2019中考全等三角形经典培优题(教师版)
全等三角形培优经典题

全等三角形培优习题1、已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .(1)直接写出线段EG 与CG 的数量关系;(2)将图1中△BEF 绕B 点逆时针旋转45o ,如图2所示,取DF 中点G ,连接EG ,CG . 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中△BEF 绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?2、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.ADFC GE B图1ADF C GE B 图2 ADFC GE B图3FB D图1BDE图2B 图3D7.已知如图,E.F 在BD 上,且AB =CD ,BF =DE ,AE =CF,求证:AC 与BD 互相平分.8.如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D , BC=DF .猜想线段AC 与EF 的关系,并证明你的结论.9如图ABD ∆和ACE ∆FG E DC B A A B EO F DOE DCB A10.如图∠ABC =90°AB =BC ,D 为AC 上一点分别过A.C 作BD 的垂线,垂足分别为E.F,求证:EF =CF -AE.11.如图5,已知AB ∥CD ,AD ∥BC , E.F 是BD 上两点,且BF =DE ,则图中共有 对全等三角形.12.如图7,AB ∥CD ,AD ∥BC ,OE=OF, 图中全等三角形共有______对. 1. 填空题常见题型13.两三角形有以下元素对应相等,不能判定全等的是( ) A. 两角和一边 B. 两边及夹角 C. 三个角 D. 三条边14.如果两个三角形两边对应相等,且其中一边所对的角也相等,那么这两个三角形( ) A. 一定全等 B. 一定不全等 C. 不一定全等 D. 面积相等15.如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是( )A. 相等B. 不相等C. 互余或相等D. 互补或相等 2. 常见题的解题方法与分析16. 下列各图中,一定全等的是( ) A. 各有一个角是︒45的两个等腰三角形 B. 两个等边三角形 C. 各有一个角是︒45,腰长都是3cm 的两个等腰三角形 D. 腰和顶角对应相等的两个等腰三角形 17.已知如图,CE ⊥AB 于点E ,BD ⊥AC 于点D ,BD 、CE 交于点O ,且AO 平分∠BAC , (1)图中有多少对全等的三角形?请你一 一列举出来(不要求说明理由)(2)求证BE=CD (3)要得到BE=CD ,你还有其他的思路吗?18.则∆图5A. 6cmB. 7cmC. 8cmD. 9 cm19如图,已知∠1=∠2,∠3=∠4,AB 与CD 相等吗?请你说明理由.20.已知:如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,H 是BC 边的中点,连结DH 与BE 相交于点G 。
《全等三角形》培优题型全集

《全等三角形》培优题型全集题型一:倍长中线(线段)造全等1.已知:如图,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BFC2.如图,△ABC中,AB=5,AC=3,则中线AD的取值规模是______.D CBA3.在△ABC中,AC=5,中线AD=7,则AB边的取值规模是( )A.1<AB<29B.4<AB<24C.5<AB<19D.9<AB<194.已知:AD.AE分离是△ABC和△ABD的中线,且BA=BD,求证:AE=21ACC E5.已知:如图,在ABC∆中,ACAB≠,D.E在BC上,且DE=EC,过D作BADF//交AE于点F,DF=AC.求证:AE等分BAC∠ABFD E C题型二:截长补短1.已知,四边形ABCD中,AB∥CD,∠1=∠2,∠3=∠4. 求证:BC=AB+CD.2.已知:如图,在△ABC中,∠C=2∠B,∠1=∠2,求证:AB=AC+CD.3.如图,在△ABC中,∠BAC=60°, AD是∠BAC的等分线,且AC=AB+BD,求∠ABC 的度数D CBA4.已知ABC∆中,60A∠=,BD.CE分离等分ABC∠和.ACB∠,BD.CE交于点O,试断定BE.CD.BC的数目关系,并加以证实.DOECBA题型三:角等分线上的点向角双方引垂线段1.如图,在四边形ABCD中,BC>BA,AD=CD,求证:∠BAD+∠C=180°2.如图,四边形ABCD中,AC等分∠BAD,CE⊥AB于D CBA12姓名E,AD+AB=2AE,则∠B 与∠ADC 互补,为什么?3.如图,△ABD 和△ACD,BD=CD,∠ABD=∠ACD,求证AD 等分∠BAC.4.已知,AB >AD,∠1=∠2,CD =BC. 求证:∠ADC +∠B =180°.图九21CBAD5.如图,在△ABC 中∠A BC,∠A CB 的外角等分线订交于点P,求证:AP 是∠BAC 的角等分线图十一4321PABC6.如图,∠B=∠C=90°,AM 等分∠DAB,DM 等分∠ADC. 求证:点M 为BC 的中点题型四:衔接法(结构全等三角形)1.已知:如图,AB =AD,BC =DC,E.F 分离是DC.BC 的中点,求证: AE =AF.2.如图,直线AD 与BC 订交于点O,且AC=BD,AD=BC . 求证:CO=DO .AOD CB3.已知:如图,AB=AE,BC=ED,点F 是CD 的中点,AF ⊥CD . 求证:∠B=∠E .DAFEABCDAF DC BE4.在等边ABC ∆内取一点D ,使DA DB =,在ABC ∆外取一点E ,使DBE DBC ∠=∠,且BE BA =,求BED ∠.题型五:全等+角等分线性质 1.如图,AD 等分∠BAC,DE ⊥AB 于E,DF ⊥AC 于F,且DB=DC,求证:EB=FC2.已知:如图所示,BD 为∠ABC 的等分线,AB=BC,点P 在BD 上,PM ⊥AD 于M,•PN ⊥CD 于N,求证:PM= PNP D ACBM N题型六:全等+等腰三角形的性质1.如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC.DE 交于点O.求证:(1) △ABC ≌△AED; (2) OB =OE .OCEBDA2..已知:如图,B.E.F.C 四点在统一条直线上,AB =DC, BE =CF,∠B =∠C .求证:OA =OD .题型七:两次全等1.如图,AB=AC,DB=DC,F 是AD 的延伸线上的一点.求证:BF=CFFDCBA2.如图,D.E.F.B 在一条直线上AB=CD, ∠B=∠D,BF=DE. 求证:(1)AE=CF;(2)AE ∥CF (3)∠AFE=∠CEF3.如图:A.E.F.B 四点在一条直线上,AC ⊥CE,BD ⊥DF,AE=BF,AC=BD.求证:△ACF ≌△BDEACEF4.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.654321E D CBA5.已知如图,E.F 在BD 上,且AB =CD,BF =DE,AE =CF,求证:AC 与BD 互相等分ADFECBDECBA6.如图,在四边形ABCD 中,AD ∥BC,∠ABC=90°DE ⊥AC 于点F,交BC 于点G,交AB 的延伸线于点E,且AE=AC.求证:BG=FG题型八:直角三角形全等(余角性质)1.如图,在等腰Rt △ABC 中,∠C =90°,D 是斜边上AB 上任一点,AE ⊥CD 于E ,BF ⊥CD 交CD 的延伸线于F ,CH ⊥AB 于H 点,交AE 于G .求证:BD =CG .2.如图,将等腰Rt △ABC 的直角极点置于直线l 上,且过A,B 两点分离作直线l 的垂线,垂足分离为D,E,请你在图中找出一对全等三角形,并写出证实它们全等的进程.3.如图,∠ABC =90°,AB =BC,D 为AC 上一点,分离过A.C 作BD 的垂线,垂足分离为E.F,求证:EF =CF -AE题型九:延伸角等分线的垂线段1.如图,在△ABC 中,AD 等分∠BAC,CE ⊥AD 于E . 求证:∠ACE=∠B+∠ECD .AF DCBE2.如图,△ABC 中,∠BAC=90度,AB=AC,BD 是∠ABC 的等分线,BD 的延伸线垂直于过C 点的直线于E,直线CE 交BA 的延伸线于F .求证:BD=2CE .FE DCB A3.已知,如图34,△ABC 中,∠ABC=90º,AB=BC,AE 是∠A 的等分线,CD ⊥AE 于D .求证:CD=21AE .CEBAD题型十:面积法AB CFDEAFCBDEGABEO FDC1.如图,在△ABC 中,∠BAC 的角等分线AD 等分底边BC, 求证AB=AC.2.如图,在△ABC 中,∠A=90°,D 是AC 上的一点,BD=DC,P 是BC 上的任一点,PE ⊥BD,PF ⊥AC,E.F 为垂足. 求证:PE+PF=AB .3.己知,△ABC 中,AB=AC,CD ⊥AB,垂足为D,P 是线段BC 上任一点,PE ⊥AB,PF ⊥AC 垂足分离为E.F,求证: PE+PF=CD.4.己知,△ABC 中,AB=AC,CD ⊥AB,垂足为D,P 是射线BC 上任一点,PE ⊥AB,PF ⊥AC 垂足分离为E.F,求证: PE – P F=CD.题型十一:扭转型1.如图,正方形ABCD 的边长为1,G 为CD 边上一动点(点G 与C.D 不重合), 以CG 为一边向正方形ABCD 外作正方形GCEF,衔接DE 交BG 的延伸线于H.求证:①△BCG ≌△DCE,② BH ⊥DE2.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E 在统一条直线上,贯穿连接DC . (1)请找出图2中的全等三角形,并赐与证实(解释:结论中不得含有未标识的字母);(2)证实:DC ⊥BE .3.(1)如图7,点O 是线段AD 的中点,分离以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD,贯穿连接AC 和BD,订交于点E,贯穿连接BC .求∠AEB 的大小;(2)如图8,ΔOAB 固定不动,保持ΔOCD 外形和大小不变,将ΔOCD 绕着点O 扭转(ΔOAB 和ΔOCD 不重叠),求∠AEB .4.如图,AE ⊥AB,AD ⊥AC,AB=AE,∠B=∠E, 求证:(1)BD=CE;(2)BD ⊥CE .5.如图所示,已知AE ⊥AB,AF ⊥AC,AE=AB,AF=AC.BAODCE 图CBO D图7AE图1图2DABFEDCAB GHFEDC ABGPF EDCA BGP求证:(1)EC=BF;(2)EC⊥BF6. 正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数.7.D为等腰Rt ABC∆斜边AB的中点,DM⊥DN,DM,DN分离交BC,CA于点E,F.①当MDN∠绕点D迁移转变时,求证DE=DF.②若AB=2,求四边形DECF的面积. 8.五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°, 求证:AD等分∠CDECEDBA9.如图,已知AB=CD=AE=BC+DE=2,∠ABC=∠AED=90°, 求五边形ABCDE的面积10.已知Rt ABC△中,90AC BC C D==︒,∠,为AB边的中点,90EDF∠=°,EDF∠绕D点扭转,它的双方分离交AC.CB(或它们的延伸线)于E.F.(1)当EDF∠绕D点扭转到DE AC⊥于E时(如图1),求证:12DEF CEF ABCS S S+=△△△.(2)当EDF∠绕D点扭转到DE AC和不垂直时(如图2),求DEFS△.CEFS△.ABCS△之间的数目关系?(3)当EDF∠绕D点扭转到DE AC和不垂直时(如图3),求DEFS△.CEFS△.ABCS△之间的数目关系?AEB MCF11.在△ABC 中,∠ACB =90°,AC=BC,直线MN 经由点C,且AD ⊥MN 于D,BE ⊥MN 于E. (1).当直线MN 绕点C 扭转到图1的地位时,求证:①△ADC ≌△CEB;②DE=AD +BE; (2).当直线MN 绕点C 扭转到图2的地位时,求证:DE=AD-BE;(3).当直线MN 绕点C 扭转到图3的地位时,试问DE.AD.BE 具有如何的等量关系?ACBED NM 图3ACDEMN图2CBAED图1NMAECF BD图1图3ADFECBADBCE图2F。
八年级数学全等三角形(培优篇)(Word版含解析)

八年级数学全等三角形(培优篇)(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD中,ZABC=120° , AB=10cm,点P是这个菱形内部或边上的一点.若以P,B f C为顶点的三角形是等腰三角形,则P, A(P, A两点不重合)两点间的最短距离为____________ c m .【答案】1OJJ-1O【解析】解:连接3D,在菱形A3CD中,T Z ABC=120° , AB=BC=AD=CD=10 , :. Z A=Z C=60° ,二△ ABD , △ BCD都是等边三角形,分三种情况讨论:①若以边8C为底,则3C垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了"直线外一点与直线上所有点连线的线段中垂线段最短",即当点P与点D重合时,必最小,最小值^4=10 ;②若以边P3为底,ZPCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧3D (除点8外)上的所有点都满足APBC是等腰三角形,当点P在AC上时,AP 最小,最小值为lOjJ-10 ;③若以边PC为底,ZPBC为顶角,以点3为圆心,BC为半径作圆,则弧AC上的点&与点D均满足APBC为等腰三角形,当点P与点A重合时,必最小,显然不满足题意,故此种情况不存在;综上所述,必的最小值为10>/3-10 (cm).故答案为:10x/I—10 .点睹:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.在等腰△遊中,肋丄肚交直线%于点以若妙丄万G则△磁的顶角的度数为【答案】30。
或150。
或90°【解析】试题分析:分两种情况:①3C为腰,②BC为底,根据直角三角形30。
角所对的直角边等于斜边的一半判断岀ZACD=3O°,然后分AD在^ABC内部和外部两种情况求解即可.解:①BC为腰,VAD丄 BC 于点D t AD= - BC f2:.ZACD二30。
全等三角形专题培优(带答案)(精选.)

全等三角形专题培优考试总分: 110 分考试时间: 120 分钟卷I(选择题)一、选择题(共 10 小题,每小题 2 分,共 20 分)1.如图为个边长相等的正方形的组合图形,则A. B.C. D.2.下列定理中逆定理不存在的是()A.角平分线上的点到这个角的两边距离相等B.在一个三角形中,如果两边相等,那么它们所对的角也相等C.同位角相等,两直线平行D.全等三角形的对应角相等3.已知:如图,,,,则不正确的结论是()A.与互为余角B.C.D.4.如图,是的中位线,延长至使,连接,则的值为()A. B. C. D.5.如图,在平面直角坐标系中,在轴、轴的正半轴上分别截取、,使;再分别以点、为圆心,以大于长为半径作弧,两弧交于点.若点的坐标为,则与的关系为()A. B.C. D.6.如图,是等边三角形,,于点,于点,,则下列结论:①点在的角平分线上;②;③;④.正确的有()A.个B.个C.个D.个7.如图,直线、、″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处8.如图,是的角平分线,则等于()A. B.C. D.9.已知是的中线,且比的周长大,则与的差为()A. B.C. D.10.若一个三角形的两条边与高重合,那么它的三个内角中()A.都是锐角B.有一个是直角C.有一个是钝角D.不能确定卷II(非选择题)二、填空题(共 10 小题,每小题 2 分,共 20 分)11.问题情境:在中,,,点为边上一点(不与点,重合),交直线于点,连接,将线段绕点顺时针方向旋转得到线段(旋转角为),连接.特例分析:如图.若,则图中与全等的一个三角形是________,的度数为________.类比探究:请从下列,两题中任选一题作答,我选择________题.:如图,当时,求的度数;:如图,当时,①猜想的度数与的关系,用含的式子表示猜想的结果,并证明猜想;②在图中将“点为边上的一点”改为“点在线段的延长线上”,其余条件不变,请直接写出的度数(用含的式子表示,不必证明)12.如图,正方形纸片的边长为,点、分别在边、上,将、分别沿、折叠,点、恰好都落在点处,已知,则的长为________.13.在中,为的平分线,于,于,面积是,,,则的长为________.14.在中,,的垂直平分线与所在的直线相交所得到锐角为,则等于________.15.如图,平分,于,于,,则图中有________对全等三角形.16.如图,在中,,点从点出发沿射线方向,在射线上运动.在点运动的过程中,连结,并以为边在射线上方,作等边,连结.当________时,;请添加一个条件:________,使得为等边三角形;①如图,当为等边三角形时,求证:;②如图,当点运动到线段之外时,其它条件不变,①中结论还成立吗?请说明理由.17.如图,从圆外一点引圆的两条切线,,切点分别为,.如果,,那么弦的长是________.18.如图,在中,,,是的平分线,平分交于,则________.19.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图,在中,,平分,,求的长.小聪思考:因为平分,所以可在边上取点,使,连接.这样很容易得到,经过推理能使问题得到解决(如图).请回答:是________三角形.的长为________.参考小聪思考问题的方法,解决问题:如图,已知中,,,平分,,.求的长.20.如图,在和中,,,若要用“斜边直角边..”直接证明,则还需补充条件:________.三、解答题(共 7 小题,每小题 10 分,共 70 分)21.如图,已知为等边三角形,为延长线上的一点,平分,,求证:为等边三角形.22.尺规作图(不要求写作法,保留作图痕迹)如图,作①的平分线;②边上的中线;22.一块三角形形状的玻璃破裂成如图所示的三块,请你用尺规作图作一个三角形,使所得的三角形和原来的三角形全等.(不要求写作法,保留作图痕迹.不能在原图上作三角形)22.如图:在正方形网格中有一个,按要求进行下列画图(只能借助于网格):①画出中边上的高(需写出结论).②画出先将向右平移格,再向上平移格后的.23.平行四边形中,,点为边上一点,连结,点在边所在直线上,过点作交于点.如图,若为边中点,交延长线于点,,,,求;如图,若点在边上,为中点,且平分,求证:;如图,若点在延长线上,为中点,且,问中结论还成立吗?若不成立,那么线段、、满足怎样的数量关系,请直接写出结论.24.如图,直线与轴、轴分别交于、两点,直线与直线关于轴对称,已知直线的解析式为,求直线的解析式;过点在的外部作一条直线,过点作于,过点作于,请画出图形并求证:;沿轴向下平移,边交轴于点,过点的直线与边的延长线相交于点,与轴相交于点,且,在平移的过程中,①为定值;②为定值.在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值.25.如图:,,过点,于,于,.求证:.26.如图,点,在上,,,,与交于点.求证:;试判断的形状,并说明理由.27.如图,已知点是平分线上一点,,,垂足为、吗?为什么?是的垂直平分线吗?为什么?答案1.B2.D3.D4.A5.B6.D7.D8.A9.B10.B11.[ “”, “” ][ “” ]12.[ “” ]13.[ “” ]14.[ “或” ]15.[ “” ]16.[ “;” ][ "添加一个条件,可得为等边三角形;故答案为:;①∵与是等边三角形,∴,,,∴,即,在与中,,∴,∴;②成立,理由如下;∵与是等边三角形,∴,,,∴,即,在与中,,∴,∴." ]17.[ “” ]18.[ “” ]19.[ "解:是等腰三角形,在与中,,∴,∴,,∵,∴,∴,∴是等腰三角形;" ][ "的长为,∵中,,,∴,∵平分,∴,在边上取点,使,连接,则,∴,∴,∴,在边上取点,使,连接,则,∴,,∵,∴,∴,∵,∴." ]\"go题库\"20.[ “” ]21.证明:∵为等边三角形,∴,,即,∵平分,∴,在和中,,∴,∴,,又,∴,∴为等边三角形.22.解:如图所示:;如图所示:即为所求;;①如图所示:即为所求;②如图所示:即为所求;..23.解:如图,在平行四边形中,,∴,∵在中,为的中点,,∴,又∵,∴,故可设,,则中,,解得,∴,又∵,,∴为的中点,∴;如图,延长交的延长线于点,则,∵,∴,又∵平分,∴,∴是等腰直角三角形,∴,又∵,∴,∴,,又∵为的中点,∴,∴,∴,∵,∴;若点在延长线上,为中点,且,则中的结论不成立,正确结论为:.证明:如图,延长交的延长线于点,则,∵,∴,∴,又∵,∴,∴,,又∵为的中点,∴,∴,∴,∵,∴.24.解:∵直线与轴、轴分别交于、两点,∴,,∵直线与直线关于轴对称,∴∴直线的解析式为:;如图..∵直线与直线关于轴对称,∴,∵与为象限平分线的平行线,∴与为等腰直角三角形,∴,∵,∴∴∴,,∴;①对,过点作轴于,直线与直线关于轴对称∵,,又∵,∴,则,∴∴∴∴∴.25.证明:连接,∵,∴,∵,∴,∴,∵,,∴,在和中,∴.26.证明:∵,∴,即.又∵,,∴,∴.解:为等腰三角形理由如下:∵,∴,∴,∴为等腰三角形.27.解:.理由:∵是的平分线,且,,∴,∴;是的垂直平分线.理由:∵,在和中,,∴,∴,由,,可知点、都是线段的垂直平分线上的点,从而是线段的垂直平分线.最新文件仅供参考已改成word文本。
全等三角形证明培优题

模块一:根本辅助线1.如图,AC=BD,AD⊥AC,BC⊥BD,求证:AD=BC.2.如图,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点,〔1〕求证:AF⊥CD.〔2〕在你连接BE后,还能得出什么新的结论?请写出三个〔不要求证明〕3.如图,∠B=∠E,∠C=∠D,BC=DE,M为CD中点,求证:AM⊥CD.4.如图,平面上有一边长为2的正方形ABCD,O为对角线的交点,正方形OEFG的顶点与O 重合,OE、OG分别与正方形ABCD的边交于M、N两点.①如图〔1〕,当OE⊥AB时,四边形OMBN的面积为___;②如图〔2〕,当正方形OEFG绕点O旋转时,四边形OMBN的面积会发生变化吗?试证明你的结论.5.如下图,在△ABC中,AB=AC,在AB上取一点E,在AC延长线上取一点F,使BE=CF,EF交BC于G.求证:EG=FG。
6.如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E 作EG⊥BC于G.〔1〕假设∠A=50°,∠D=30°,求∠GEF的度数;〔2〕假设BD=CE,求证:FG=BF+CG.模块二:母子型1:如图,点C为线段AB上一点,△ACM, △CBN都是等边三角形,AN交MC于点E,BM 交CN于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形2.如图,,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连结AE、BF。
求证:〔1〕AE=BF;〔2〕AE⊥BF。
3.如图1,假设四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE,AG⊥CE;〔1〕当正方形GFED绕D旋转到如图2的位置时,AG=CE是否成立?假设成立,请给出证明;假设不成立,请说明理由;〔2〕当正方形GFED绕D旋转到如图3的位置时,延长CE交AG于H,交AD于M.①求证:AG⊥CH;②当AD=4,DG=2时,求CH的长.4.如图,△ABD、△AEC都是等边三角形,AF⊥CD于点F,AH⊥BE于点H,问:〔1〕BE与CD 有何数量关系?为什么?〔2〕AF、AH有何数量关系?为什么?5.:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.〔1〕求证:①BE=CD;②△AMN是等腰三角形;〔2〕在图①的根底上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出〔1〕中的两个结论是否仍然成立;〔3〕在〔2〕的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.〔2021•丰台区一模〕如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.〔1〕如果AB=AC,∠BAC=90°,①当点D在线段BC上时〔与点B不重合〕,如图2,线段CF、BD所在直线的位置关系为______,线段CF、BD的数量关系为______;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;〔2〕如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC〔点C、F不重合〕,并说明理由.模块三倍长中线(1)倍长中线〔2〕倍长类中线1.:如图,△ABC中,AD平分∠BAC,且BD=CD,求证:AB=AC.2.,如图△ABC 中,AC>AB,AM 是BC 边上的中线,求证:21〔AC-AB 〕<AM <21(AB+AC).3. 如下图,△ABC 中,AD 平分∠BAC,E,F 分别在BD,AD 上,DE=CD,EF=AC,求证:EF//AB.4.如图,AD 是△ABC 的中线,E 、F 分别在AB 、AC 上,且DE ⊥DF 求证:BE+CF >EF .4. 如图,在△ABC 中,AB=AC ,CE 是AB 边上的中线,延长AB 到D ,使BD=AB ,连接CD .求证:CE=21CD.5. 证明:直角三角形斜边上的中线等于斜边上的一半。
全等三角形专题培优(带答案)

全等三角形专题培优考试总分: 110 分考试时间: 120 分钟卷I(选择题)一、选择题(共 10 小题,每小题 2 分,共 20 分)1.如图为个边长相等的正方形的组合图形,则A. B.C. D.2.下列定理中逆定理不存在的是()A.角平分线上的点到这个角的两边距离相等B.在一个三角形中,如果两边相等,那么它们所对的角也相等C.同位角相等,两直线平行D.全等三角形的对应角相等3.已知:如图,,,,则不正确的结论是()A.与互为余角B.C.D.4.如图,是的中位线,延长至使,连接,则的值为()A. B. C. D.5.如图,在平面直角坐标系中,在轴、轴的正半轴上分别截取、,使;再分别以点、为圆心,以大于长为半径作弧,两弧交于点.若点的坐标为,则与的关系为()A. B.C. D.6.如图,是等边三角形,,于点,于点,,则下列结论:①点在的角平分线上;②;③;④.正确的有()A.个B.个C.个D.个7.如图,直线、、″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处8.如图,是的角平分线,则等于()A. B.C. D.9.已知是的中线,且比的周长大,则与的差为()A. B.C. D.10.若一个三角形的两条边与高重合,那么它的三个内角中()A.都是锐角B.有一个是直角C.有一个是钝角D.不能确定卷II(非选择题)二、填空题(共 10 小题,每小题 2 分,共 20 分)11.问题情境:在中,,,点为边上一点(不与点,重合),交直线于点,连接,将线段绕点顺时针方向旋转得第1页,共7页第2页,共7页………外………○……………………○……………………○※※请※※不※※答※※题※………内………○……………………○……………………○到线段(旋转角为),连接.特例分析:如图.若,则图中与全等的一个三角形是________,的度数为________.类比探究:请从下列,两题中任选一题作答,我选择________题. :如图,当时,求的度数; :如图,当时,①猜想的度数与的关系,用含的式子表示猜想的结果,并证明猜想;②在图中将“点为边上的一点”改为“点在线段的延长线上”,其余条件不变,请直接写出的度数(用含的式子表示,不必证明)12.如图,正方形纸片的边长为,点、分别在边、上,将、分别沿、折叠,点、恰好都落在点处,已知,则的长为________.13.在中,为的平分线,于,于,面积是,,,则的长为________.14.在中,,的垂直平分线与所在的直线相交所得到锐角为,则等于________.15.如图,平分,于,于,,则图中有________对全等三角形.16.如图,在中,,点从点出发沿射线方向,在射线上运动.在点运动的过程中,连结,并以为边在射线上方,作等边,连结. 当________时,;请添加一个条件:________,使得为等边三角形; ①如图,当为等边三角形时,求证:;②如图,当点运动到线段之外时,其它条件不变,①中结论还成立吗?请说明理由.17.如图,从圆外一点引圆的两条切线,,切点分别为,.如果,,那么弦的长是________.18.如图,在中,,,是的平分线,平分交于,则________.19.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图,在中,,平分,, 求的长.小聪思考:因为平分,所以可在边上取点,使,连接.这样很容易得到,经过推理能使问题得到解决(如图). 请回答:是________三角形.的长为________.参考小聪思考问题的方法,解决问题: 如图,已知中,,,平分,,.求的长.20.如图,在和中,,,若要用“斜边直角边..”直接证明,则还需补充条件:________.三、解答题(共 7 小题 ,每小题 10 分 ,共 70 分 )21.如图,已知为等边三角形,为延长线上的一点,平分,,求证:为等边三角形.22.尺规作图(不要求写作法,保留作图痕迹)如图,作①的平分线;②边上的中线;22.一块三角形形状的玻璃破裂成如图所示的三块,请你用尺规作图作一个三角形,使所得的三角形和原来的三角形全等.(不要求写作法,保留作图痕迹.不能在原图上作三角形)22.如图:在正方形网格中有一个,按要求进行下列画图(只能借助于网格):①画出中边上的高(需写出结论).②画出先将向右平移格,再向上平移格后的.23.平行四边形中,,点为边上一点,连结,点在边所在直线上,过点作交于点.如图,若为边中点,交延长线于点,,,,求;如图,若点在边上,为中点,且平分,求证:;如图,若点在延长线上,为中点,且,问中结论还成立吗?若不成立,那么线段、、满足怎样的数量关系,请直接写出结论.24.如图,直线与轴、轴分别交于、两点,直线与直线关于轴对称,已知直线的解析式为,求直线的解析式;过点在的外部作一条直线,过点作于,过点作于,请画出图形并求证:;沿轴向下平移,边交轴于点,过点的直线与边的延长线相交于点,与轴相交于点,且,在平移的过程中,①为定值;②为定值.在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值.25.如图:,,过点,于,于,.求证:.第3页,共7页第4页,共7页26.如图,点,在上,,,,与交于点.求证:;试判断的形状,并说明理由.27.如图,已知点是平分线上一点,,,垂足为、吗?为什么?是的垂直平分线吗?为什么? 答案 1.B 2.D 3.D 4.A 5.B 6.D 7.D 8.A 9.B 10.B11.[ “”, “” ][ “” ] 12.[ “” ] 13.[ “” ] 14.[ “或” ]15.[ “” ] 16.[ “;” ][ "添加一个条件,可得为等边三角形; 故答案为:;①∵与是等边三角形, ∴,,, ∴, 即, 在与中, , ∴, ∴;②成立,理由如下; ∵与是等边三角形, ∴,,, ∴, 即, 在与中, , ∴, ∴." ] 17.[ “” ] 18.[ “” ]19.[ "解:是等腰三角形, 在与中,, ∴, ∴,, ∵, ∴, ∴,∴是等腰三角形;" ][ "的长为, ∵中,,, ∴, ∵平分, ∴,在边上取点,使,连接, 则,∴, ∴, ∴,在边上取点,使,连接, 则, ∴,, ∵, ∴, ∴, ∵,∴." ]\"go题库\"20.[ “” ]21.证明:∵为等边三角形,∴,,即,∵平分,∴,在和中,,∴,∴,,又,∴,∴为等边三角形.22.解:如图所示:;如图所示:即为所求;;①如图所示:即为所求;②如图所示:即为所求;..23.解:如图,在平行四边形中,,∴,∵在中,为的中点,,∴,又∵,∴,故可设,,则中,,解得,∴,又∵,,∴为的中点,∴;如图,延长交的延长线于点,则,∵,∴,又∵平分,∴,∴是等腰直角三角形,∴,又∵,∴,∴,,又∵为的中点,∴,∴,∴,∵,∴;第5页,共7页第6页,共7页…○…………装订…………○…※※请※※不※※内※※答※※题※※…○…………装订…………○…若点在延长线上,为中点,且,则中的结论不成立,正确结论为:. 证明:如图,延长交的延长线于点,则,∵, ∴, ∴, 又∵, ∴, ∴,,又∵为的中点, ∴, ∴, ∴, ∵, ∴.24.解:∵直线与轴、轴分别交于、两点, ∴,,∵直线与直线关于轴对称, ∴∴直线的解析式为:;如图..∵直线与直线关于轴对称, ∴,∵与为象限平分线的平行线, ∴与为等腰直角三角形, ∴, ∵, ∴ ∴ ∴,,∴;①对,过点作轴于,直线与直线关于轴对称∵,, 又∵, ∴, 则, ∴ ∴ ∴ ∴ ∴.25.证明:连接, ∵, ∴, ∵, ∴, ∴, ∵,, ∴, 在和中,∴.26.证明:∵,∴,即.又∵,,∴,∴.解:为等腰三角形理由如下:∵,∴,∴,∴为等腰三角形.27.解:.理由:∵是的平分线,且,,∴,∴;是的垂直平分线.理由:∵,在和中,,∴,∴,由,,可知点、都是线段的垂直平分线上的点,从而是线段的垂直平分线.第7页,共7页。
【全等三角形】培优题型全集

《全等三角形》培优题型全集题型一:倍长中线(线段)造全等1、已知:如图,AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且 AE=EF ,求证:AC=BFC2、如图,△ABC 中,AB=5,AC=3,则中线AD 的取值范围是______.DCBA3、在△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是( ) A 、1<AB<29 B 、4<AB<24C 、5<AB<19D 、9<AB<194、已知:AD 、AE 分别是△ABC 和△ABD 的中线,且BA=BD , 求证:AE=21AC CE5、已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠ABFDEC题型二:截长补短1、已知,四边形ABCD 中,AB ∥CD ,∠1=∠2,∠3=∠4。
求证:BC =AB +CD 。
2、已知:如图,在△ABC 中,∠C =2∠B ,∠1=∠2, 求证:AB=AC+CD.3、如图,在△ABC 中,∠BAC=60°, AD 是∠BAC 的平分线,且AC=AB+BD ,求∠ABC 的度数DCBA4、已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.DOECB ADCB A 12题型三:角平分线上的点向角两边引垂线段1、如图,在四边形ABCD中,BC>BA,AD=CD,求证:∠BAD+∠C=180°C2、如图,四边形ABCD中,AC平分∠BAD,CE⊥AB于E,AD+AB=2AE,则∠B与∠ADC互补,为什么?3、如图,△ABD和△ACD,BD=CD,∠ABD=∠ACD,求证AD平分∠BAC.4、已知,AB>AD,∠1=∠2,CD=BC。
全等三角形培优题

数学练习七一、选择题:1、下列说法中正确的是( )A 、两个直角三角形全等B 、两个等腰三角形全等C 、两个等边三角形全等D 、两条直角边对应相等的直角三角形全等 2、三角形内到三个顶点的距离相等的点是( )A 、三角形的三条角平分线的交点B 、三角形的三条高的交点C 、三角形的三条中线的交点D 、三角形的三边的垂直平分线的交点 3、 下列说法中,错误的有( ) ①面积相等的两个三角形是全等三角形②三个角分别相等的两个三角形是全等三角形 ③全等三角形的周长相等④有两边及其中一边的对角分别对应相等的两个△全等. A .1个B .2个C .3个 D. 4个4、如右上图,在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 的中点、又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出的三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( ) A .2组B .3组C .4组 D.5组5、如图,△ABC ≌△CDA ,并且AB=CD ,那么下列结论错误的是 ( ) (A )∠DAC=∠BCA (B )(C )∠D=∠B (D )AC=BC6、全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A1B1C1是全等(合同)三角形,点A 与点A1对应,点B 与点B1对应,点C 与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形 如图,若运动方向相反,则称它们是镜面合同三角形 如图,两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180° 如图,下列各组合同三角形中,是镜面合同三角形的是( )A B C D7、如图,△ABC中,∠B=∠C,BD=CF,BE=CD,∠EDF=a,则下列结论正确的是A.2a+∠A=180°B.a+∠A=90°()C.2a+∠A=90°D.a+∠A=180°8、若AB=AC,BG=BH,AK=KG,则∠BAC=______.二、填空题9、如图,已知AE=CE,BD⊥AC.若AD=5cm,BC=3cm,则CD+AB=_________ 10、如图,DO是边AC的垂直平分线,交AB于点D,若AB=7cm,BC=5cm,则△BDC的周长是11、如图3,已知AB∥CD,AD∥BC,E.F是BD上两点,且BF=DE,则图中共有对全等三角形.12、如图4,四边形ABCD的对角线相交于O点,且有AB∥DC,AD∥BC,则图中有______对全等三角形.13、如图5,⊿ABC≌⊿ADE,若∠B=40°,∠EAB=80°,∠C=45°,则∠EAC = ,∠D= ,∠DAC= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017中考全等三角形经典培优题
1已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD
2已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2
A
D
B
C
3已知:∠1=∠2,CD=DE,EF
︒
=
∠90
ACB BC
AC=MN C MN
AD⊥D MN
BE⊥E1)当直线MN绕点C旋转到图1的位置时,
求证:①ADC
∆≌CEB
∆;②BE
AD
DE+
=;
(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,
请给出证明;若不成立,说明理由.
15如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。
求证:
(1)EC=BF;(2)EC⊥BF
C
D
B
A
B C
D
P D
A
C
B
F
A
E
D
C
B
A
P
E
D
C
B
A
D
C
B
M
F
E
C
B
A
C
B
D
E
F
A
E
B
M
C
F
B
A
C
D
F
2
1
E
16.如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 和∠DBA ,CD 过点E ,则AB 与AC+BD
相等吗?请说明理由
17.如图9所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C
作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .
A B C D
E F 图9
全等三角形证明经典(答案)
1. 延长AD到E,使DE=AD,
则三角形ADC全等于三角形EBD
即BE=AC=2 在三角形ABE中,AB-BE<AE<AB+BE
即:10-2<2AD<10+2 4<AD<6
又AD是整数,则AD=5
2证明:连接BF和EF。
因为BC=ED,CF=DF,∠BCF=∠EDF。
所以三角形BCF全等于三角形EDF(边角边)。
所以BF=EF,∠CBF=∠DEF。
连接BE。
在三角形BEF中,BF=EF。
所以∠EBF=∠BEF。
又因为∠ABC=∠AED。
所以∠ABE=∠AEB。
所以AB=AE。
在三角形ABF和三角形AEF中,
AB=AE,BF=EF,
∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF。
所以三角形ABF和三角形AEF全等。
所以∠BAF=∠EAF (∠1=∠2)。
3 证明:
过E点,作EG∠ABE=∠FBE,BE=BE,则⊿ABE≌ΔFBE(SAS),∠EFB=∠A;
AB平行于CD,则:∠A+∠D=180°;
又∠EFB+∠EFC=180°,则∠EFC=∠D;
又∠FCE=∠DCE,CE=CE,故⊿FCE≌ΔDCE(AAS),FC=CD.
所以,BC=BF+FC=AB+CD.
7证明:设线段AB,CD 所在的直线交于E ,(当AD<BC 时,E 点是射线BA,CD 的交点,当AD>BC 时,E 点是射线AB,DC 的交点)。
则:
△AED 是等腰三角形。
所以:AE=DE 而AB=CD
所以:BE=CE (等量加等量,或等量减等量) 所以:△BEC 是等腰三角形 所以:角B=角C.
8作B 关于AD 的对称点B‘,因为AD 是角BAC 的平分线,B'在线段AC 上(在AC 中间,因为AB 较短)
因为PC<PB’+B‘C,PC -PB’<B‘C,而B'C=AC-AB'=AC-AB,所以PC-PB<AC-AB
9作AG ∥BD 交DE 延长线于G AGE 全等BDE AG=BD=5 AGF ∽CDF AF=AG=5
所以DC=CF=2
10证明:
做BE 的延长线,与AP 相交于F 点, ∵PA
13证明:因为 AB=AC , 所以 ∠EBC=∠DCB 因为 BD ⊥AC ,CE ⊥AB 所以 ∠BEC=∠CDB BC=CB (公共边)
则有 三角形EBC 全等于三角形DCB 所以 BE =CD
P D A
C
B
14
(1)证明:∵∠ACB=90°,
(2)∴∠ACD+∠BCE=90°,
(3)而AD⊥MN于D,BE⊥MN于E,
(4)∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,
(5)∴∠ACD=∠CBE.
(6)在Rt△ADC和Rt△CEB中,{∠ADC=∠CEB∠ACD=∠CBE AC=CB,
(7)∴Rt△ADC≌Rt△CEB(AAS),
(8)∴AD=CE,DC=BE,
(9)∴DE=DC+CE=BE+AD;
(2)不成立,证明:在△ADC和△CEB中,{∠ADC=∠CEB=90°∠ACD=∠CBE AC=CB,∴△ADC≌△CEB(AAS),
∴AD=CE,DC=BE,
∴DE=CE-CD=AD-BE;
15
(1)证明;因为AE垂直AB
(2)所以角EAB=角EAC+角CAB=90度
(3)因为AF垂直AC
(4)所以角CAF=角CAB+角BAF=90度
(5)所以角EAC=角BAF
(6)因为AE=AB AF=AC
(7)所以三角形EAC和三角形FAB全等
(8)所以EC=BF
(9)角ECA=角F
(10)延长FB与EC的延长线交于点G
(11)因为角ECA=角F(已证)
(12)所以角G=角CAF
(13)因为角CAF=90度
(14)所以EC垂直BF
16在AB上取点N ,使得AN=AC
∠CAE=∠EAN ,AE为公共边,所以三角形CAE全等三角形EAN
所以∠ANE=∠ACE
又AC平行BD
所以∠ACE+∠BDE=180
而∠ANE+∠ENB=180
所以∠ENB=∠BDE
∠NBE=∠EBN
BE为公共边,
所以三角形EBN全等三角形EBD
所以BD=BN
所以AB=AN+BN=AC+BD
17证明:作CG平分∠ACB交AD于G ∵∠ACB=90°
∴∠ACG= ∠DCG=45°
∵∠ACB=90°AC=BC
∴∠B=∠BAC=45°
∴∠B=∠DCG=∠ACG
∵CF⊥AD
∴∠ACF+∠DCF=90°
∵∠ACF+∠CAF=90°
∴∠CAF=∠DCF
∵AC=CB ∠ACG=∠B
∴△ACG≌△CBE
∴CG=BE
∵∠DCG=∠B CD=BD
∴△CDG ≌△BDE
∴∠ADC=∠BDE。