clusion]Liposome has the broad application after nearly forty years of research.【期刊名称】《浙江中医药大学学报》【年(卷),期】2013(000)007【总页数】4页(P936-939)【关键词】脂质体;分类;制备方法;联用技术;质量评价【作者】杨鹏波;张华【作者单位】山东中医药大学济南 250355;山东中医药大学济南 250355【正文语种】中文【中图分类】R282.71脂质体是由脂质双分子层 (由磷脂和胆固醇组成)构成的封闭囊泡,它具有很多的优良性质,如具有细胞的亲和性和靶向性、缓释性、减低药物毒性、提高药物稳定性、透皮吸收效率高、可以携带药物进入细胞、避免耐受性、改变给药途径等[1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1935年 ,BanghamⅢ博 士 曾 将 药 物 置 于 卵 磷 质 ,脂 溶性 药物 或两 亲 『生药 物被 包裹 在脂 质体亲 脂基
脂一 胆 固醇 中乳化 以便缓 慢释放 ,并 申请专 利 。然而 部分或 脂质 双分 子层 中 ,而水溶 性药 物则被 包裹 在脂
由于 当时检测 微观 结构 的技术较 落后 ,他并 没有 发现 质体的水层 中,使得水溶性药物的包封率较低 ,并且
such as protecting drugs, increasing dru gs efect, minimizing toxicity of dr u gs,increasing dr u gs targeting and SO on.The e— valuation guideline and the preparation methods of liposome such as t h in f ilm evaporation method, high-pressure homogenizer
这 一 由磷 脂 自聚 集 而 形 成 的双 分 子 层 结 构 。 直 到 较 容易 泄露 。
1965年他才观察到这一特点 ,并将其命名为脂质体 。 1.1 薄膜蒸发法
自从 1970年 Sessa等人 【 认 为脂 质 体可 以作为 药物 载
薄 膜蒸 发法是 先将 类脂 材料 溶于有 机溶 剂 中 ,然
质体 这种新 型药 物载体 ,在 医药界 和化 妆 品工业得 到
Vobalaboina Venkateswarlu等人 l31采用 薄 膜蒸 发 法
了广 泛的关 注 ,并在食 品工 业 中也 日益 显示 出 巨大 的 制 备 了 Clozapine固体 脂质 体 。 吕文莉 等人 [41采 用薄 膜
潜力 。本 文就脂 质体 的制备 方法 以及评 价指 标作一 综 蒸 发法 和冷冻 干燥 法制 备 了灯 盏花 素脂 质体 。熊非 等
述 。
,
人 [51采 用 薄 膜一 超 声 法 制 备 了灯 盏 花 素 纳 米 脂 质 体 。
1 脂质 体 的制备 方法
张 耕 等人Iq利 用大 豆 磷脂 为 载 体 ,采 用 薄膜 一超 声 分 散法 ,制备了苦参素磷脂纳米粒 。王娜等人[71采用薄
method,rever se phase evaporation vesicle met hod,ethanol injection—extr ude and modif ied ethanol injection—extr ude method,
m icroem ulsion cooling m ethod, f reeze—thawing m et h od and lyophilization method are reviewed in this paper. Key words:liposome; preparation methods;evaluation g u idehne
体 ,1971年 Rymen等人 将 脂 质体 作 为药 物 载体 应 用 后 减压 蒸去有 机溶 剂 ,继而 加入 缓 冲液 ,并 加入几 颗
以来 ,脂 质体 引起 了世 界 各 国学 者 的关 注 。随着 生物 玻璃 珠 帮助分 散 ,就形 成一种 乳 白色 的分散 液 ,即为
技术 的不 断发展 ,脂 质体 的制备工 艺也 不断 完善 ,脂 脂 质体 。
2.Sino-German Food Engineering Center,Nanchang Univer sity,Nanchang,Jiangxi 330047,China) A.bgtraet: Liposome be made from phospholipid serf-aggregation, as all important drugs carrier, it has many advantages,
体的毒性 和提 高药 物的靶 向性等方面的优越性 。概述了薄膜 蒸发法 、高压乳匀法 、逆 向蒸发 法 、乙醇注入法及改 良
乙醇注入法 、微乳 冷却法 、冻融法和冷冻干燥法等几种脂质体 的制备方法 ,以及脂质体的评价指标 。
关键 词:脂质体 ;制备方法 ;评价指标
中图分 类 号 :TQ463
文 献标 志码 :A
Research Progress on Preparation Methods of Liposome
W angB.il;An 一 , "Liu Cbengmei 一 。Liu Wei · (1.The Key Laboratory of Food Science of MOE, Nanchang University,Nanchang,Jiangxi 330047,China;
维普资讯
第 8期(总第 109期) 2007年 8月
农产 品加工 ·学刊
Academic Periodical of Farm Prod ucts Processing
文章编号 :1671—9646 f 2007)08—0012—03
No.8 Aug.
脂 质体是 一种 由一个 或 多个脂 质体双 层 中间包 覆 膜分 散 与探头 超声相 结合 的方 法制 备砂 仁挥 发油纳 米
微水相 的结构 ,构 成双分 子层 的类脂 分为 亲水性 的头 脂 质 体 。 Hodoshima等 人 【 1以 合 成 的 聚 乙 二 醇 类 脂
部和亲油性的尾部 ,亲水性的头部形成膜的内外表面 (PEG—lipid)与卵磷脂 (ph0sphatidylcholine,PC)或 层 ,而 亲油性 的尾部 处于 膜 的中间 。脂质体 的这 种结 DPPC 为 乳 化 剂 , 制 备 4—0一 四 氢 吡 喃 一 阿 霉 素
脂 质体 制 备 方 法 的研 究进 展
王瑞 莲 L 2, 刘成梅 L 2,刘 伟 ,z
(1.南 昌大学 食品科学 教育部重点实验室 ,江西 南 昌 330047;2.南 昌大学 中德食品212程中心 ,江西 南昌 330047)
摘要 :脂质体是磷脂 自聚集而形成的双分子层结构 ,作为一种重要载体 ,具有保护 药物 、提高药效 、减少制剂对机