固溶体合金凝固过程有两个特点

合集下载

材料科学与材料世界第7章金属和合金的凝固

材料科学与材料世界第7章金属和合金的凝固
第七章 金 属 和 合 金 的 凝 固
7.1纯金属的凝固 7.1.1液态金属的结构 7.1.2纯金属的凝固过程 7.1.3凝固的热力学条件 7.1.4晶核的形成 7.1.5晶核的长大 7.2合金的凝固
7.2.1平衡分配系数 7.2.2平衡凝固 7.2.3非平衡凝固
7.2.4固溶体合金凝固时溶质的再分配 7.2.5合金凝固中的成分过冷 7.3铸锭的组织与缺陷 7.3.1铸锭三晶区 7.3.2铸锭的缺陷
材料科学基础
第七章
● r> rk时,晶胚的生长导致系统自由能的降低,晶胚自动长大。 该晶胚可以成为晶核。 该临界尺寸rk称为晶核的 临界半径, 该晶核称为 临界晶核
● r> rk时,晶胚的生长导致系统自由能升高,晶胚自动消失。
由:dΔG/dr = 0,得晶核的临界半径:
形核率:
材料科学基础
第七章
材料科学基础
第七章
下图所示为液态纯金属在缓慢冷却过程中温度-时间关系曲线,即 冷却曲线。由图可见,液态金属在理论凝固温度Tm(金属的熔点) 处,并未开始凝固。只有冷却至Tm温度以下某个温度(Tn)才开 始凝固。通常将这种实际开始凝固温度低于理论开始凝固温度的 现象称为“过冷”,并把理论凝固温度Tm与实际凝固温度Tn之差 ΔT称为过冷度(ΔT=Tm-Tn)。
液态金属中局部规则排列微区和随机高致密区都是很不稳定 的,它们大小不一,处于时聚时散,此起彼伏的状态。这种很 不稳定的现象称为“结构起伏”或“相起伏”。均匀的液态金 属凝固过程中结晶的核心就是在结构起伏的基础上形成的,故 这些结构起伏又称为“晶胚”。
7.1.2纯金属的凝固过程
材料科学基础
第七章
液态金属的凝固过程包括晶核形成和晶核长大两个过程 。

材料科学基础试题及答案

材料科学基础试题及答案

第一章 原子排列与晶体构造1. fcc 构造的密排方向是 ,密排面是 ,密排面的堆垛顺序是 ,致密度为 ,配位数是 ,晶胞中原子数为 ,把原子视为刚性球时,原子的半径r 与点阵常数a 的关系是 ;bcc 构造的密排方向是 ,密排面是 ,致密度为 ,配位数是 ,晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系是 ;hcp 构造的密排方向是 ,密排面是 ,密排面的堆垛顺序是 ,致密度为 ,配位数是 ,,晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系是 。

2. Al 的点阵常数为,其构造原子体积是,每一个晶胞中八面体间隙数为 ,四面体间隙数为 。

3. 纯铁冷却时在912e 发生同素异晶转变是从 构造转变成 构造,配位数 ,致密度降低 ,晶体体积 ,原子半径发生 。

4. 在面心立方晶胞中画出)(211晶面和]211[晶向,指出﹤110﹥中位于〔111〕平面上的方向。

在hcp 晶胞的〔0001〕面上标出)(0121晶面和]0121[晶向。

5. 求]111[和]120[两晶向所决定的晶面。

6 在铅的〔100〕平面上,1mm 2有多少原子?铅为fcc 面心立方构造,其原子半径R=×10-6mm 。

第二章 合金相构造一、 填空1〕 随着溶质浓度的增大,单相固溶体合金的强度 ,塑性 ,导电性 ,形成间隙固溶体时,固溶体的点阵常数 。

2〕 阻碍置换固溶体溶解度大小的要紧因素是〔1〕 ;〔2〕 ;〔3〕 ;〔4〕 和环境因素。

3〕 置换式固溶体的不均匀性要紧表现为 和 。

4〕 依照溶质原子进入溶剂点阵的位置区分,固溶体可分为 和 。

5〕 无序固溶体转变成有序固溶体时,合金性能转变的一样规律是强度和硬度 ,塑性 ,导电性 。

6〕间隙固溶体是 ,间隙化合物是 。

二、问答1、 分析氢,氮,碳,硼在-Fe 和-Fe 中形成固溶体的类型,进入点阵中的位置和固溶度大小。

元素的原子半径如下:氢:,氮:,碳:,硼:,-Fe :,-Fe :。

1、相图的基本知识及匀晶相图

1、相图的基本知识及匀晶相图
1 K0 RX mCo / K0+GX T A mCo1 TA exp ÷ K D 0
G m Co 1 K R D K0
化简得:
(8)
② 影响成分过冷的因素 ·合金本身 m、Co越大,D越小,K0<1 时K0值越小,K0>1时K0值越大。成分 过冷倾向增大。 – ·外界条件 G越小(实际温度分布越平 缓), 凝固速度R越大,成分过冷倾 向增大。临界过冷度G1,成分过冷消 失
2.液体中仅借扩散而混合的情况 • 当凝固速度很快,无搅拌时,固体中无扩散而液体中 仅靠扩散而混合。这种情况比较符合实际凝固情况
Ke=1
X C S C 0 1 L
11
C0
1 K0 RX C L C 0 1 exp K D 0
式中 R:凝固速度 δ:边界层厚度 D:扩散系数 • A 当凝固速度非常缓慢时, Rδ/D 0 ,Ke K0 即为液体中溶质完全混合的情况。 • B.当凝固速度非常大时,e - Rδ/D 0 , Ke=1,为液 体中溶质仅有通过扩散而混合的情况。 • C.当凝固速度介于上面二者之间, K0<Ke< 1, 液体中溶质部分混合的情况。 • Ke方程式图解
临界过冷度g1成分过冷消失六固溶体凝固时的生成形态当在液固界面前沿有较小的成分过冷区时平面生长生长就不稳定如液固界面有些偶然的突起的部分它们就伸入过冷区中其生长速度加快而进一步凸向液体使界面出现胞状组织如界面前沿的成分过冷区甚大凸出部分就能继续伸向过冷液相中生长同时在其侧面产生分枝形成树枝状组织
相图的基本知识
□ ○
正常凝固过程
在讨论金属合金的实际凝固问题时,一般不考虑固相内 部的原子扩散,而仅讨论液相中的溶质原子混合均匀程度问 题。以下讨论的均为正常凝固过程。

固溶体合金凝固过程有两个特点

固溶体合金凝固过程有两个特点
变压下:f=c-p+2
恒压下:f=c-p+1
c:组元数。C=1,单元系统;C=1,单元系统; C=3,三元系统。
p:相数。
由公式可知: fmin=c-pmax+1 故:pmax=c-fmin+1=c-0+1
4.1.2 相图的表示 单元系:单元系成分不变,恒压下只
有温度可变,故相图由一根温度纵坐标 轴组成。
L+
C
B D
① 含Sn量小于C点合金(Ⅰ合金)的结晶过程 在3点以前为匀晶转变,结晶出单相 固溶体,这种直接从液相中结晶出的固相
称一次相或初生相。 温度降到3点以下, 固溶体被Sn过饱和,由于晶格不稳,开始析出(相变过
程也称析出)新相— 相。由已有固相析出的新固相称二次相或次生相。由 析出 的二次 用Ⅱ 表示。
如果将各温度下固溶体和液相的平均成分点分别连接成线,则该线分别称 为固相平均成分线和液相平均成分线。
固溶体在不平衡凝固时液、固两相的成分变化及组织变化示意图
Cu-Ni合金的平衡组织与枝晶偏析组织
4.2.4 固溶体的非平衡结晶与宏观偏析 固溶体的宏观偏析指沿一定方向结晶过程中,在一个区域范
围内,由于结晶先后不同而出现的成分差异。 溶质平衡分配系数:一定温度下,固/液两平衡相中溶质浓度
液相区 L
1455
L+

纯镍 熔点
固相线
Cu
固相区
20
液固两相区
40 60 Ni%
Ni 80 100
4.2.2 固溶体的平衡凝固 4.2.2.1 固溶体平衡凝固过程及组织
平衡凝固:指合金从液态很缓慢地冷却,使合金在相变过程中有充分时间
进行组元间的互相扩散, 每个阶段都能达到平衡, 达到平衡相的均匀成份。

西北工业大学材料科学基础历年真题与答案解析(1)

西北工业大学材料科学基础历年真题与答案解析(1)

西北⼯业⼤学材料科学基础历年真题与答案解析(1)西北⼯业⼤学2012年硕⼠研究⽣⼊学考试试题答案试题名称:材料科学基础试题编号:832说明:所有答题⼀律写在答题纸上第页共页⼀、简答题(每题10分,共50分)1.请简述滑移和孪⽣变形的特点?答:滑移变形特点:1)平移滑动:相对滑动的两部分位向关系不变2)滑移线与应⼒轴呈⼀定⾓度3)滑移不均匀性:滑移集中在某些晶⾯上4)滑移线先于滑移带出现:由滑移线构成滑移带5)特定晶⾯,特定晶向孪⽣变形特点:1) 部分晶体发⽣均匀切变2) 变形与未变形部分呈镜⾯对称关系,晶体位向发⽣变化3) 临界切分应⼒⼤4) 孪⽣对塑变贡献⼩于滑移5) 产⽣表⾯浮凸2.什么是上坡扩散?哪些情况下会发⽣上坡扩散?答:由低浓度处向⾼浓度处扩散的现象称为上坡扩散。

应⼒场作⽤、电场磁场作⽤、晶界内吸附作⽤和调幅分解反应等情况下可能发⽣上坡扩散。

扩散驱动⼒来⾃⾃由能下降,即化学位降低。

3.在室温下,⼀般情况⾦属材料的塑性⽐陶瓷材料好很多,为什么?纯铜与纯铁这两种⾦属材料哪个塑性好?说明原因。

答:⾦属材料的塑性⽐陶瓷材料好很多的原因:从键合⾓度考虑,⾦属材料主要是⾦属键合,⽆⽅向性,塑性好;陶瓷材料主要是离⼦键、共价键,共价键有⽅向性,塑性差。

离⼦键产⽣的静电作⽤⼒,限制了滑移进⾏,不利于变形。

铜为⾯⼼⽴⽅结构,铁为体⼼⽴⽅结构,两者滑移系均为12个,但⾯⼼⽴⽅的滑移系分布取向较体⼼⽴⽅匀衡,容易满⾜临界分切应⼒。

且⾯⼼⽴⽅滑移⾯的原⼦堆积密度⽐较⼤,因此滑移阻⼒较⼩。

因⽽铜的塑性好于铁。

4.请总结并简要回答⼆元合⾦平衡结晶过程中,单相区、双相区和三相区中,相成分的变化规律。

答:单相区:相成分为合⾦平均成分,不随温度变化;双相区:两相成分分别位于该相区的边界,并随温度沿相区边界变化;三相区:三相具有确定成分,不随结晶过程变化。

5.合⾦产品在进⾏冷塑性变形时会发⽣强度、硬度升⾼的现象,为什么?如果合⾦需要进⾏较⼤的塑性变形才能完成变形成型,需要采⽤什么中间热处理的⽅法?⽽产品使⽤时⼜需要保持⾼的强度、硬度,⼜应如何热处理?答:合⾦进⾏冷塑性变形时,位错⼤量増殖,位错运动发⽣交割、缠结等,使得位错运动受阻,同时溶质原⼦、各类界⾯与位错的交互作⽤也阻碍位错的运动。

固溶体合金的结晶

固溶体合金的结晶
0
CS
x C0 1 L
11
C0
(3)终止瞬态(Ⅲ) 凝固的最后阶段,剩 余的液体量很小,溶质原 子的扩散使液体中溶质浓 度提高,而不保持C0,此 时液体中浓度梯度降低, 扩散减慢,界面浓度升高, 与之平衡的固相浓度也增 高。 液相内溶质仅靠扩散混合
4. 液相内溶质部分混合
圆棒离左端距离Z处的溶质浓度 :
C S C 0 k0 (1 Z L )
k 0 1
剩余液相的平均浓度:
C L C 0 (1 Z L )
k 0 1
其中 L:合金棒长度 C0:合金的原始浓度 液相内溶质充分均匀混合 k0: 平衡分配系数
3. 液相内溶质仅靠扩散混合 当凝固速度较大时,液相无搅拌、对流而只有 扩散时,则凝固时从固相中排出的溶质原子不能均 匀分布在液相中,而在液-固界面处液相一侧堆积, 凝固过程中溶质原子的变化分三个阶段: (1)起始瞬态 (Ⅰ) 凝固开始,液相成分C0,固相成分K0C0,冷却 中,界面处两相局部平衡,液相成分不均匀,界面 处有局部平衡成分CL,远离界面保持母相成分CO。
与纯金属相比,固溶体合金凝固过程有 两个特点: 1、固溶体合金凝固时析出的固相成分与原 液相成份不同,需成份起伏。α晶粒的形核 位置是那些结构起伏、能量起伏和成分起伏 都满足要求的地方。
2、固溶体合金凝固时依赖于异类原子的互 相扩散。
2.不平衡结晶 固溶体的凝固依赖于组元的扩散。在工业生 产中,合金熔液浇注后冷速较快,使相内扩散不 能充分进行,偏离了平衡条件。液、固两相的成 分将偏离平衡相图中的液相线和固相线。由于固 相内扩散较液相内组元扩散慢得多,故偏离固相 线的程度大。
此外,固溶体合金在不平衡凝固时还往往
造成宏观偏析和区域偏析,即大范围内化学成

《材料科学基础》复习思考题

《材料科学基础》复习思考题

《材料科学基础》复习思考题第一章:材料的结构一、解释以下基本概念空间点阵、晶格、晶胞、配位数、致密度、共价键、离子键、金属键、组元、合金、相、固溶体、中间相、间隙固溶体、置换固溶体、固溶强化、第二相强化。

二、填空题1、材料的键合方式有四类,分别是(),(),(),()。

2、金属原子的特点是最外层电子数(),且与原子核引力(),因此这些电子极容易脱离原子核的束缚而变成()。

3、我们把原子在物质内部呈()排列的固体物质称为晶体,晶体物质具有以下三个特点,分别是(),(),()。

4、三种常见的金属晶格分别为(),()和()。

5、体心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有体心立方晶格的常见金属有()。

6、面心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有面心立方晶格的常见金属有()。

7、密排六方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),具有密排六方晶格的常见金属有()。

8、合金的相结构分为两大类,分别是()和()。

9、固溶体按照溶质原子在晶格中所占的位置分为()和(),按照固溶度分为()和(),按照溶质原子与溶剂原子相对分布分为()和()。

10、影响固溶体结构形式和溶解度的因素主要有()、()、()、()。

11、金属化合物(中间相)分为以下四类,分别是(),(),(),()。

12、金属化合物(中间相)的性能特点是:熔点()、硬度()、脆性(),因此在合金中不作为()相,而是少量存在起到第二相()作用。

13、CuZn、Cu5Zn8、Cu3Sn的电子浓度分别为(),(),()。

合金的凝固特点和性质

合金的凝固特点和性质
5
凝固过程中( T = T* ) :CS Cs CL CL
6
凝固终了时,固相成分均匀地为: CS = C0
7
二、液相充分混合均匀时的溶质再分配
该情况下溶质在固相中没有扩散,而在液相中充分混合均匀。 起始凝固时:
C S = K 0C 0 ,C L = C 0
8
该情况下溶质在固相中没有扩散,而在液相中充分混合均匀。
间距d1、和二次分枝间距 d2பைடு நூலகம்两种。
枝晶间距小
细晶强化效果显著 成分趋于均匀化
显微缩松、夹杂物细小 且分散 热裂纹倾向小
材料性能好
31
枝晶间距的预测
一次臂间距d1的表达式:
d1a0[mLC0G (K L0v 1)DL]1 2
d164m L vD 14L G (1 L1 2 K0)C
冈本平 Hunt J.D
α相前沿富B,而β相前沿富A,扩散速度正比于溶质的浓度梯度,因此横 向扩散速度比纵向大得多。共晶两相通过横向扩散不断排走界面前沿积 累的溶质,且又互相提供生长所需的组元,彼此合作,齐头并进地向前 生长。
48
3、片层距的调整
α相片层中心处B原子扩散比α-β交界要困难得多 →此处B原子聚集而浓度升高 → α相在此处推进的速度变慢 → 形成凹坑 → B原子扩散越发困难 → 新的β相片层则在此处形成,
DL
δN 很小时,这相当于前面讨论的液相完全混合的情况。
KE =1:发生在 R N >>1 时,即快生长速度凝固、或没有任何对流,
DL
δN 很大的情况,这相当于液相只有扩散时的情况。
K0<KE<1:相当于液相部分混合(有对流)的情况,工程中常在该范围。
四种单向凝固条件下的溶质分布情况示意图。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在成分垂线相当于温度t 的o 点作水平线,其与液固相线 交点a、b所对应的成分x1、x2 即分别为液相和固相的成分。
t

1
2
② 确定两平衡相的相对重量
设合金的重量为1,液相重量为QL,固相重量为Q。 则 QL + Q =1
QL x1 + Q x2 =x
解方程组得
QL

x2 x x2 x1


x x1 x2 x1
式中的x2-x、x2-x1、x-x1即为相图中线段xx2 (ob)、 x1x2(ab)、 x1x(ao)的长度。
变压下:f=c-p+2
恒压下:f=c-p+1
c:组元数。C=1,单元系统;C=1,单元系统; C=3,三元系统。
p:相数。
由公式可知: fmin=c-pmax+1 故:pmax=c-fmin+1=c-0+1
4.1.2 相图的表示 单元系:单元系成分不变,恒压下只
有温度可变,故相图由一根温度纵坐标 轴组成。
匀晶转变过程中原子扩散示意图
成分起伏:微观体积内成 分偏离平均成分的现象。
4.2.2.2 杠杆定律 处于两相区的合金,不仅由相图可知道任一成分的合金在
两相区任一温度下两平衡相的成分,还可用杠杆定律求出两平 衡相的相对重量。 现以Cu-Ni合金为例推导杠杆定律: ① 确定两平衡相的成分:设合金成分为x,过x做成分垂线。
由凝固开始温度 连接起来的相界线 称为液相线,由凝 固终结温度连接起 来的相界线称为固 相线。为了精确测 定相变的临界点, 用热分析法测定时 必须非常缓慢冷却, 以达到热力学的平 衡条件,一般控制 在每分钟0.5~ 0.15℃之内。
用热分析法建立 Cuห้องสมุดไป่ตู้Ni相图
二元相图中的相区 单相区:f=2-1+1=2,可独立改变温度和成分 两相区:f=1,温度和成分中只有一个独立变量, 三相共存: f=0,三个平衡相的成分和温度都不 变,属恒温转变,——在相图上表示为水平线, 称为三相水平线。
液固相线不仅是相区分界 线, 也是结晶时两相的成分变 化线;匀晶转变是变温转变。
与纯金属相比,固溶体合金 凝固过程有两个特点:
1.固溶体合金凝固时析出的 固相成分与原液相成份不同, 需成份起伏。
晶粒的形核位置是那些结构 起伏、能量起伏和成分起伏都 满足要求的地方。
2.凝固在一个温度区间内进 行,在此温度范围的每一温度 下,只能凝固出一定数量的固 相,两相成分随温度发生变化。 固溶体合金凝固时依赖于异类 原子的互相扩散,凝固速率慢。
4.2 二元匀晶相图
由液相结晶出单相固溶体的过程称为匀晶转变。
L
两组元在液态和固态下均无限互溶时所构成的相图 称二元匀晶相图。
几乎所有的二元相图都包含有匀晶转变部分。
4.2.1 相图分析
铜-镍合金匀晶相图
液相线
T,C
1500 1400 1300 1200 1100 纯铜 1000 1083 熔点
液相区 L
1455
L+

纯镍 熔点
固相线
Cu
固相区
20
液固两相区
40 60 Ni%
Ni 80 100
4.2.2 固溶体的平衡凝固 4.2.2.1 固溶体平衡凝固过程及组织
平衡凝固:指合金从液态很缓慢地冷却,使合金在相变过程中有充分时间
进行组元间的互相扩散, 每个阶段都能达到平衡, 达到平衡相的均匀成份。
二元相图中的成分按国家标准有两种表示法:
①质量分数(w):
wA

RA xA RA xA RB xB
, wB

RB xB RA xA RB xB
②摩尔分数(x):
xA

wA
/
wA / RA RA wB
/
RB
, xB

wA
/
wB / RB RA wB
/
RB
式中:ωA、ωB分别为A、B组元的质量分数;xA、xB分别为A、
B组元的摩尔分数,RA、RB分别为A、B组元的相对原子质量。
并且ωA+ωB=1(或100%),xA+xB=1(或100%)。
本课程中相图的成分,若未给出具体的说明,均以质量分 数示之。
若二元相图中的组元A和B为化合物,则以组元A(或B)化 合物的相对分子质量MrA(或MrB)取代上式中组元A(或B) 的相对原子质量RA(或RB),以组元A(或B)化合物的分子 质量分数来表示上式中对应组元的原子质量分数,即可得到 化合物的摩尔分数表达式。这种摩尔分数表达方式在陶瓷二 元相图和高分子二元相图中较普遍使用。
子仍在相界处不停地转换,只不过各相之间的转换速度相同。 若体系内不发生化学反应,则相平衡的热力学条件是各组元
在各相中的化学位相等。
相律是表示在平衡条件下,系统的自由度数、组元 数和平衡相数之间的关系式。
自由度数f是指在不改变系统平衡相的数目的条件下, 可以独立改变的,影响系统状态的因素(如温度、压力、 平衡相成分)的数目。
除纯组元外,其它成分 合金结晶过程相似,以Ⅰ 合金为例说明。
当液态金属自高温冷却 到 t1温度时,开始结晶出 成分为1的固溶体,其Ni 含量高于合金平均成分。
随温度下降,固溶体重量增加,液相重量减少。同时,液 相成分沿液相线变化,固相成分沿固相线变化。
成分变化是通过原子扩散 完成的。当合金冷却到t3时, 最后一滴L3成分的液体也转 变为固溶体,此时固溶体的 成分又变回到合金成分3上 来。
二元系:二元系恒压下有一个独立可 变的成分变量和一个温度变量,故相图 有一根成分横坐标轴和一根温度纵坐标 轴组成平面图。
三元系:三元系恒压下有两个独立可 变的成分变量和一个温度变量,故相图 有两根成分横坐标轴和一根温度纵坐标 轴组成立体图。
恒压下纯铁的相图
在相图中,任意一点都叫“表象点”。一个表象点的坐标值 反映一个给定合金的成分和温度。在相图中,由表象点所在的 相区可以判定在该温度下合金由哪些相组成。二元合金在两相 共存时,两个相的成分可由过表象点的水平线与相界线的交点 确定。
相图(平衡图、状态图):平衡条件下,合金的相状态与温 度、成份间关系的图形。是制订熔炼、铸造、热加工及热处理 工艺的重要依据。
根据组元数, 分为单元系相图、二元相图和三元相图。
4.1 相、相平衡及相图制作
4.1.1 相平衡与相律 在指定的温度和压力下,若多相体系的各相中每一组元的浓
度均不随时间而变,则体系达到相平衡。 实际上相平衡是一种动态平衡,从系统内部来看,分子和原
相关文档
最新文档