四川省德阳五中2018届高三二诊考试数学(文)试卷(扫描版)

合集下载

四川省德阳市2018届高三二诊考试文科数学试题(解析版)

四川省德阳市2018届高三二诊考试文科数学试题(解析版)

德阳市高中2015级“二诊”考试数学试卷(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知为虚数单位,实数,满足,则()A. 1B.C.D.【答案】D【解析】,则故选D.2. 已知集合,集合,若,则()A. B. C. D.【答案】A【解析】得到,故选A.3. 函数的图象向右平移个单位后所得的图象关于原点对称,则可以是()A. B. C. D.【答案】B【解析】由题函数的图象向右平移个单位后所得的图象关于原点对称,即平移后得到的函数为奇函数,即为奇函数,对照选项可知选B.4. 实验测得四组数对的值为,,,,则与之间的回归直线方程是()参考公式:,.A. B.C. D.【答案】A【解析】样本中心点为,计算得,代入验证可知选项正确.5. 如图所示的三视图表示的几何体的体积为,则该几何体的外接球的表面积为()A. B. C. D.【答案】C【解析】由三视图可得该几何体为底面边长为,一条侧棱垂直底面的四棱锥,设高为4,则,将该几何体补成一个长方体,则其外接球半径为故这个几何体的外接球的表面积为.故选C.【点睛】本题考查了由三视图,求体积和表面积,其中根据已知的三视图,判断几何体的形状是解答的关键.属于中档题.6. 《九章算术》是我国古代一部数学名著,某数学爱好者阅读完其相关章节后编制了如图的程序框图,其中表示除以的余数,例如.若输入的值为8时,则输出的值为()A. 2B. 3C. 4D. 5【答案】B【解析】模拟执行程序框图,可得:满足条件,满足条件满足条件,不满足条件,,满足条件,满足条件,…,可得:2, 4, 8,∴共要循环3次,故.故选B.7. 已知,则、、的大小排序为()A. B.C. D.【答案】A【解析】为正实数,且,可得:即因为函数单调递增,∴.故选A.8. 以等腰直角三角形的斜边上的中线为折痕,将与折成互相垂直的两个平面,得到以下四个结论:①平面;②为等边三角形;③平面平面;④点在平面内的射影为的外接圆圆心.其中正确的有()A. ①②③B. ②③④C. ①②④D. ①③④【答案】C【解析】由于三角形为等腰直角三角形,故,所以平面,故①正确,排除选项.由于,且平面平面,故平面,所以,由此可知,三角形为等比三角形,故②正确,排除选项.由于,且为等边三角形,故点在平面内的射影为的外接圆圆心, ④正确,故选.9. 已知双曲线的离心率为,其一条渐近线被圆截得的线段长为,则实数的值为()A. 3B. 1C.D. 2【答案】D【解析】双曲线的离心率为,则故其一条渐近线不妨为,圆的圆心,半径为2,双曲线的一条渐近线被圆截得的线段长为,可得圆心到直线的距离为:故选D.10. 已知函数,若,使得成立,则实数的取值范围是()A. B. C. D.【答案】A【解析】由于,函数为增函数,且,函数为奇函数,故,即在上存在.画出的图象如下图所示,由图可知,,故选.【点睛】本小题主要考查函数的单调性与奇偶性,考查利用导数研究函数的单调性,考查恒成立问题的解题思路.给定一个函数的解析式,首先要分析这个函数的定义域,单调性与奇偶性等等性质,这些对于解有关函数题目可以有个方向,根据基本初等函数的单调性要熟记.11. 如图,过抛物线的焦点作倾斜角为的直线,与抛物线及其准线从上到下依次交于、、点,令,,则当时,的值为()A. 3B. 4C. 5D. 6【答案】C【解析】设,则又,可得同理可得,故选B.12. 已知、是函数(其中常数)图象上的两个动点,点,若的最小值为0,则函数的最大值为()A. B. C. D.【答案】B【解析】由题,当点、分别位于分段函数的两支上,且直线分别与函数图像相切时,最小,设当时,直线因为点在直线直线上,解得同理可得则,且函数在上单调递增,在上单调递见,故函数的最大值为. 故选B.第Ⅱ卷(非选择题共90分)二、填空题:共4小题,每小题5分,共20分.将答案填在答题卡上.13. 已知实数,满足条件,则的最大值为__________.【答案】8【解析】画出可行域如图所示,则当目标函数y经过点时取代最大值,即答案为4.14. 为弘扬我国优秀的传统文化,某小学六年级从甲、乙两个班各选出7名学生参加成语知识竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则的值为__________.【答案】【解析】,解得,根据中位数为,可知,故.15. 如图,在三角形中,、分别是边、的中点,点在直线上,且,则代数式的最小值为__________.【答案】【解析】不妨设为直角,且,以分别为轴,此时为点的坐标,表示到原点的距离,最短时为点到直线的距离,由于是中位线,故最短的等于点到距离的一半,即.16. 已知中,角、、所对的边分别是、、且,,,若为的内心,则的面积为__________.【答案】【解析】由于,所以,展开化简得.由正弦定理得,所以,解得.设,设外切圆半径为,根据海伦公式有,解得,故.【点睛】本小题主要考查正弦定理和余弦定理解三角形,考查了三角形的面积公式,包括海伦公式及有关内切圆的面积公式.首先根据,及,得到,利用两角和与差的正弦公式和二倍角公式,化简这个式子可求得的值.利用海伦公式可求得面积.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 已知数列满足,.(1)求证:数列为等比数列;(2)求数列的前项和.【答案】(1)见解析;(2).【解析】【试题分析】(1)利用配凑法将已知配凑成等比数列的形式,由此证得为等比数列.(2)由(1)求得的通项公式,利用裂项求和法求得数列的前项和.【试题解析】(1)∵,∴.又,∴,.∴是以2为首项,2为公比的等比数列.(2)由(1)知,∴,∴.18. 省环保厅对、、三个城市同时进行了多天的空气质量监测,测得三个城市空气质量为优或良的数据共有180个,三城市各自空气质量为优或良的数据个数如下表所示:城城城已知在这180个数据中随机抽取一个,恰好抽到记录城市空气质量为优的数据的概率为0.2.(1)现按城市用分层抽样的方法,从上述180个数据中抽取30个进行后续分析,求在城中应抽取的数据的个数;(2)已知,,求在城中空气质量为优的天数大于空气质量为良的天数的概率.【答案】(1)9;(2).【解析】【试题分析】(1)由计算出,再由总数计算出,按比例计算得应抽人数.(2)由(1)知,且,,利用列举法和古典概型计算公式计算得相应的概率.【试题解析】(1)由题意得,即.∴,∴在城中应抽取的数据个数为.(2)由(1)知,且,,∴满足条件的数对可能的结果有,,,,,,,共8种.其中“空气质量为优的天数大于空气质量为良的天数”对应的结果有,,共3种.∴在城中空气质量为优的天数大于空气质量为良的天数的概率为.19. 如图,在四棱锥中,底面为菱形,,平面,,点、分别为和的中点.(1)求证:直线平面;(2)求点到平面的距离.【答案】(1)见解析;(2).【解析】【试题分析】(1)取的中点,连结、,通过证明四边形为平行四边形,得到,由此证得平面.(2)利用等体积法,通过建立方程,由此求得点到面的距离.【试题解析】(1)取的中点,连结、,由题意,且,且,故且,所以,四边形为平行四边形,所以,,又平面,平面,所以,平面.(2)设点到平面的距离为.由题意知在中,,在中,在中,故,,,,所以由得:,解得.20. 已知椭圆:的两个焦点与短轴的一个端点构成的三角形的面积为,且椭圆的离心率为.(1)求椭圆的方程;(2)过点且斜率不为零的直线与椭圆交于两点、,点,试探究:直线与的斜率之积是否为常数.【答案】(1);(2)见解析.【解析】【试题分析】(1)根据三角形面积公式和离心率建立方程,解方程组可求得的值.(2)设出直线的方程联立直线的方程和椭圆的方程,写出韦达定理,通过计算.化简后可得为常数. 【试题解析】(1)由题意得(其中椭圆的半焦距),解得.所以椭圆的方程为:.(2)由题意设直线的方程为:,,,由得:,所以,故,,(常数).21. 已知函数.(1)若是的一个极值点,求的最大值;(2)若,,都有,求实数的取值范围.【答案】(1);(2).【解析】【试题分析】(1)求出函数的导数,通过求得的值,根据单调区间求得函数的最大值.(2)将原不等式转化为,构造函数,对求导,对两者比较大小,分成两类,利用分离常数法求得的取值范围.【试题解析】(1),由题意得,即,所以,所以,当时,;当时,,所以在上单调递增,在上单调递减.所以.(2)由题意得,都有,令函数,当时,在上单调递增,所以在上恒成立,即在上恒成立,令,,则,所以在上单调递减,故,所以实数的取值范围为.同理,当时,在上单调递减,所以在上恒成立,即在上恒成立,令,,则,所以在上单调递减,故.所以实数的取值范围为,综上,实数的取值范围为.【点睛】本小题主要考查函数导数与极值,考查函数导数与不等式恒成立问题. 与函数最值有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图象与轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.请考生在22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题记分,做答时,请用2B铅笔在答题卡上将所选题号后的方框涂黑.22. 在平面直角坐标系中,直线:(为参数),以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线:.(1)求直线的极坐标方程及曲线的直角坐标方程;(2)记射线与直线和曲线的交点分别为点和点(异于点),求的最大值. 【答案】(1)直线的极坐标方程为:,曲线的直角坐标方程为:;(2). 【解析】试题分析:(1)根据极坐标方程、参数方程与普通方程的对应关系即可得出答案;(2)由(1),,所以,即可得到的最大值.试题解析:(1)由题意得直线的普通方程为:,所以其极坐标方程为:.由得:,所以,所以曲线的直角坐标方程为:.(2)由题意,,所以,由于,所以当时,取得最大值:.23. 已知函数.(1)解关于的不等式;(2)若关于的不等式的解集非空,求实数的取值范围. 【答案】(1);(2).【解析】试题分析:(1)由题意或,由此可解不等式;(2)由于关于的不等式的解集非空,函数的最小值为-1,由此解得的范围.试题解析:(1)由题意或,所以或,即或,或或,故原不等式的解集为.(2),由于,所以当时,的最小值为-1.所以实数的取值范围为:.【点睛】本题主要考查绝对值的意义,绝对值不等式的解法,体现了等价转化的数学思想,属于中档题。

2018届四川省德阳市高三二诊考试数学文卷及解析

2018届四川省德阳市高三二诊考试数学文卷及解析

德阳市高中2015级“二诊”考试数学试卷(文史类)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,实数x ,y 满足(2)x i i y i +=-,则x yi -=( )2.已知集合2{|40}A x N x x =∈-<,集合2{|20}B x x x a =++=,若{1,2,3,3}A B =-,则A B =( )A.{1}B.{2}C.{3}D.φ3.函数()sin(2)f x x ϕ=+的图象向右平移6π个单位后所得的图象关于原点对称,则ϕ可以是( ) A.6π B.3π C.4π D.23π 4.实验测得四组数对(,)x y 的值为(1,2),(2,5),(4,7),(5,10),则y 与x 之间的回归直线方程是( )A. 1.80.6y x =+B. 1.80.6y x =-C. 1.5 2.5y x =+D.0.57.5y x =-+ 参考公式:121()()()ni i i n ii x x y y b x x==--=-∑∑,a y bx =-. 5.如图所示的三视图表示的几何体的体积为323,则该几何体的外接球的表面积为( ) A.12π B.24π C.36π D.48π6.《九章算术》是我国古代一部数学名著,某数学爱好者阅读完其相关章节后编制了如图的程序框图,其中(,)MOD m n 表示m 除以n 的余数,例如(7,3)1MOD =.若输入m 的值为8时,则输出i 的值为( )A.2B.3C.4D.57.已知235log log log 0x y z ==<,则2x 、3y 、5z 的大小排序为( ) A.235x y z << B.325y x z << C.523z x y << D.532z y x<< 8.以等腰直角三角形ABC 的斜边BC 上的中线AD 为折痕,将ABD ∆与ACD ∆折成互相垂直的两个平面,得到以下四个结论:①BD ⊥平面ACD ;②ABC ∆为等边三角形;③平面ADC ⊥平面ABC ;④点D 在平面ABC 内的射影为ABC ∆的外接圆圆心.其中正确的有( )A.①②③B.②③④C.①②④D.①③④9.已知双曲线22221(0,0)x y a b a b-=>>其一条渐近线被圆22()4(0)x m y m -+=>截得的线段长为则实数m 的值为( )10.已知函数()sin f x x x =+,若[2,1]x ∃∈-,使得2()()0f x x f x k ++-=成立,则实数k 的取值范围是( )A.[1,3]-B.[0,3]C.(,3]-∞D.[0,)+∞11.如图,过抛物线24y x =的焦点F 作倾斜角为α的直线l ,l 与抛物线及其准线从上到下依次交于A 、B 、C 点,令1AFBF λ=,2BCBF λ=,则当3πα=时,12λλ+的值为( )A.3B.4C.5D.612.已知A 、B 是函数2,()()(2),()x a e x a f x f a x x a -⎧-≥=⎨-<⎩(其中常数0a >)图象上的两个动点,点(,0)P a ,若PA PB ⋅的最小值为0,则函数()f x 的最大值为( ) A.21e - B.1e -C.2e -e-第Ⅱ卷(非选择题 共90分)二、填空题:共4小题,每小题5分,共20分.将答案填在答题卡上.13.已知实数x ,y 满足条件2300x y x y x y -≥⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则3x y +的最大值为 . 14.为弘扬我国优秀的传统文化,某小学六年级从甲、乙两个班各选出7名学生参加成语知识竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则y x的值为 . 15.如图,在三角形OPQ 中,M 、N 分别是边OP 、OQ 的中点,点R 在直线MN 上,且OR xOP yOQ =+(,)x y R ∈,的最小值为 .16.已知ABC ∆中,角A 、B 、C 所对的边分别是a 、b 、c 且6a =,4sin 5sin B C =,2A C =,若O 为ABC ∆的内心,则ABO ∆的面积为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 满足11a =,121n n a a +=+.(1)求证:数列{1}n a +为等比数列;(2)求数列12n n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T . 18.省环保厅对A 、B 、C 三个城市同时进行了多天的空气质量监测,测得三个城市空气质量为优或良的数据共有180个,三城市各自空气质量为优或良的数据个数如下表所示:已知在这180个数据中随机抽取一个,恰好抽到记录B 城市空气质量为优的数据的概率为0.2.(1)现按城市用分层抽样的方法,从上述180个数据中抽取30个进行后续分析,求在C 城中应抽取的数据的个数;(2)已知23y ≥,24z ≥,求在C 城中空气质量为优的天数大于空气质量为良的天数的概率.19.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,60DAB ∠=,PD ⊥平面ABCD ,2PD AD ==,点E 、F 分别为AB 和PD 的中点.(1)求证:直线//AF 平面PEC ;(2)求点A 到平面PEC 的距离.20.已知椭圆C :22221(0)x y a b a b+=>>的两个焦点与短轴的一个端点构成的三角形的面积为且椭圆C 的离心率为2. (1)求椭圆C 的方程;(2)过点(4,0)且斜率不为零的直线l 与椭圆C 交于两点M 、N ,点T ,试探究:直线MT 与NT 的斜率之积是否为常数.21.已知函数2()ln f x x mx x =--.(1)若12x =是()f x 的一个极值点,求()f x 的最大值; (2)若121,,x x e e⎡⎤∀∈⎢⎥⎣⎦,12x x ≠,都有2112()()x f x x f x -1221()x x x x >-,求实数m 的取值范围.请考生在22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题记分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.在平面直角坐标系xOy 中,直线l :22x t y t =+⎧⎨=-⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,曲线C :2sin ρθ=.(1)求直线l 的极坐标方程及曲线C 的直角坐标方程;(2) 记射线0,02πθαρα⎛⎫=≥<< ⎪⎝⎭与直线l 和曲线C 的交点分别为点M 和点N (异于点O ),求ON OM 的最大值.23.已知函数()1f x x =-.(1)解关于x 的不等式2()1f x x ≥-;(2)若关于x 的不等式2()1f x a x x <-++的解集非空,求实数a 的取值范围.德阳市高中2015级“二诊”试题数学参考答案(文史类)一、选择题1-5: DABAC 6-10: BACDA 11、12:CB二、填空题 13.8 14.35三、解答题17.解:(1)∵121n n a a +=+,∴112(1)n n a a ++=+.又11a =,∴1120a +=≠,10n a +≠.∴{1}n a +是以2为首项,2为公比的等比数列.(2)由(1)知21n n a =-, ∴1122(21)(21)n nn n n n a a ++=--1112121n n +=---, ∴22111212121n T =-+---31111212121n n +-+⋅⋅⋅+---- 11121n +=--. 18.解:(1)由题意得0.2180x =,即36x =. ∴1802832363054y z +=----=,∴在C 城中应抽取的数据个数为30549180⨯=. (2)由(1)知54y z +=,,y z N ∈且23y ≥,24z ≥,∴满足条件的数对(,)y z 可能的结果有(23,31),(24,30),(25,29),(26,28),(27,27),(28,26),(29,25),(30,24)共8种. 其中“空气质量为优的天数大于空气质量为良的天数”对应的结果有(28,26),(29,25),(30,24)共3种.∴在C 城中空气质量为优的天数大于空气质量为良的天数的概率为38. 19.解:(1)取PC 的中点Q ,连结EQ 、FQ ,由题意,//FQ DC 且12FQ CD =,//AE CD 且12AE CD =, 故//AE FQ 且AE FQ =,所以,四边形AEQF 为平行四边形, 所以,//AF EQ ,又EQ ⊂平面PEC ,AF ⊄平面PEC , 所以,//AF 平面PEC .(2)设点A 到平面PEC 的距离为d .由题意知在EBC ∆中,EC =在PDE ∆中PE =在PDC ∆中PC ==故EQ PC ⊥,EQ AF ==12PEC S ∆=⨯=112AEC S ∆=⨯=所以由A PEC P AEC V V --=1232d =⋅,解得10d =.20.解:(1)由题意得bc c a⎧=⎪⎨=⎪⎩(其中c 椭圆的半焦距),解得2282a b ⎧=⎪⎨=⎪⎩. 所以椭圆C 的方程为:22182x y +=. (2)由题意设直线l 的方程为:4x my =+,11(,)M x y ,22(,)N x y , 由224182x my x y =+⎧⎪⎨+=⎪⎩得:22(4)880m y my +++=, 所以1221222284846432(4)0m y y m y y m m m ⎧+=-⎪+⎪⎪=⎨+⎪⎪∆=-+>⎪⎩, 故1212()8x x m y y +=++2324m =+, 21212124()x x m y y m y y =++22648164m m -+=+, MT NT k k⋅===. 21.解:(1)1'()21(0)f x mx x x =-->, 由题意得1'02f ⎛⎫=⎪⎝⎭,即210m --=,所以1m =, 所以1'()21f x x x =--(21)(1)x x x--+=,当102x <<时,'()0f x >;当12x >时,'()0f x <, 所以()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减. 所以max 1()2f x f ⎛⎫= ⎪⎝⎭3ln 24=--. (2)由题意得121,,x x e e ⎡⎤∀∈⎢⎥⎣⎦,12x x ≠都有 2112()()x f x x f x -1221()x x x x >-111()f x x x ⇔+222()f x x x >+, 令函数()()f x g x x x =+2ln x mx x x x--=+ln 1x mx x x =--+, 当12x x >时,()g x 在1,e e⎡⎤⎢⎥⎣⎦上单调递增,所以21ln '()10x g x m x -=-+≥在1,e e ⎡⎤⎢⎥⎣⎦上恒成立,即21ln 1x m x -≤+在1,e e ⎡⎤⎢⎥⎣⎦上恒成立,令21ln ()x h x x -=,1,x e e ⎡⎤∈⎢⎥⎣⎦,则332ln '()0x h x x-+=<, 所以()h x 在1,e e⎡⎤⎢⎥⎣⎦上单调递减,故min ()()0h x h e ==, 所以实数m 的取值范围为(,1]-∞. 同理,当12x x <时,()g x 在1,e e⎡⎤⎢⎥⎣⎦上单调递减,所以21ln '()10x g x m x -=-+≤在1,e e ⎡⎤⎢⎥⎣⎦上恒成立,即21ln 1x m x -≥+在1,e e ⎡⎤⎢⎥⎣⎦上恒成立,令21ln ()x h x x -=,1,x e e ⎡⎤∈⎢⎥⎣⎦,则332ln '()0x h x x-+=<, 所以()h x 在1,e e ⎡⎤⎢⎥⎣⎦上单调递减,故2max 1()2h x h e e ⎛⎫== ⎪⎝⎭. 所以实数m 的取值范围为2[21,)e ++∞,综上,实数m 的取值范围为2(,1][21,)e -∞++∞.22.解:(1)由题意得直线l 的普通方程为:4x y +=, 所以其极坐标方程为:4sin cos ρθθ=+. 由2sin ρθ=得:22sin ρρθ=,所以222x y y +=,所以曲线C 的直角坐标方程为:2220x y y +-=.(2)由题意2sin ON α=,4sin cos OM αα=+, 所以2sin sin cos 2ON OM ααα+=12444πα⎛⎫=-+ ⎪⎝⎭, 由于02πα<<,所以当38πα=时,ON OM取得最大值:14. 23.解:(1)由题意2()1f x x ≥-211x x ⇔-≥-211x x ⇔-≥-或211x x -≤-,所以220x x +-≥或20x x -≥,即2x ≤-或1x ≥,或1x ≥或0x ≤,故原不等式的解集为{|01}x x x ≤≥或.(2)2()1f x a x x <-++211a x x x ⇔>+--+, 由于211x x x +--+2222,12,112,1x x x x x x x x ⎧+<-⎪=--≤≤⎨⎪->⎩,所以当1x =时,211x x x +--+的最小值为-1.所以实数a 的取值范围为:(1,)-+∞.。

2018届四川省德阳市高三三校联合测试数学(文)试卷

2018届四川省德阳市高三三校联合测试数学(文)试卷

2018届四川省德阳市高三三校联合测试数学(文)试卷命题学校:德阳中学注意事项:1.本试卷共4页,包括选择题题(第1题~第12题)、非选择题(第13题~第22题)两部分.本试卷满分为150分,考试时间为120分钟.2.答题前,请务必将自己的姓名、班级、学号写在答题纸内.试题的答案写在答题卡...上对应题目的答案空格内.考试结束后,交回答题纸.第I 卷(选择题)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知全集U R =,2{|20}A x x x =-<,{|1}B x x =≥,则()B C A U =( )A. ()0,+∞B. (),1-∞C. (),2-∞D. ()0,12.已知复数21a ii --为纯虚数(其中i 是虚数单位),则a 的值为() A. 2 B. -2C. 12D. 12-3.已知3cos 5α=, π,02α⎛⎫∈- ⎪⎝⎭,则sin2α的值为(). A. 2425-B. 2425C. 725-D. 7254.已知等差数列{}n a 的前n 项和n S ,若23109a a a ++=,则9S = ( )A. 27B. 18C. 9D. 35.2014年5月12日,国家统计局公布了《2013年农民工监测调查报告》,报告显示:我国农 民工收入持续快速增长.某地区农民工人均月收入增长率如图1,并将人均月收入绘制成如 图2的不完整的条形统计图.图1 图2根据以上统计图来判断以下说法错误的是( )A. 2013年农民工人均月收入的增长率是B. 2011C. 小明看了统计图后说:“农民工2012D. 2009年到2013年这五年中20136.已知函数()(),0,6log 0,22⎩⎨⎧≥+<=-x x x x f x ,则()[]=-1f f A .2B.5log 2C .7log 12+-D .37.执行右面的程序框图,如果输入的N 是6A .1 B .2 C .3 D .48.某几何体的三视图如图所示,则该几何体的体积为(A.34 B.25 C. 37 D. 35 9.在等比数列{}n a 中,“4a ,12a 是方程2310x x ++=A. 充分不必要条件B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件10.已知()3f x x =,若[]1,2x ∈时,()(21f x ax f -+-围是( )A. 1a ≤B. 1a ≥C. 32a ≥D. 32a ≤ 11.已知点A 是抛物线2:2(0)C x py p =>上一点,O 以点(0,10)M 为圆心,||OA ABO ∆为等边三角形,则p 的值是( )A .52B .53C .56D .5912.在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,O 上的中点,4=c ,5=∙AD AO ,sin 4sin sin -+A C A.23 B. 41C. 21D. 32 第II 卷(非选择题 二、填空题(本大题共4小题,每小题5分,共2013.某企业三月中旬生产,A .B .C 三种产品共3000统计表格:由于不小心,表格中A .C 产品的有关数据已被污染看不清楚,统计员记得A 产品的样本容量比C 产品的样本容量多10,根据以上信息,可得C 的产品数量是件.第8题图14.若,x y 满足条件20{260 2x y x y x +-≥-+≥≤,则目标函数22z x y =+的最小值是.15.已知函数()()sin 0f x x x ωωω=->的图象与x 轴的两个相邻交点的距离等于2π,若将函数()y f x =的图象向左平移6π个单位得到函数()y g x =的图象,则()y g x =单调递减区间为.16.设函数()2ln 2f x x x x =-+, 若存在区间[]1,,2a b ⎡⎫⊆+∞⎪⎢⎣⎭,使()f x 在[],a b 上的值域为()()2,2k a k b ⎡⎤++⎣⎦, 则k 的取值范围为_______________________.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.) 17. 已知数列{}n a 的前n 项和为n S 满足()*13122n n S a a n N =-∈,且1231,2,7a a a -+成等差数列. (1)求数列{}n a 的通项公式; (2)令()*92log n n b a n N =∈,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .18. 在刚刚结束的联考中,某校对甲、乙两个文科班的数学成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀,成绩统计后,得到如下的22⨯列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为311. (1)请完成上面的列联表;(2)请问:是否有75%的把握认为“数学成绩与所在的班级有关系”? (3)用分层抽样的方法从甲、乙两个文科班的数学成绩优秀的学生中抽取5名学生进行调研,然后再从这5名学生中随机抽取2名学生进行谈话,求抽到的2名学生中至少有1名乙班学生的概率. 参考公式:()()()()()22n ad bc K a b c d a c b d -=++++ (其中n a b c d =+++)参考数据:19.已知ABC ∆是锐角三角形,向量()cos ,sin ,cos ,sin 33m A A n B B ππ⎛⎫⎛⎫⎛⎫=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且m n ⊥ . (1)求A B -的值; (2)若3cos ,85B AC ==,求BC 的长.20. 已知函数()32f x ax x b =++的图象在点1x =处的切线方程为13y =,其中实数,a b 为常数. (1)求,a b 的值;(2)设命题p 为“对任意()12,x ∈+∞,都存在()21,x ∈+∞,使得()()121f x f x =”,问命题p 是否为真命题?证明你的结论.21. 已知函数()()2ln 1,f x x a x =+-其中0.a > (1).讨论函数()f x 的单调性;(2)若函数()f x 有两个极值点12,,x x 且12,x x <求证:()02ln 212<<-x f选做题:(共10分)请考生在第22,23题中任选一题作答。

【数学】四川省德阳市2018届高三二诊考试文科数学试题

【数学】四川省德阳市2018届高三二诊考试文科数学试题

德阳市高中2015级“二诊”考试数学试卷(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知为虚数单位,实数,满足,则()A. 1B.C.D.【答案】D【解析】,则故选D.2. 已知集合,集合,若,则()A. B. C. D.【答案】A【解析】得到,故选A.3. 函数的图象向右平移个单位后所得的图象关于原点对称,则可以是()A. B. C. D.【答案】B【解析】由题函数的图象向右平移个单位后所得的图象关于原点对称,即平移后得到的函数为奇函数,即为奇函数,对照选项可知选B.4. 实验测得四组数对的值为,,,,则与之间的回归直线方程是()参考公式:,.A. B.C. D.【答案】A【解析】样本中心点为,计算得,代入验证可知选项正确.5. 如图所示的三视图表示的几何体的体积为,则该几何体的外接球的表面积为()A. B. C. D.【答案】C【解析】由三视图可得该几何体为底面边长为,一条侧棱垂直底面的四棱锥,设高为4,则,将该几何体补成一个长方体,则其外接球半径为故这个几何体的外接球的表面积为.故选C.【点睛】本题考查了由三视图,求体积和表面积,其中根据已知的三视图,判断几何体的形状是解答的关键.属于中档题.6. 《九章算术》是我国古代一部数学名著,某数学爱好者阅读完其相关章节后编制了如图的程序框图,其中表示除以的余数,例如.若输入的值为8时,则输出的值为()A. 2B. 3C. 4D. 5【答案】B【解析】模拟执行程序框图,可得:满足条件,满足条件满足条件,不满足条件,,满足条件,满足条件,…,可得:2, 4, 8,∴共要循环3次,故.故选B.7. 已知,则、、的大小排序为()A. B.C. D.【答案】A【解析】为正实数,且,可得:即因为函数单调递增,∴.故选A.8. 以等腰直角三角形的斜边上的中线为折痕,将与折成互相垂直的两个平面,得到以下四个结论:①平面;②为等边三角形;③平面平面;④点在平面内的射影为的外接圆圆心.其中正确的有()A. ①②③B. ②③④C. ①②④D. ①③④【答案】C【解析】由于三角形为等腰直角三角形,故,所以平面,故①正确,排除选项.由于,且平面平面,故平面,所以,由此可知,三角形为等比三角形,故②正确,排除选项.由于,且为等边三角形,故点在平面内的射影为的外接圆圆心, ④正确,故选.9. 已知双曲线的离心率为,其一条渐近线被圆截得的线段长为,则实数的值为()A. 3B. 1C.D. 2【答案】D【解析】双曲线的离心率为,则故其一条渐近线不妨为,圆的圆心,半径为2,双曲线的一条渐近线被圆截得的线段长为,可得圆心到直线的距离为:故选D.10. 已知函数,若,使得成立,则实数的取值范围是()A. B. C. D.【答案】A【解析】由于,函数为增函数,且,函数为奇函数,故,即在上存在.画出的图象如下图所示,由图可知,,故选.【点睛】本小题主要考查函数的单调性与奇偶性,考查利用导数研究函数的单调性,考查恒成立问题的解题思路.给定一个函数的解析式,首先要分析这个函数的定义域,单调性与奇偶性等等性质,这些对于解有关函数题目可以有个方向,根据基本初等函数的单调性要熟记.11. 如图,过抛物线的焦点作倾斜角为的直线,与抛物线及其准线从上到下依次交于、、点,令,,则当时,的值为()A. 3B. 4C. 5D. 6【答案】C【解析】设,则又,可得同理可得,故选B.12. 已知、是函数(其中常数)图象上的两个动点,点,若的最小值为0,则函数的最大值为()A. B. C. D.【答案】B【解析】由题,当点、分别位于分段函数的两支上,且直线分别与函数图像相切时,最小,设当时,直线因为点在直线直线上,解得同理可得则,且函数在上单调递增,在上单调递见,故函数的最大值为.故选B.第Ⅱ卷(非选择题共90分)二、填空题:共4小题,每小题5分,共20分.将答案填在答题卡上.13. 已知实数,满足条件,则的最大值为__________.【答案】8【解析】画出可行域如图所示,则当目标函数y经过点时取代最大值,即答案为4.14. 为弘扬我国优秀的传统文化,某小学六年级从甲、乙两个班各选出7名学生参加成语知识竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则的值为__________.【答案】【解析】,解得,根据中位数为,可知,故.15. 如图,在三角形中,、分别是边、的中点,点在直线上,且,则代数式的最小值为__________.【答案】【解析】不妨设为直角,且,以分别为轴,此时为点的坐标,表示到原点的距离,最短时为点到直线的距离,由于是中位线,故最短的等于点到距离的一半,即.16. 已知中,角、、所对的边分别是、、且,,,若为的内心,则的面积为__________.【答案】【解析】由于,所以,展开化简得.由正弦定理得,所以,解得.设,设外切圆半径为,根据海伦公式有,解得,故.【点睛】本小题主要考查正弦定理和余弦定理解三角形,考查了三角形的面积公式,包括海伦公式及有关内切圆的面积公式.首先根据,及,得到,利用两角和与差的正弦公式和二倍角公式,化简这个式子可求得的值.利用海伦公式可求得面积.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 已知数列满足,.(1)求证:数列为等比数列;(2)求数列的前项和.【答案】(1)见解析;(2).【解析】【试题分析】(1)利用配凑法将已知配凑成等比数列的形式,由此证得为等比数列.(2)由(1)求得的通项公式,利用裂项求和法求得数列的前项和.【试题解析】(1)∵,∴.又,∴,.∴是以2为首项,2为公比的等比数列.(2)由(1)知,∴,∴.18. 省环保厅对、、三个城市同时进行了多天的空气质量监测,测得三个城市空气质量为优或良的数据共有180个,三城市各自空气质量为优或良的数据个数如下表所示:城城城已知在这180个数据中随机抽取一个,恰好抽到记录城市空气质量为优的数据的概率为0.2. (1)现按城市用分层抽样的方法,从上述180个数据中抽取30个进行后续分析,求在城中应抽取的数据的个数;(2)已知,,求在城中空气质量为优的天数大于空气质量为良的天数的概率. 【答案】(1)9;(2).【解析】【试题分析】(1)由计算出,再由总数计算出,按比例计算得应抽人数.(2) 由(1)知,且,,利用列举法和古典概型计算公式计算得相应的概率.【试题解析】(1)由题意得,即.∴,∴在城中应抽取的数据个数为.(2)由(1)知,且,,∴满足条件的数对可能的结果有,,,,,,,共8种.其中“空气质量为优的天数大于空气质量为良的天数”对应的结果有,,共3种.∴在城中空气质量为优的天数大于空气质量为良的天数的概率为.19. 如图,在四棱锥中,底面为菱形,,平面,,点、分别为和的中点.(1)求证:直线平面;(2)求点到平面的距离.【答案】(1)见解析;(2).【解析】【试题分析】(1) 取的中点,连结、,通过证明四边形为平行四边形,得到,由此证得平面.(2)利用等体积法,通过建立方程,由此求得点到面的距离.【试题解析】(1)取的中点,连结、,由题意,且,且,故且,所以,四边形为平行四边形,所以,,又平面,平面,所以,平面.(2)设点到平面的距离为.由题意知在中,,在中,在中,故,,,,所以由得:,解得.20. 已知椭圆:的两个焦点与短轴的一个端点构成的三角形的面积为,且椭圆的离心率为.(1)求椭圆的方程;(2)过点且斜率不为零的直线与椭圆交于两点、,点,试探究:直线与的斜率之积是否为常数.【答案】(1);(2)见解析.【解析】【试题分析】(1)根据三角形面积公式和离心率建立方程,解方程组可求得的值.(2)设出直线的方程联立直线的方程和椭圆的方程,写出韦达定理,通过计算.化简后可得为常数...................【试题解析】(1)由题意得(其中椭圆的半焦距),解得.所以椭圆的方程为:.(2)由题意设直线的方程为:,,,由得:,所以,故,,(常数).21. 已知函数.(1)若是的一个极值点,求的最大值;(2)若,,都有,求实数的取值范围.【答案】(1);(2).【解析】【试题分析】(1)求出函数的导数,通过求得的值,根据单调区间求得函数的最大值.(2)将原不等式转化为,构造函数,对求导,对两者比较大小,分成两类,利用分离常数法求得的取值范围.【试题解析】(1),由题意得,即,所以,所以,当时,;当时,,所以在上单调递增,在上单调递减.所以. (2)由题意得,都有,令函数 ,当时,在上单调递增,所以在上恒成立,即在上恒成立,令,,则,所以在上单调递减,故,所以实数的取值范围为.同理,当时,在上单调递减,所以在上恒成立,即在上恒成立,令,,则,所以在上单调递减,故.所以实数的取值范围为,综上,实数的取值范围为.【点睛】本小题主要考查函数导数与极值,考查函数导数与不等式恒成立问题. 与函数最值有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图象与轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.请考生在22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题记分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22. 在平面直角坐标系中,直线:(为参数),以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线:.(1)求直线的极坐标方程及曲线的直角坐标方程;(2)记射线与直线和曲线的交点分别为点和点(异于点),求的最大值.【答案】(1)直线的极坐标方程为:,曲线的直角坐标方程为:;(2).【解析】试题分析:(1)根据极坐标方程、参数方程与普通方程的对应关系即可得出答案;(2)由(1),,所以,即可得到的最大值.试题解析:(1)由题意得直线的普通方程为:,所以其极坐标方程为:.由得:,所以,所以曲线的直角坐标方程为:.(2)由题意,,所以,由于,所以当时,取得最大值:.23. 已知函数.(1)解关于的不等式;(2)若关于的不等式的解集非空,求实数的取值范围.【答案】(1);(2).【解析】试题分析:(1)由题意或,由此可解不等式;(2)由于关于的不等式的解集非空,函数的最小值为-1,由此解得的范围.试题解析:(1)由题意或,所以或,即或,或或,故原不等式的解集为.(2),由于,所以当时,的最小值为-1.所以实数的取值范围为:.【点睛】本题主要考查绝对值的意义,绝对值不等式的解法,体现了等价转化的数学思想,属于中档题2018年高考考前猜题卷理科数学 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足iii z 2|2|++=,则=||z ( ) A .3 B .10 C .9 D .102.已知全集R U =,集合}012|{2≥--=x x x M ,}1|{x y x N -==,则=N M C U )(( )A .}1|{≤x xB .}121|{≤<-x xC .}121|{<<-x x D .}211|{<<-x x3.已知蚂蚁在边长为4的正三角形区域内随机爬行,则它在离三个顶点的距离都大于2的区域内的概率P 为( ) A .631π-B .43C .63π D .414.已知双曲线)0,0(12222>>=-b a by a x ,过双曲线左焦点1F 且斜率为1的直线与其右支交于点M ,且以1MF 为直径的圆过右焦点2F ,则双曲线的离心率是( ) A .12+ B .2 C .3 D .13+5.一个算法的程序框图如图所示,如果输出y 的值是1,那么输入x 的值是( )A .2-或2B .2-或2C .2-或2D .2-或2 6.已知函数)2||,0)(3sin()(πϕωπω<>+=x x f 的图象中相邻两条对称轴之间的距离为2π,将函数)(x f y =的图象向左平移3π个单位后,得到的图象关于y 轴对称,那么)(x f y =的图象( ) A .关于点)0,12(π对称 B .关于点)0,12(π-对称C .关于直线12π=x 对称 D .关于直线12π-=x 对称7.如下图,网格纸上小正方形的边长为1,图中实线画的是某几何体的三视图,则该几何体最长的棱的长度为( )A.32 B.43C. 2D. 411 8.已知等差数列}{n a 的第6项是6)2(xx -展开式中的常数项,则=+102a a ( )A .160B .160-C .350D .320- 9.已知函数)0(212)(<-=x x f x与)(log )(2a x x g +=的图象上存在关于y 轴对称的点,则a 的取值范围是( )A .)2,(--∞B .)2,(-∞C .)22,(--∞D .)22,22(- 10.已知正四棱台1111D C B A ABCD -的上、下底面边长分别为22,2,高为2,则其外接球的表面积为( )A .π16B .π20C .π65D .π465 11.平行四边形ABCD 中,2,3==AD AB ,0120=∠BAD ,P 是平行四边形ABCD 内一点,且1=AP ,若y x +=,则y x 23+的最大值为( ) A .1 B .2 C .3 D .412.设n n n C B A ∆的三边长分别为n n n c b a ,,,n n n C B A ∆的面积为,3,2,1,=n S n …,若n n a a a c b ==++1111,2,2,211nn n n n n a b c a c b +=+=++,则( ) A .}{n S 为递减数列 B .}{n S 为递增数列C .}{12-n S 为递增数列,}{2n S 为递减数列D .}{12-n S 为递减数列,}{2n S 为递增数列二、填空题(每题4分,满分20分,将答案填在答题纸上)13.函数x a x a x x f )3()1()(24-+--=的导函数)('x f 是奇函数,则实数=a .14.已知y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤-≥+-002043y x x y x (R y x ∈,),则22y x +的最大值为 .15.已知F 为抛物线x y C 4:2=的焦点,过点F 作两条互相垂直的直线21,l l ,直线1l 与C 交于B A ,两点,直线2l 与C 交于E D ,两点,则||||DE AB +的最小值为 . 16.在锐角三角形ABC 中,角C B A ,,的对边分别为c b a ,,,且满足ac a b =-22,则BA tan 1tan 1-的取值范围为 . 三、解答题 (本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知等比数列}{n a 的前n 项和为n S ,且满足)(221R m m S n n ∈+=+. (1)求数列}{n a 的通项公式; (2)若数列}{n b 满足)(log )12(112+⋅+=n n n a a n b ,求数列}{n b 的前n 项和n T .18.小张举办了一次抽奖活动.顾客花费3元钱可获得一次抽奖机会.每次抽奖时,顾客从装有1个黑球,3个红球和6个白球(除颜色外其他都相同)的不透明的袋子中依次不放回地摸出3个球,根据摸出的球的颜色情况进行兑奖.顾客中一等奖,二等奖,三等奖,四等奖时分别可领取的奖金为a 元,10元,5元,1元.若经营者小张将顾客摸出的3个球的颜色分成以下五种情况:1:A 个黑球2个红球;3:B 个红球;:c 恰有1个白球;:D 恰有2个白球;3:E 个白球,且小张计划将五种情况按发生的机会从小到大的顺序分别对应中一等奖,中二等奖,中三等奖,中四等奖,不中奖.(1)通过计算写出中一至四等奖分别对应的情况(写出字母即可); (2)已知顾客摸出的第一个球是红球,求他获得二等奖的概率;(3)设顾客抽一次奖小张获利X 元,求变量X 的分布列;若小张不打算在活动中亏本,求a 的最大值.19.如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,0160=∠CBB ,1AC AB =.(1)证明:平面⊥C AB 1平面C C BB 11;(2)若C B AB 1⊥,直线AB 与平面C C BB 11所成的角为030,求直线1AB 与平面C B A 11所成角的正弦值.20.如图,圆),(),0,2(),0,2(,4:0022y x D B A y x O -=+为圆O 上任意一点,过D 作圆O 的切线,分别交直线2=x 和2-=x 于F E ,两点,连接BE AF ,,相交于点G ,若点G 的轨迹为曲线C .(1)记直线)0(:≠+=m m x y l 与曲线C 有两个不同的交点Q P ,,与直线2=x 交于点S ,与直线1-=y 交于点T ,求OPQ ∆的面积与OST ∆的面积的比值λ的最大值及取得最大值时m 的值.(注:222r y x =+在点),(00y x D 处的切线方程为200r yy xx =+)21.已知函数x a x g x x f ln )(,21)(2==. (1)若曲线)()(x g x f y -=在2=x 处的切线与直线073=-+y x 垂直,求实数a 的值;(2)设)()()(x g x f x h +=,若对任意两个不等的正数21,x x ,2)()(2121>--x x x h x h 恒成立,求实数a 的取值范围;(3)若在],1[e 上存在一点0x ,使得)(')()('1)('0000x g x g x f x f -<+成立,求实数a 的取值范围.请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为⎪⎩⎪⎨⎧==21t a y t x (其中t 为参数,0>a ),以坐标原点O 为极点,x 轴的正半轴为极轴建立的极坐标系中,直线l :0sin cos =+-b θρθρ与2C :θρcos 4-=相交于B A ,两点,且090=∠AOB . (1)求b 的值;(2)直线l 与曲线1C 相交于N M ,两点,证明:||||22N C M C ⋅(2C 为圆心)为定值. 23.选修4-5:不等式选讲已知函数|1||42|)(++-=x x x f . (1)解不等式9)(≤x f ;(2)若不等式a x x f +<2)(的解集为A ,}03|{2<-=x x x B ,且满足A B ⊆,求实数a的取值范围.参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共4小题,每小题5分,共20分. 13.3 14.8 15.16 16.)332,1( 三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.17.解:(1)由)(221R m m S n n ∈+=+得⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=282422321m S m S m S ,)(R m ∈,从而有4,2233122=-==-=S S a S S a , 所以等比数列}{n a 的公比223==a a q ,首项11=a ,因此数列}{n a 的通项公式为)(2*1N n a n n ∈=-.(2)由(1)可得12)22(log )(log 1212-=⋅=⋅-+n a a n n n n , ∴)121121(21)12)(12(1+--⨯=-+=n n n n b n ∴)1211215131311(2121+--++-+-⨯=+++=n n b b b T n n 12+=n n. 18.解:(1)4011203)(31023===C C A P ;12011)(310==C B P ,10312036)(3102416===C C C C P ,2112060)(3101426===C C C D P ,6112020)(31036===C C E P∵)()()()()(D P C P E P A P B P <<<<, ∴中一至四等奖分别对应的情况是C E A B ,,,.(2)记事件F 为顾客摸出的第一个球是红球,事件G 为顾客获得二等奖,则181)|(2912==C C F G P .(3)X 的取值为3,2,2,7,3---a ,则分布列为由题意得,若要不亏本,则03212103)2(61)7(401)3(1201≥⨯+⨯+-⨯+-⨯+-⨯a , 解得194≤a ,即a 的最大值为194.19.解:(1)证明:连接1BC ,交C B 1于O ,连接AO , ∵侧面C C BB 11为菱形,∴11BC C B ⊥ ∵为1BC 的中点,∴1BC AO ⊥ 又O AO C B = 1,∴⊥1BC 平面C AB 1又⊂1BC 平面C C BB 11,∴平面⊥C AB 1平面C C BB 11.(2)由B BO AB C B BO C B AB =⊥⊥ ,,11,得⊥C B 1平面ABO 又⊂AO 平面ABO ,∴C B AO 1⊥,从而1,,OB OB OA 两两互相垂直,以O 为坐标原点,的方向为x 轴正方向,建立如图所示的空间直角坐标系xyz O -∵直线AB 与平面C C BB 11所成角为030,∴030=∠ABO设1=AO ,则3=BO ,∵0160=∠CBB ,∴1CBB ∆是边长为2的等边三角形∴)0,1,0(),0,1,0(),0,0,3(),1,0,0(1-C B B A ,则)1,0,3(),0,2,0(),1,1,0(1111-==-=-=AB B A C B AB 设),,(z y x =是平面C B A 11的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00111C B n B A n 即⎩⎨⎧=-=-0203y z x ,令1=x ,则)3,0,1(=n设直线1AB 与平面C B A 11所成的角为θ, 则46||||||,cos |sin ==><=n AB θ. 20.解:(1)易知过点),(00y x D 的切线方程为400=+y y x x ,其中42020=+y x ,则)24,2(),2,2(000y x F y x E +--, ∴4116416416424424220020000021-=-=--=-⋅-+=y y y x y x y x k k 设),(y x G ,则144122412221=+⇒-=+⋅-⇒-=y x x y x y k k (0≠y ) 故曲线C 的方程为1422=+y x (0≠y ) (2)联立⎩⎨⎧=++=4422y x mx y 消去y ,得0448522=-++m mx x ,设),(),,(2211y x Q y x P ,则544,5822121-=-=+m x x m x x ,由0)44(206422>--=∆m m 得55<<-m 且2,0±≠≠m m∴22221221255245444)58(24)(11||m m m x x x x PQ -=-⨯--⨯=-++=,易得)1,1(),2,2(---+m T m S , ∴)3(2)3()3(||22m m m ST +=+++=,∴22)3(554||||m m ST PQ S S OSTOPQ +-===∆∆λ,令)53,53(,3+-∈=+t t m 且5,3,1≠t ,则45)431(4544654222+--⨯=-+-=t t t t λ, 当431=t ,即43=t 时,λ取得最大值552,此时35-=m . 21.解:(1)xax y x a x x g x f y -=-=-=',ln 21)()(2 由题意得322=-a,解得2-=a (2))()()(x g x f x h +=x a x ln 212+=对任意两个不等的正数21,x x ,2)()(2121>--x x x h x h 恒成立,令21x x >,则)(2)()(2121x x x h x h ->-,即2211)(2)(x x h x x h ->-恒成立 则问题等价于x x a x x F 2ln 21)(2-+=在),0(+∞上为增函数 2)('-+=xax x F ,则问题转化为0)('≥x F 在),0(+∞上恒成立,即22x x a -≥在),0(+∞上恒成立,所以1)2(max 2=-≥x x a ,即实数a 的取值范围是),1[+∞. (3)不等式)(')()('1)('0000x g x g x f x f -<+等价于0000ln 1x ax a x x -<+,整理得01ln 000<++-x ax a x ,构造函数x a x a x x m ++-=1ln )(, 由题意知,在],1[e 上存在一点0x ,使得0)(0<x m2222)1)(1()1(11)('x x a x x a ax x x a x a x m +--=+--=+--=因为0>x ,所以01>+x ,令0)('=x m ,得a x +=1①当11≤+a ,即0≤a 时,)(x m 在],1[e 上单调递增,只需02)1(<+=a m ,解得2-<a ; ②当e a ≤+<11,即10-≤<e a 时,)(x m 在a x +=1处取得最小值.令01)1ln(1)1(<++-+=+a a a a m ,即)1l n (11+<++a a a ,可得)1ln(11+<++a aa (*) 令1+=a t ,则e t ≤<1,不等式(*)可化为t t t ln 11<-+ 因为e t ≤<1,所以不等式左端大于1,右端小于或等于1,所以不等式不能成立. ③当e a >+1,即1->e a 时,)(x m 在],1[e 上单调递减,只需01)(<++-=eaa e e m 解得112-+>e e a .综上所述,实数a 的取值范围是),11()2,(2+∞-+--∞e e . 22.解:(1)由题意可得直线l 和圆2C 的直角坐标方程分别为0=+-b y x ,4)2(22=++y x∵090=∠AOB ,∴直线l 过圆2C 的圆心)0,2(2-C ,∴2=b . (2)证明:曲线1C 的普通方程为)0(2>=a ay x ,直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧=+-=ty t x 22222(t 为参数),代入曲线1C 的方程得04)2222(212=++-t a t , 04212>+=∆a a 恒成立,设N M ,两点对应的参数分别为21,t t ,则821=t t , ∴8||||22=N C M C , ∴||||22N C M C 为定值8.23.解:(1)由9)(≤x f 可得9|1||42|≤++-x x ,即⎩⎨⎧≤->9332x x 或⎩⎨⎧≤-≤≤-9521x x 或⎩⎨⎧≤+--<9331x x解得42≤<x 或21≤≤-x 或12-<≤-x , 故不等式9)(≤x f 的解集为]4,2[-.(2)易知)3,0(=B ,由题意可得a x x x +<++-2|1||42|在)3,0(上恒成立⇒1|42|-+<-a x x 在)3,0(上恒成立1421-+<-<+-⇒a x x a x 在)3,0(上恒成立 3->⇒x a 且53+->x a 在)3,0(上恒成立⎩⎨⎧≥≥⇒50a a 5≥⇒a .。

【高三数学试题精选】德阳市2018届高三数学3月第二次诊断性检测试题(文)及答案

【高三数学试题精选】德阳市2018届高三数学3月第二次诊断性检测试题(文)及答案

德阳市2018届高三数学3月第二次诊断性检测试题(文)及
答案
5 四川省德阳市,—1] B-[1, + )
c [-1,1] D
2 函数的反函数是
A ,(x 0)
B (x 0)
c ,(x 0) D (x 0)
3 设是两个不同的平面,l是一条直线,以下命题中
①若则②若则
③若则④若则
正确命题的个数是
A 1
B 2 c 3 4
4 要得到= 的图象,只需将的图象
A向左平移 B向左平移 c向右平移 D向右平移
5函数的定义域为区间(a,b),导函数在(a,b)的图象如图所示,则函数在区间(a,b)上极值点的个数为
A3 B 2
c 1 D 4
6现有4名同学去听同时进行的3个外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是
A 24
B 64 c 81 D 48
7 已知,则向量a与b的夹角是
A B c D
8 已知数列中,前n项和为则为等差数列是 =的
A充分非必要条 B充要条
c必要非充分条D非充分非必要条
9 已知(、)满足,则的取范围是。

【数学】四川省德阳市2018届高三二诊考试文科数学试题含解析

【数学】四川省德阳市2018届高三二诊考试文科数学试题含解析

德阳市高中2015级“二诊”考试数学试卷(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知为虚数单位,实数,满足,则()A. 1B.C.D.【答案】D【解析】,则故选D.2. 已知集合,集合,若,则()A. B. C. D.【答案】A【解析】得到,故选A.3. 函数的图象向右平移个单位后所得的图象关于原点对称,则可以是()A. B. C. D.【答案】B【解析】由题函数的图象向右平移个单位后所得的图象关于原点对称,即平移后得到的函数为奇函数,即为奇函数,对照选项可知选B.4. 实验测得四组数对的值为,,,,则与之间的回归直线方程是()参考公式:,.A. B.C. D.【答案】A【解析】样本中心点为,计算得,代入验证可知选项正确.5. 如图所示的三视图表示的几何体的体积为,则该几何体的外接球的表面积为()A. B. C. D.【答案】C【解析】由三视图可得该几何体为底面边长为,一条侧棱垂直底面的四棱锥,设高为4,则,将该几何体补成一个长方体,则其外接球半径为故这个几何体的外接球的表面积为.故选C.【点睛】本题考查了由三视图,求体积和表面积,其中根据已知的三视图,判断几何体的形状是解答的关键.属于中档题.6. 《九章算术》是我国古代一部数学名著,某数学爱好者阅读完其相关章节后编制了如图的程序框图,其中表示除以的余数,例如.若输入的值为8时,则输出的值为()A. 2B. 3C. 4D. 5【答案】B【解析】模拟执行程序框图,可得:满足条件,满足条件满足条件,不满足条件,,满足条件,满足条件,…,可得:2, 4, 8,∴共要循环3次,故.故选B.7. 已知,则、、的大小排序为()A. B.C. D.【答案】A【解析】为正实数,且,可得:即因为函数单调递增,∴.故选A.8. 以等腰直角三角形的斜边上的中线为折痕,将与折成互相垂直的两个平面,得到以下四个结论:①平面;②为等边三角形;③平面平面;④点在平面内的射影为的外接圆圆心.其中正确的有()A. ①②③B. ②③④C. ①②④D. ①③④【答案】C【解析】由于三角形为等腰直角三角形,故,所以平面,故①正确,排除选项.由于,且平面平面,故平面,所以,由此可知,三角形为等比三角形,故②正确,排除选项.由于,且为等边三角形,故点在平面内的射影为的外接圆圆心, ④正确,故选.9. 已知双曲线的离心率为,其一条渐近线被圆截得的线段长为,则实数的值为()A. 3B. 1C.D. 2【答案】D【解析】双曲线的离心率为,则故其一条渐近线不妨为,圆的圆心,半径为2,双曲线的一条渐近线被圆截得的线段长为,可得圆心到直线的距离为:故选D.10. 已知函数,若,使得成立,则实数的取值范围是()A. B. C. D.【答案】A【解析】由于,函数为增函数,且,函数为奇函数,故,即在上存在.画出的图象如下图所示,由图可知, ,故选.【点睛】本小题主要考查函数的单调性与奇偶性,考查利用导数研究函数的单调性,考查恒成立问题的解题思路.给定一个函数的解析式,首先要分析这个函数的定义域,单调性与奇偶性等等性质,这些对于解有关函数题目可以有个方向,根据基本初等函数的单调性要熟记.11. 如图,过抛物线的焦点作倾斜角为的直线,与抛物线及其准线从上到下依次交于、、点,令,,则当时,的值为()A. 3B. 4C. 5D. 6【答案】C【解析】设,则又,可得同理可得,故选B.12. 已知、是函数(其中常数)图象上的两个动点,点,若的最小值为0,则函数的最大值为()A. B. C. D.【答案】B【解析】由题,当点、分别位于分段函数的两支上,且直线分别与函数图像相切时,最小,设当时,直线因为点在直线直线上,解得同理可得则,且函数在上单调递增,在上单调递见,故函数的最大值为.故选B.第Ⅱ卷(非选择题共90分)二、填空题:共4小题,每小题5分,共20分.将答案填在答题卡上.13. 已知实数,满足条件,则的最大值为__________.【答案】8【解析】画出可行域如图所示,则当目标函数y经过点时取代最大值,即答案为4.14. 为弘扬我国优秀的传统文化,某小学六年级从甲、乙两个班各选出7名学生参加成语知识竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则的值为__________.【答案】【解析】,解得,根据中位数为,可知,故.15. 如图,在三角形中,、分别是边、的中点,点在直线上,且,则代数式的最小值为__________.【答案】【解析】不妨设为直角,且,以分别为轴,此时为点的坐标,表示到原点的距离,最短时为点到直线的距离,由于是中位线,故最短的等于点到距离的一半,即.16. 已知中,角、、所对的边分别是、、且,,,若为的内心,则的面积为__________.【答案】【解析】由于,所以,展开化简得.由正弦定理得,所以,解得.设,设外切圆半径为,根据海伦公式有,解得,故.【点睛】本小题主要考查正弦定理和余弦定理解三角形,考查了三角形的面积公式,包括海伦公式及有关内切圆的面积公式.首先根据,及,得到,利用两角和与差的正弦公式和二倍角公式,化简这个式子可求得的值.利用海伦公式可求得面积.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 已知数列满足,.(1)求证:数列为等比数列;(2)求数列的前项和.【答案】(1)见解析;(2).【解析】【试题分析】(1)利用配凑法将已知配凑成等比数列的形式,由此证得为等比数列.(2)由(1)求得的通项公式,利用裂项求和法求得数列的前项和.【试题解析】(1)∵,∴.又,∴,.∴是以2为首项,2为公比的等比数列.(2)由(1)知,∴,∴.18. 省环保厅对、、三个城市同时进行了多天的空气质量监测,测得三个城市空气质量为优或良的数据共有180个,三城市各自空气质量为优或良的数据个数如下表所示:城城城优(个)28良(个)3230已知在这180个数据中随机抽取一个,恰好抽到记录城市空气质量为优的数据的概率为0.2.(1)现按城市用分层抽样的方法,从上述180个数据中抽取30个进行后续分析,求在城中应抽取的数据的个数;(2)已知,,求在城中空气质量为优的天数大于空气质量为良的天数的概率.【答案】(1)9;(2).【解析】【试题分析】(1)由计算出,再由总数计算出,按比例计算得应抽人数.(2) 由(1)知,且,,利用列举法和古典概型计算公式计算得相应的概率.【试题解析】(1)由题意得,即.∴,∴在城中应抽取的数据个数为.(2)由(1)知,且,,∴满足条件的数对可能的结果有,,,,,,,共8种.其中“空气质量为优的天数大于空气质量为良的天数”对应的结果有,,共3种.∴在城中空气质量为优的天数大于空气质量为良的天数的概率为.19. 如图,在四棱锥中,底面为菱形,,平面,,点、分别为和的中点.(1)求证:直线平面;(2)求点到平面的距离.【答案】(1)见解析;(2).【解析】【试题分析】(1) 取的中点,连结、,通过证明四边形为平行四边形,得到,由此证得平面.(2)利用等体积法,通过建立方程,由此求得点到面的距离.【试题解析】(1)取的中点,连结、,由题意,且,且,故且,所以,四边形为平行四边形,所以,,又平面,平面,所以,平面.(2)设点到平面的距离为.由题意知在中,,在中,在中,故,,,,所以由得:,解得.20. 已知椭圆:的两个焦点与短轴的一个端点构成的三角形的面积为,且椭圆的离心率为.(1)求椭圆的方程;(2)过点且斜率不为零的直线与椭圆交于两点、,点,试探究:直线与的斜率之积是否为常数.【答案】(1);(2)见解析.【解析】【试题分析】(1)根据三角形面积公式和离心率建立方程,解方程组可求得的值.(2)设出直线的方程联立直线的方程和椭圆的方程,写出韦达定理,通过计算.化简后可得为常数...................【试题解析】(1)由题意得(其中椭圆的半焦距),解得.所以椭圆的方程为:.(2)由题意设直线的方程为:,,,由得:,所以,故,,(常数).21. 已知函数.(1)若是的一个极值点,求的最大值;(2)若,,都有,求实数的取值范围.【答案】(1);(2).【解析】【试题分析】(1)求出函数的导数,通过求得的值,根据单调区间求得函数的最大值.(2)将原不等式转化为,构造函数,对求导,对两者比较大小,分成两类,利用分离常数法求得的取值范围.【试题解析】(1),由题意得,即,所以,所以,当时,;当时,,所以在上单调递增,在上单调递减.所以.(2)由题意得,都有,令函数,当时,在上单调递增,所以在上恒成立,即在上恒成立,令,,则,所以在上单调递减,故,所以实数的取值范围为.同理,当时,在上单调递减,所以在上恒成立,即在上恒成立,令,,则,所以在上单调递减,故.所以实数的取值范围为,综上,实数的取值范围为.【点睛】本小题主要考查函数导数与极值,考查函数导数与不等式恒成立问题. 与函数最值有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图象与轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.请考生在22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题记分,做答时,请用2B铅笔在答题卡上将所选题号后的方框涂黑.22. 在平面直角坐标系中,直线:(为参数),以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线:.(1)求直线的极坐标方程及曲线的直角坐标方程;(2)记射线与直线和曲线的交点分别为点和点(异于点),求的最大值.【答案】(1)直线的极坐标方程为:,曲线的直角坐标方程为:;(2).【解析】试题分析:(1)根据极坐标方程、参数方程与普通方程的对应关系即可得出答案;(2)由(1),,所以,即可得到的最大值.试题解析:(1)由题意得直线的普通方程为:,所以其极坐标方程为:.由得:,所以,所以曲线的直角坐标方程为:.(2)由题意,,所以,由于,所以当时,取得最大值:.23. 已知函数.(1)解关于的不等式;(2)若关于的不等式的解集非空,求实数的取值范围.【答案】(1);(2).【解析】试题分析:(1)由题意或,由此可解不等式;(2)由于关于的不等式的解集非空,函数的最小值为-1,由此解得的范围.试题解析:(1)由题意或,所以或,即或,或或,故原不等式的解集为.(2),由于,所以当时,的最小值为-1.所以实数的取值范围为:.【点睛】本题主要考查绝对值的意义,绝对值不等式的解法,体现了等价转化的数学思想,属于中档题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档