抛物线与实际问题的专题练习

合集下载

二次函数《现实生活中的抛物线》练习

二次函数《现实生活中的抛物线》练习

26.3 实践与探索第1课时现实生活中的抛物线1.(2020山西)竖直上抛物体离地面的高度h(m)与运动时间t(s)之间的关系可以近似地用公式h=-5t2+v0t+h0表示,其中h0(m)是物体抛出时离地面的高度,v0(m/s)是物体抛出时的速度.某人将一个小球从距地面1.5 m的高处以20 m/s的速度竖直向上抛出,小球达到的离地面的最大高度为( C )A.23.5 mB.22.5 mC.21.5 mD.20.5 m2.如图所示,从某建筑物10 m高的窗口A处用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与墙面垂直).如果抛物线的最高点Mm,则水流落地点B离墙的距离OB是( B )离墙1 m,离地面403A.2 mB.3 mC.4 mD.5 m3.如图所示,池中心竖直水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1 m处达到最高,高度为3 m,水柱落地处离池中心3 m,水管的高为 2.25 m.4.如图所示是一个横截面为抛物线形状的拱桥,当水面宽4 m 时,拱顶(拱桥洞的最高点)离水面 2 m,水面下降 1 m 时,水面的宽度为 2√6 m.5.如图所示,杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线y=-35x 2+3x+1的一部分.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4 m,在一次表演中,人梯到起跳点A 的水平距离是4 m,问这次表演是否成功?请说明理由. 解:(1)y=-35x 2+3x+1=-35(x-52)2+194,所以当x=52时,y 有最大值194.所以演员弹跳离地面的最大高度是194m.(2)能表演成功.理由如下: 当x=4时,y=-35×42+3×4+1=3.4,即点B(4,3.4)在抛物线y=-35x 2+3x+1上,所以能表演成功.6.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=-t2+24t+1.则下列说法中正确的是( D )A.点火后9 s和点火后13 s的升空高度相同B.点火后24 s火箭落于地面C.点火后10 s的升空高度为139 mD.火箭升空的最大高度为145 m7.如图所示,排球运动员站在点O处练习发球,将球从点O正上方2 m 的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-k)2+h.已知球D与O点的水平距离为6 m时,达到最高2.6 m,球网与O点的水平距离为9 m,高度为2.43 m,球场的边界距O点的水平距离为18 m,则下列判断正确的是( C )A.球不会过球网B.球会过球网但不会出界C.球会过球网并会出界D.无法确定8.如图所示,一工厂车间门口由抛物线和矩形ABCO的三边组成,门的最大高度是4.9 m,AB=10 m,BC=2.4 m,若有一个高为4 m,宽为2 m的长方体形的大型设备要安装在车间,如果不考虑其他因素,设备的右侧离开门边超过多少米时,此设备运进车间时才不会碰门的顶部( D )A.1.7B.1.8C.1.9D.2.19.某游乐园有一个直径为16 m 的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3 m 处达到最高,高度为5 m,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x 轴,喷水池中心为原点建立平面直角坐标系. (1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32 m,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a (x-3)2+5(a ≠0),将(8,0)代入y=a(x-3)2+5,得25a+5=0, 解得a=-15.所以y=-15(x-3)2+5(0<x<8).所以水柱所在抛物线(第一象限部分)的函数表达式为y=-15(x-3)2+5(0<x<8).(2)当x=0时,y=-15(0-3)2+5=165.设改造后抛物线(第一象限部分)函数表达式为y=-15x 2+bx+165.因为该函数图象经过点(16,0), 所以0=-15×162+16b+165,解得b=3.所以函数表达式为y=-15x 2+3x+165=-15(x-152)2+28920(0<x<16).所以扩建改造后喷水池水柱的最大高度为28920m.10.(拓展探究题)施工队要修建一个横断面为抛物线的公路隧道,其高度为6 m,宽度OM 为12 m.现以O 点为原点,OM 所在直线为x 轴建立平面直角坐标系(如图(1)所示).(1)求出这条抛物线的函数表达式,并写出自变量x 的取值范围; (2)隧道下的公路是双向行车道(正中间是一条宽1 m 的隔离带),其中的一条行车道能否行驶宽2.5 m,高5 m 的特种车辆?(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A,D 点在抛物线上,B,C 点在地面OM 线上(如图(2)所示).为了筹备材料,需求出“脚手架”三根木杆AB,AD,DC 的长度之和的最大值,请你帮施工队计算一下.解:(1)因为M(12,0),P(6,6), 所以设这条抛物线的函数表达式为 y=a(x-6)2+6.因为抛物线过O(0,0), 所以a(0-6)2+6=0. 解得a=-16.所以这条抛物线的函数表达式为 y=-16(x-6)2+6,即y=-16x 2+2x(0≤x ≤12).(2)当x=6-0.5-2.5=3(或x=6+0.5+2.5=9)时,y=4.5<5, 故不能行驶宽2.5 m,高5 m 的特种车辆. (3)设点A 的坐标为(m,-16m 2+2m),则OB=m,AB=DC=-16m 2+2m.根据抛物线的轴对称,可得OB=CM=m. 故BC=12-2m,即AD=12-2m. 令L=AB+AD+DC =-16m 2+2m+12-2m-16m 2+2m=-13m 2+2m+12 =-13(m-3)2+15,故当m=3,即OB=3 m 时,三根木杆AB,AD,DC 长度之和L 的最大值为 15 m.。

微专题6 抛物线型实际应用设计问题(含实践活动)+课件+2025年九年级中考数学总复习人教版(山东)

微专题6 抛物线型实际应用设计问题(含实践活动)+课件+2025年九年级中考数学总复习人教版(山东)
∴若顶点一侧挂4盏灯笼,则1.6×4>6,
若顶点一侧挂3盏灯笼,则1.6×3<6,
∴顶点一侧最多可挂3盏灯笼.
∵挂满灯笼后成轴对称分布,
∴共可挂7盏灯笼.
∴最左边一盏灯笼悬挂点的横坐标是-4.8.
21
方案二:如图6,从对称轴两侧开始悬挂灯笼,正中间两盏与对称轴的距离均为
0.8 m,
∵若顶点一侧挂5盏灯笼,则0.8+1.6×(5-1)>6,
线.球从点A处被抛出,恰好越过横线,测得投掷距离OC=8 m.
13
问题解决
任务1
计算投掷距离
建立合适的直角坐标系,求素材1中的投掷距离OB.
任务2
探求高度变化
求素材2和素材1中球的最大高度的变化量.
任务3
提出训练建议
为了把球掷得更远,请给小林提出一条合理的训练建议.
14
【解析】任务1:建立如图所示的直角坐标系,
整理得w=(-16x+1 120)+(-32x+2 240)+(-2x2+120x),
∴w=-2x2+72x+3 360(x≥10).
27
任务3:由任务2得w=-2x2+72x+3 360=-2(x-18)2+4 008,
∴当x=18时,获得最大利润,


y=- ×18+ = ,∴x≠18,

∴y=-0.15x2+x+1.6,∴顶点纵坐标为
=
= ,

×(−.)




-1.8= (m),∴素材2和素材1中球的最大高度的变化量为


抛物线曲线经典题目(含答案解析)

抛物线曲线经典题目(含答案解析)

抛物线曲线经典题目(含答案解析)
问题描述
某物体被抛向空中,并沿着抛物线轨迹运动。

该抛物线由方程
y = ax^2 + bx + c 描述,其中 a、b、c 为常数。

给定 a = 2, b = -4, c = 1,求该抛物线的顶点坐标和对称轴方程。

解答分析
首先,我们需要确定抛物线的顶点坐标。

抛物线的顶点坐标可
以通过以下公式计算:
x = -b / (2a)
y = a * (x^2) + b * x + c
代入 a = 2, b = -4, c = 1,即可得到抛物线的顶点坐标。

其次,我们还需要确定抛物线的对称轴方程。

对称轴方程可以
通过以下公式计算:
x = -b / (2a)
代入 a = 2, b = -4,即可得到抛物线的对称轴方程。

计算过程与结果
根据计算公式,我们可以得到抛物线的顶点坐标和对称轴方程的具体计算过程如下:
1. 计算顶点坐标:
x = -(-4) / (2 * 2) = 1
y = 2 * (1^2) + (-4) * 1 + 1 = -1
因此,该抛物线的顶点坐标为 (1, -1)。

2. 计算对称轴方程:
x = -(-4) / (2 * 2) = 1
因此,该抛物线的对称轴方程为 x = 1。

结论
该抛物线的顶点坐标为 (1, -1),对称轴方程为 x = 1。

以上是对题目的完整解答与分析。

通过计算,我们可以得到抛物线的顶点坐标和对称轴方程,进一步了解抛物线的特征和形态。

抛物线的性质及综合应用的练习题及答案

抛物线的性质及综合应用的练习题及答案

抛物线的性质及综合应用1、已知抛物线的顶点为坐标原点,对称轴为x 轴,且与圆422=+y x 相交的公共弦长为32,求这条抛物线的方程。

2、已知B A 、是抛物线()022>=p px y 上的两点,O 为坐标原点,若AOB OB OA ∆=,的垂心恰为抛物线的焦点F ,则直线AB 的方程是 。

3、给定x y 22=,设()()P a a A ,00,>是抛物线上一点且d PA =,试求d 的最小值。

4、正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线()022>=p px y 上,求正三角形的边长。

5、直角三角线的直角顶点在坐标原点,另外两个顶点在抛物线()022>=p px y 上,且一直角边的方程是x y 2=,斜边长是35,求此抛物线方程。

6、已知过抛物线x y 42=的焦点F 的弦长为36,求弦所在的直线方程。

7、已知抛物线()022>=p px y 的一条过焦点F 的弦AB 被焦点F 分成长度为n m ,两部分。

求证:nm 11+为定值。

8、抛物线的顶点在原点,以x 轴为对称轴,经过焦点且倾斜角为︒135的直线,被抛物线截得的弦长为8,试求抛物线的方程。

9、设抛物线()022>=p px y 的焦点为F ,经过点F 的直线交抛物线于B A 、两点,点C 在抛物线的准线上,且x BC //轴,求证:C O A 、、三点共线。

10、若抛物线2x y =上存在关于直线()3-=x m y对称的两点,求实数m 的取值范围。

11、已知抛物线2xy =,过点()1,2Q 作一条直线交抛物线于B A 、两点,试求弦AB 的中点方程。

12、如图,过抛物线x y =2上一点()2,4A 作倾斜角互补的 两条直线AC AB 、交抛物线于C B 、两点, 求证:BC 的斜率为定值。

13、已知抛物线py x 22=的焦点为F ,点()()()333222111,,,y x P y x P y x P 、、在抛物线上,且3122y y y +=,则有( ) ;;232221321FP FP FP B FP FP FP A =+=+、、 ;;22231231FP FP FP D FP FP FP C ==+、、14、与直线042=+-y x 平行的抛物线2x y =的切线方程为 。

初三数学抛物线练习题

初三数学抛物线练习题

初三数学抛物线练习题1. 某投掷运动员在水平地面上向上抛出一个球,其运动轨迹为抛物线。

已知抛物线的顶点为 (-2, 4),球的最高点为 (0, 6)。

(1) 求抛物线的方程。

解析:设抛物线的方程为 y = ax^2 + bx + c。

由顶点坐标得到 a:4 = a*(-2)^2 + b*(-2) + c4 = 4a - 2b + c由最高点坐标得到 c:6 = a*0^2 + b*0 + c6 = c代入 c 的值,得到:4 = 4a - 2b + 6整理方程,得到:4a - 2b = -2(2) 求球的运动方程。

解析:球的运动方程为 y = -4x^2 + bx + 6。

由最高点坐标得到 b:6 = -4*0^2 + 0*b + 66 = b球的运动方程为 y = -4x^2 + 6x + 6。

2. 已知某抛物线的焦点为 F(-3, 2),直径 MN 的中点为 A(3, -1)。

(1) 求抛物线的方程。

解析:设抛物线的方程为 y = ax^2 + bx + c。

由焦点信息得到 a:2 = a*(-3)^2 + b*(-3) + c2 = 9a - 3b + c由中点信息得到 c:-1 = a*(3)^2 + b*(3) + c-1 = 9a + 3b + c由焦准等距性质得到 b:b = 2*(-3)代入 a、b 的值,得到:2 = 9a + 6-1 = 9a - 6解方程组,得到 a = 1/3,b = -6/3,c = -1/3。

抛物线的方程为 y = (1/3)x^2 - 2x - (1/3)。

(2) 求焦点 F 到直线 MN 的距离。

解析:直线 MN 的斜率为:k = (-1 - 2)/(3 - (-3)) = -3/6 = -1/2直线 MN 的方程为:y = (-1/2)x + m将 A 的坐标代入直线方程,得到 m:-1 = (-1/2)*3 + mm = -5/2直线 MN 的方程为 y = (-1/2)x - 5/2。

抛物线运动练习题(含答案)

抛物线运动练习题(含答案)

抛物线运动练习题(含答案)抛物线运动练题 (含答案)问题一一颗子弹以水平速度100 m/s 射向离地面20m的点,以重力加速度10 m/s²作用下,子弹射出后多久击中地面?答案:使用抛物线运动的公式,可以计算出子弹击中地面所需的时间。

抛物线运动公式为:h = v₀t + 1/2gt²其中,v₀表示初始速度,g表示重力加速度,h表示高度,t表示时间。

代入已知数据:h = 20mv₀ = 100 m/sg = 10 m/s²将公式稍作变形,得到:t² + 20t - 40 = 0解这个二次方程,可求得:t ≈ -23.3 秒或t ≈ 1.7 秒因为时间不能为负数,所以子弹射出约1.7秒后击中地面。

问题二一个人从离地面15m的点以速度20 m/s斜抛一个物体,物体飞行的距离是多少?答案:根据抛物线运动的公式,可以计算出物体的飞行距离。

抛物线运动公式为:d = v₀x t其中,v₀x表示初始水平速度,t表示时间,d表示距离。

我们需要找到物体运动的总时间,然后将其代入公式中计算距离。

首先,我们可以使用重力加速度的公式计算物体运动所需的时间 t₀:h = v₀yt₀ + 1/2gt₀²将公式代入已知数据:h = 15 mv₀y = 20 m/sg = 10 m/s²可得到:15 = 20t₀ + 1/2 * 10 * t₀²将这个方程稍作整理,得到二次方程:5t₀² + 20t₀ - 30 = 0解这个二次方程,可求得:t₀ ≈ -1.85 秒或 t₀ ≈ 0.85 秒因为时间不能为负数,所以物体运动约0.85秒后落地。

然后,我们将求得的 t₀代入公式:d = v₀x * t₀代入已知数据:v₀x = 20 m/st₀ ≈ 0.85 s计算得到物体的飞行距离d ≈ 17 m。

问题三一颗炮弹以45°角发射,速度为400 m/s。

22.3实际问题与二次函数(实物抛物线)

22.3实际问题与二次函数(实物抛物线)

A、5米 B、6米;C、8米;D、9米
y
x
0
h
A
B
练习2一个涵洞成抛物线形,它的截面如图, 现测得,当水面宽AB=1.6 m时,涵洞顶点与 水面的距离为2.4 m.这时,离开水面1.5 m处, 涵洞宽ED是多少?是否会超过1 m?
加入QQ群:259315766,可获得无法上传的免费文档《二次曲线压轴100题真人讲解WORD精排打印版》100页
y 0.5 x 2 2
当水面下降1m时,水面的 纵坐标为y=-1,这时有:
1 0.5 x2 2 x 6 这时水面宽度为2 6m
∴当水面下降1m时,水面宽度 增加了 ( 2 6 4 )m
解三 如图所示,以抛物线和水面的两个交点的连线为x轴,以其中
的一个交点(如左边的点)为原点,建立平面直角坐标系.
例1.某涵洞是抛物线形,它的截面如图所 示,现测得水面宽1.6m,涵洞顶点O到 水面的距离为2.4m,在图中直角坐标系 内,涵洞所在的抛物线的函数关系式是什
么?
解:如图,以AB的垂直平分线为y轴,以过点 O的y轴的垂线为x轴,建立了直角坐标系。
由题意,得点B的坐标为(0.8,-2.4), 又因为点B在抛物线上,将它的坐标代入
∴汽车长方形构成,长方
形的长是8m,宽是2m,抛物线可以用 y 1 x2 4 4
表示.(1)一辆货运卡车高4m,宽2m,它能通过该隧 道吗?(2)如果该隧道内设双行道,那么这辆货运卡 车是否可以通过?
(1)卡车可以通过.
3
提示:当x=±1时,y =3.75, 3.75+2>4.
x1 2 6 , x2 2 6
∴这时水面的宽度为:
x2 x1 2 6m
∴当水面下降1m时,水面宽度 增加了 ( 2 6 4 )m

抛物线练习题

抛物线练习题

抛物线练习题抛物线是二次函数的图像,它在数学中有着重要的应用。

本文将为您提供一些抛物线的练习题,帮助您更好地理解和应用抛物线的概念。

练习题一:抛物线的标准方程已知抛物线的顶点坐标为(2,3),经过点(1,0)。

求该抛物线的标准方程。

解答:由于已知抛物线的顶点坐标为(2,3),则抛物线的标准方程可以表示为:y = a(x - 2)^2 + 3又因为抛物线经过点(1,0),将该点代入方程中可得:0 = a(1 - 2)^2 + 30 = a + 3a = -3所以,该抛物线的标准方程为:y = -3(x - 2)^2 + 3练习题二:抛物线的焦点和准线已知抛物线的顶点坐标为(0,0),焦点为(2,0)。

求该抛物线的准线方程。

由于已知抛物线的顶点坐标为(0,0),准线方程可以表示为:y = -p又因为抛物线的焦点坐标为(2,0),代入焦准距离公式可得:p = 2所以,该抛物线的准线方程为:y = -2练习题三:抛物线的对称轴给定抛物线的焦点坐标为(3,0),顶点坐标为(1,2)。

求该抛物线的对称轴方程。

解答:由于已知抛物线的焦点坐标为(3,0),顶点坐标为(1,2),对称轴方程可以表示为:x = h其中,抛物线的对称轴与焦点的x坐标相等,所以对称轴方程为:x = 3练习题四:抛物线的焦点和顶点已知抛物线的焦点坐标为(0,1),顶点坐标为(1,4)。

求该抛物线的准线方程。

由于已知抛物线的焦点坐标为(0,1),顶点坐标为(1,4),首先可以求得焦准距离的值:p = 3根据抛物线性质可知,焦点的y坐标为顶点的y坐标减去焦准距离的绝对值,所以焦点的y坐标为:1 = 4 - |3|解得焦点的y坐标为1。

因此,该抛物线的准线方程为:y = 1练习题五:抛物线的焦点和顶点已知抛物线的焦点坐标为(2,-1),顶点坐标为(1,0)。

求该抛物线的准线方程。

解答:由于已知抛物线的焦点坐标为(2,-1),顶点坐标为(1,0),首先可以求得焦准距离的值:p = 1根据抛物线性质可知,焦点的y坐标为顶点的y坐标减去焦准距离的绝对值,所以焦点的y坐标为:-1 = 0 - |1|解得焦点的y坐标为-1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抛物线与实际问题的专题练习桥·隧道:【基础题型】1.如图所示的抛物线的解析式可设为,若AB∥x轴,且AB=4,OC=1,则点A的坐标为,点B的坐标为;代入解析式可得出此抛物线的解析式为。

2.飞机着陆后滑行的距离s(单位:m)与滑行的时间t(单位:s)的函数关系式是:25.160tts-=.飞机着陆后滑行(m)后才能停下来.例题1:有座抛物线形拱桥(如图),正常水位时桥下河面宽20m,河面距拱顶4m,为了保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水面在正常水位基础上上涨多少米时,就会影响过往船只航行。

例题2如图,河上有一座抛物线桥洞,已知桥下的水面离桥顶部3m时,水面宽AB为6m,当水位上升0.5m 时:(1)求水面的宽度CD为多少米?(2)有一艘游船,它的左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在上述河流中航行。

①若游船宽(指船的最大宽度)为2m,从水面到棚顶的高度为1.8m,问这艘游船能否从桥洞下通过?②若从水面到棚顶的高度为74m的游船刚好能从桥洞下通过,则这艘穿的最大宽度是多少米?1、(2013中考逼真9)许多桥梁都采用抛物线型设计,小明将他家乡的彩虹桥按比例缩小后,绘成如下的示意图,图中的三条抛物线分别表示桥上的三条钢梁,x 轴表示桥面,y 轴经过中间抛物线的最高点,左右两条抛物线关于y 轴对称.经过测算,中间抛物线的解析式为211040y x =-+,并且BD=12CD.(1)求钢梁最高点离桥面的高度OE 的长; (2)求桥上三条钢梁的总跨度AB 的长;(3)若拉杆DE ∥拉杆BN ,求右侧抛物线的解析式.2、(七一2013年5月)一座拱桥的轮廓是抛物线型(如图1所示), 拱高6m , 跨度20m , 相邻两支柱间的距离均为5m .(1) 将抛物线放在所给的平面直角坐标系中(如图2所示), 求抛物线的解析式; (2) 求支柱EF 的长度;(3) 拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带), 若并排行驶宽2m 、高3m 的汽车,要求车与车之间, 车与隔离带之间的间隔均为0.5米, 车与桥的竖直距离至少为0.1米, 问其中一条行车道最多能同时并排行驶几辆车?图1 图22 、球类问题例题1:一场篮球赛中,小明跳起投篮,已知球出手时离地面高209米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行的轨迹为抛物线,篮圈中心距离地面3米。

⑴问此球能否投中?⑵在出手角度和力度都不变的情况下,小明的出手高度为多少时能将篮球投入篮圈?1、(2013江汉模拟二)如图,在水平地面点A 处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B .有人在直线AB 上点C (靠点B 一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB =4米,AC =3米,网球飞行最大高度OM =5米,圆柱形桶的直径为0.5米,高为0.3(1)求此抛物线的解析式.(2)如果竖直摆放5能落入桶内?(3形桶的个数为___________________.2.(江汉区2013模拟三) 如图所示,跳绳时,绳甩到最高处时的形状可视作抛物线c 1的一部分,绳子两端的间距AB 为6米,到地面的距离AO 和BD 均为0.9米.当绳甩到最低处时刚好擦过地面,其形状(图中虚线)视作抛物线c 1与关于直线AB 对称的抛物线c 2的一部分.以点O 为原点建立如图所示的平面直角坐标系.(1)求抛物线c 1的解析式(不写自变量的取值范围);(2)如果身高为1.6米的小华站在OD 之间,且距点O 的水平距离为t 米,绳子甩到最高处时超过她的头顶,求出t 的取值范围.3、(2013年武汉二中模拟三)在一次羽毛球比赛中,甲运动员在离地面3625米的P点处击球,求的运动轨迹PAN看作一个抛物线的一部分,当球运动到最高A时,其高度为4米,离甲运动员站立点O的水平距离为4米,球网BC离点O的水平距离为4.5米,以点O为原点建立如图所示的坐标系,乙运动员站立地点M的坐标为(m,0).(1)求抛物线的解析式(不要求写自变量的取值范围)(2)羽毛球边距离点C的水平距离为5.18米,此次发球是否会出界?(3)乙原地起跳后可接球的最大高度为3米,若乙因为直接高度不够而失球,求m的取值范围。

4.(2013江岸区四)武汉某中学科学兴趣小组的同学把一种珍贵药用植物分别放在不同的环境中,经过一温度t/℃-6 -4 -2 0 2 4 6植物高度增长量(mm)……49 49 41 ……同学们从科学网中查到这种植物高度的增长量y与温度t之间满足二次函数的关系.(1)求出y与t之间的函数关系.(2)求这种植物高度最大可以增长多少mm.(3)若该种植物的增长高度在14 ~ 25mm之间药用价值最为理想,问应如何控制植物适合生长的温度.5、(硚口2013模拟二)如图,足球场上守门员在离地面1米的处开出一高球,球的运动轨迹AMC看作一条抛物线的一部分,运动员乙在离守门员站立地点的水平距离6米的处发现球在自己头的正上方达到最高点,距地面4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)足球第一次落地点距守门员多少米?(取)(3)运动员乙要抢到第二个落点,他应再笔直向前跑多少米?(取)第23题图6、(2013武汉中考)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物分别放在由这些数据,科学家推测出植物每天高度增长量y 是温度x 的函数,且这种函数是反比例函数,一次函数,二次函数中的一种。

(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由; (2)温度为多少时,这种植物每天高度增长量最大;(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm ,那么实验室的温度x 应该在哪个范围内选择?请直接写出结果。

7、如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O 点的水平距离为9m ,高度为2.43m ,球场的边界距O 点的水平距离为18m 。

(1)当h=2.6时,求y 与x 的关系式(不要求写出自变量x 的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h 的取值范围。

Oyx2.5米41.5,3.05)3.05米(0,3.75)8、杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线23315y x x =-++的一部分,如图所示.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由.9、(洪山区2013模拟一)在一场篮比赛中,甲球员在距篮4米处跳投,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.75米,然后球准确落入篮圈。

已知篮圈中心到地面的距离为3.05米。

(1)建立如图所示的平面直角坐标系,求抛物线的解析式; (2)乙球员身高为1.91米,跳起能摸到的高度为3.15米,此时他上前封盖,在离投篮甲球员2米处时起跳,问能否成功封盖住此次投篮?(3)在(2)条件下若乙球员想要成功封盖甲球员的这次投篮,他离甲球员的距离至多要多少米?10、(2013武汉二中模拟一)在体育测试中,初三的一名高个子男生推铅球,铅球的运动轨迹ABC 可看作某条抛物线的一部分,已知这名男生的出手处A 点离地面的高度为2米,当球运动到最高处5米时,离改男生站立地点O 的水平距离为6米。

以O 为原点建立如图所示的坐标系。

(1)求抛物线的解析式(不要求写自变量的取值范围):(2)求该学生把铅球推出去多少?(3)有一个横截面为矩形DEFG 的竹筐,长DE=1米,高DG=1112米(不考虑竹筐的宽度),若铅球可以落入框内,请求竹筐的边DG 到O 点的水平距离m 的取值范围。

例21、解(1):对于抛物线y=211040x -+,当x=0时,y=10,∴OE=10,答:OE 为10. 解(2):对于抛物线y=211080x -+,当y=0时,x 1=20,x 2=-20,∴AB=20+20+20+20=80, 答:AB 为80.解(3):过N 作NQ ⊥x 轴于Q ,∵ED ∥BN ,∴△DEO ∽△BNQ ,∴NQ=12OE=5, OQ=20+10=30,N (30,5),设抛物线为y=a(x -30)2+5,过B (40,0),∴a=120-,∴y=120-x 2+3x -40,答:右侧抛物线解析式为2134020y x x =-+-.图1 图2例5.(2013中考逼真10)如图1,一座拱桥的轮廓是抛物线型,拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .(1)如图2,将抛物线放在所给的直角坐标系中,求该抛物线的解析式(不需要写出自变量x 的取值范围);(2)求支柱EF 的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.、解(1)设抛物线为y=ax 2+6,过点B (10,0),∴100a+6=0,a=350-x 2+6 (2)对于抛物线23650y x =-+,当x=5时,92y =,∴EF=10-91122=m , 答:EF 的长度为112m(3)2×3+1=7,对于抛物线23650y x =-+,当x=7时,y=3.06,∵3.06m >3m 答:能并排行驶过宽2m ,高3m 的三辆汽车 23、 ()25154y x =-+ 4分 (2)竖直摆放5个圆柱形的桶,总高为1.5米 当 1x =时, 154y =,当 1.5x =时,3516y =,31524<,且335216<, 所以不能落入桶内。

4分(3)8、9、10、11、12 2分(1)y =﹣0.1x 2+0.6x +0.9; (2)2m <t <4 m .例12.(2013江岸练习。

相关文档
最新文档