二元一次方程组加减消元法练习题
8.2二元一次方程组的解法(加减消元)

解:由方程①-②得: -x+y=-3,即 x-y=3;
由方程①+②得: 4009x+4009y=4009,即 x+y=1;
∴ x y2 x y3 12 33 28
甲、乙两人同解方程组CAxx
By 3y
2 2,
甲正确解得
x y
11,乙抄错C,解得xy
2 ,
6
求A、B、C的值。
此次在线研讨会,不仅让在场的教育工作者受益匪浅,更利于推动K12教育模式的改革,为未来教育信息化的普及应用夯实基础,通过标注逾十万句英文写作原文,搜狗AI翻译团队总结出国人写作中常见的 单词拼写、标点符号、语法时态、语句C化等高频错误,关于小组合作学习的主题研讨,老师们还有很多丰富的实践经验,也希望老师们能够借此机会,梳理一下自己开展小组合作学习的亮点,为日后的教学 提供更多的帮助,市场研究 https://,活动自筹备以来得到社会各界的关注和助力,来自北京的千语谦言文化传播有限、北京口才星文化传播有限以及山西、甘肃、辽 宁等地的合作单位,签定了百城城市合伙人计划,第三是要尽快推动5G的全面推进,近日,安徽省委书记李锦斌赴科大讯飞调研并主持召开加快新一代人工智能产业发展与推进中国声谷建设座谈会, 在参观智慧教育信息化成果时,李锦斌指出,要坚持软硬件两手抓、两手硬,在技术驱动、应用驱动上下更大功夫,争当引领科技和产业变革的领衔者
2005 2004
y y
2003, 求 2006
x y2 x y3的值。
(2)若22000054xx
2005 2004
y y
2003, 求 2006
x y2 x y3的值。
(2)若22000054
x x
2
求
2006
加减消元法解二元一次方程组(1)

基本思路:二元
一元
五、分层练习,自我提升
1、已知方程组
2 x y 10 ① 中,①+②,得5x=5,解得x= 1 3x y 5 ②
.
3x 3 y 6 2、解方程组 3x 2 y 5
①
②
,发现x的系数特点是 相同 ,
只要将这两个方程相 减 ,便可消去未知数
4x +10y=3.6 ① 15x -10y=8
② ①+②消去y
3x +10 y=2.8 ①
15x -10 y=8
②
解:把 ①+②得: 18x=10.8 x=0.6 把x=0.6代入①,得: 3×0.6+10y=2.8 解得:y=0.1 所以这个方程组的解是
x 0.6 y 0.1
基本思路: 加减消元: 二元 一元
主要步骤:
加减
消去一个元
求解
写解
分别求出两个未知数的值
写出方程组的解
1、方程组
① ,①-②得(B ) ② 5y 8 5 y 8 B、5 y 8 C、 A、
2 x 3 y 5 2 x 8 y 3
5 y 8 D、
2 x - 4 y 8 2、用加减法解方程组3x 4 y 2
加减消元法的概念
两个二元一次方程中同一未知数 的系数相反或相等时,将两个方 程的两边分别相加或相减,就能 消去这个未知数,得到一个一元 一次方程,这种方法叫做加减消 元法,简称加减法(addition- subtraction method)。
试一试,你会解吗?
用加减法解下列方程:
3u 2t 7 (1) 6u 2t 11
河南周口市七年级数学下册第八章【二元一次方程组】经典练习题(含解析)

1.已知二元一次方程组2513377x y x y +=⎧⎨-=-⎩①②,用加减消元法解方程组正确的( ) A .①×5-②×7B .①×2+②×3C .①×7-②×5D .①×3-②×22.如图,天平上放有苹果、香蕉、砝码,且两个天平都平衡,则一个苹果的重量是一个香蕉的重量的( )A .23倍 B .32倍 C .2倍D .3倍3.如图1、图2都是由8个一样的小长方形拼(围)成的大矩形,且图2中的阴影部分(小矩形)的面积为21cm .则小长方形的长为( )cm .A .5B .3C .7D .94.如果方程组54356x y kx y -=⎧⎨+=⎩的解中的x 与y 互为相反数,则k 的值为( )A .1B .1或1-C .27-D .5-5.若关于x 、y 的方程组228x y ax y +=⎧⎨+=⎩的解为整数,则满足条件的所有a 的值的和为( )A .6B .9C .12D .166.小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了41.4元,而两个月前买同重量的这两样菜只要36元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,设两个月前买的萝卜和排骨的单价分别为x 元/斤,y 元/斤,则可列方程为( )A .()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩B .()()241.42110%120%36x y x y +=⎧⎨⨯-++=⎩241.41213623612141.47.方程术是《九章算术》最高的数学成就,《九章算术》中“盈不足”一章中记载:“今有大器五小器一容三斛(古代的一种容量单位),大器一小器五容二斛,…”译文:“已知 5 个大桶加上 1 个小桶可以盛酒 3 斛,1 个大桶加上 5 个小桶可以盛酒 2 斛,…“则一个大桶和一个小桶一共可以盛酒斛,则可列方程组正确的是( ) A .5253x y x y +=⎧⎨+=⎩B .5352x y x y +=⎧⎨+=⎩C .5352x y x y +=⎧⎨=+⎩D .5=+352x y x y ⎧⎨+=⎩8.对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a+b .例如3⊗4=2×3+4,若x ⊗(﹣y )=2018,且2y ⊗x =﹣2019,则x+y 的值是( ) A .﹣1B .1C .13D .﹣139.已知:关于x 、y 的方程组2423x y a x y a +=-+⎧⎨+=-⎩,则x-y 的值为( )A .-1B .a-1C .0D .110.把方程23x y -=改写成用含x 的式子表示y 的形式,正确的是( ) A .23x y =+B .32y x +=C .23y x =-D .32y x =-11.小明去商店购买A B 、两种玩具,共用了10元钱,A 种玩具每件1元,B 种玩具每件2元.若每种玩具至少买一件,且A 种玩具的数量多于B 种玩具的数量.则小明的购买方案有( ) A .5种B .4种C .3种D .2种二、填空题12.金秋十月,丹桂飘香,重庆市綦江区某中学举行了创新科技大赛,该校初二年级某班共有18人报名参加航海组、航空组和无人机组三个项目组的比赛(每人限参加一项),其中航海组的同学比无人机组的同学的两倍少3人,航空组的同学不少于5人但不超过9人,班级决定为航海组的每位同学购买2个航海模型,为航空组的每位同学购买3个航空模型,为无人机组的每位同学购买若干个无人机模型,已知航海模型75元每个,航空模型98元每个,无人机模型165元每个,若购买这三种模型共需花费6939元,则其中购买无人机模型的费用是_______.13.某果蔬饮料由果汁、蔬菜汁和纯净水按一定质量比配制而成,纯净水、果汁、蔬菜汁的价格比为1:2:2,因市场原因,果汁、蔬菜汁的价格涨了12.5%,而纯净水的价格降了20%,但并没有影响该饮料的成本(只考虑购买费用),那么该种饮料中果汁与蔬菜汁的质量和与142kg收费;超过2kg不足3kg按照3kg收费,以此类推.某产家分别寄快递到重庆市内和北京,其中,寄往重庆市内的起步价为a元,超过部分b元/kg;寄往北京的起步价为()7a+元,超过部分()4b+元/kg.已知一个寄往重庆市内的快件,质量为2kg,收费13元;一个寄往北京的快件,质量为4.5kg,收费42元.如果一个寄往北京的快件,质量为2.8kg,应收费______元.15.已知12xy=⎧⎪⎨=-⎪⎩是方程组522x b yx a y-=⎧⎨+=⎩的解,则a b+的值为_______ .16.如图,5个大小形状完全相同的长方形纸片,在直角坐标系中摆成如图图案,已知()8,5B-,则点A的坐标为__________.17.某商店准备用每千克19元的A糖果和每千克10元的B糖果混合成什锦糖果出售,混合后糖果的价格是每千克16元.现在要配制这种什锦糖果150千克,需要两种糖果各多少千克?设A糖果x千克,B糖果y千克,根据题意可列二元一次方程组:_____.18.某超市促销活动,将车厘子、波罗蜜、山竹三种水果采用三种不同方式搭配成礼盒,分别是蒸蒸日上礼盒、独占鳌头礼盒、吉祥如意礼盒,将礼盒进行销售,每盒的总成本为盒中843山竹三种水果3千克,8千克,6千克;蒸蒸日上每盒的总成本是每千克车厘子水果成本的14倍,每盒蒸蒸日上的销售利润是60%,每盒独占鳌头的售价是成本的43倍,每盒吉祥如意在成本上提高60%标价后打八折出售,获利为每千克车厘子水果成本的2.8倍,当销售蒸蒸日上、独占鳌头、吉祥如意三种礼盒的数量之比为5:2:5,则销售的总利润率为______. 19.已知关于x ,y 的方程组111222a b c a b c x y x y +=⎧⎨+=⎩的唯一解是41x y =⎧⎨=⎩,则关于m ,n 的方程组()()11112222a 2m 6b c b a 2m 6b c b n n ⎧--=+⎪⎨--=+⎪⎩的解是____________. 20.若方程2(3)31a a xy --+=是关于x ,y 的二元一次方程,则a 的值为_____.21.明代的程大位创作了《算法统宗》,它是一本通俗实用的数学书,将枯燥的数学问题化成了美妙的诗歌,读来朗朗上口,是将数字入诗的代表作.例如,其中有一首饮酒数学诗:“肆中饮客乱纷纷,薄酒名釂厚酒醇.醇酒一瓶醉三客,薄酒三瓶醉一人,共同饮了一十九,三十三客醉颜生.试问高明能算士,几多酶酒几多醇?”这首诗是说:“好酒一瓶,可以醉倒3位客人;薄酒三瓶,可以醉倒1位客人,如今33位客人醉倒了,他们总共饮下19瓶酒.试问其中好酒、薄酒分别是多少瓶?”请你根据题意,求出好酒是有_____瓶.三、解答题22.“滴滴打车”深受大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/千米计算,耗时费按q 元/分钟计算,小明、小亮两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如表:(1)求p ,q 的值;(2)“滴滴”推出新政策,在原有付费基础上,当里程数超过8千米后,超出的部分要加收0.6元/千米的里程费.某天,小丽两次使用“滴滴打车”共花费52元,总里程20千米,已知两次“滴滴打车”行驶的平均速度为40千米/小时,求小丽第一次“滴滴打车”的里程数? 23.今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?24.新冠疫情过后,海伦市第三中学七年级学生将外出进行社会实践活动,从学校出发骑自1.515520少时间?25.若x ,y 2(2313)0x y +-=,求2x y -的值.1.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( ) A .3 B .5C .4或5D .3或4或52.以方程组21x y y x +=⎧⎨=-⎩的解为坐标的点(x ,y)在平面直角坐标系中的位置是( )A .第一象限B .第二象限C .第三象限D .第四象限3.解方程组232261s t s t +=⎧⎨-=-⎩①②时,①—②,得( )A .31t -= .B .33t -=C .93t =D .91t =4.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( ) A .6种B .7种C .8种D .9种5.如图,长方形ABCD 被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD 的周长为l ,若图中3个正方形和2个长方形的周长之和为94l ,则标号为①正方形的边长为( )A .112l B .116l C .516l D .118l 6.解为12x y =⎧⎨=⎩的方程组是( )A .135x y x y -=⎧⎨+=⎩B .135x y x y -=-⎧⎨+=-⎩C .331x y x y -=⎧⎨-=⎩D .2335x y x y -=-⎧⎨+=⎩7.若x m ﹣n ﹣2y m+n ﹣2=2007,是关于x ,y 的二元一次方程,则m ,n 的值分别是( ) A .m=1,n=0B .m=0,n=1C .m=2,n=1D .m=2,n=38.某校体育器材室有篮球和足球共66个,其中篮球比足球的2倍多3个,设篮球有x 个,足球有y 个,根据题意可得方程组( )66 366 3C.x y66y2x3+=⎧⎨=-⎩D.x y66y2x3+=⎧⎨=+⎩9.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x岁,小红今年y岁”,根据题意可列方程为()A.449x y yx y x-=+⎧⎨-=+⎩B.449x y yx y x-=+⎧⎨-=-⎩C.449x y yx y x-=-⎧⎨-=+⎩D.449x y yx y x-=-⎧⎨-=-⎩10.由方程组223224x y mx y m-=+⎧⎨+=+⎩可得x与y的关系式是()A.3x=7+3m B.5x﹣2y=10 C.﹣3x+6y=2 D.3x﹣6y=2 11.如图,由33⨯组成的方格中每个方格内均有代数式(图中只列出了部分代数式),方格中每一行(横)、每一列(竖)以及每一条对角线(斜)上的三个代数式的和均相等,则方格中“a”的数是()y a2y4x-92x-11A.6 B.7 C.8 D.9二、填空题12.如图,已知∠AOE=100°,∠DOF=80°,OE平分∠DOC,OF平分∠AOC,求∠EOF的度数.13.已知关于x、y的方程组2326324x y kx y k+=+⎧⎨+=+⎩的解满足2x y+=,则k的值为__.14.由于2020年新冠疫情影响,全国经济严重滑坡,为了促进经济发展,全国多地放宽摆6品的定价均为整数.10月1日四种用品均按各自的定价销售,甲,丙用品的销售件数相同,乙的销售件数是丁的6倍,甲,乙的总销售额比丙,丁的总销售额多816元.10月2日,由于用品丁库存较多,按定价的八折销售,其余用品售价不变,乙的销量较10月1日下降了20%,其余用品销量不变,小华的爸爸为了考考小华,没有告诉小华确切的售价和数量,只是说:甲,丙的单价之差低于17元,不少于10元,乙,丁的单价之和不超过32元,10月1日、2日两天甲的销量不少于20件,不多于40件.请你帮小华算算10月2日甲,乙,丙,丁,四种用品的销售额最多_____元.15.某商场在“迎新年”搞促销活动,刘海的家长准备用2000元在活动中购买价格分别为160元和240元的两种商品,在钱都用尽的情况下,可供刘海的家长选择的购买方案有_______种.16.某公园的门票是10元/人,团体购票有如下优惠:某校七年级两个班到该公园秋游,其中甲班多于30人,乙班不足30人,如果以班为单位分别购票,两个班一共应付598元.如果两个班作为一个团体购票,一共应付545元,则甲班有_____人,乙班有_____人.17.已知方程组 2629x y x y +=⎧⎨+=⎩,则x-y=_________.18.已知关于,x y 的方程组231x ay bx y -=⎧⎨+=-⎩的解是13x y =⎧⎨=-⎩,则a b +=___________.19.若方程组ax y c x by d -=⎧⎨-=⎩的解为12x y =⎧⎨=-⎩,则方程组y ax cby x d -=⎧⎨-=⎩的解为______.20.某风景区有4个相同的出口、4个相同的入口,假设在任何情况下每个入口的人数均是匀速出入,每个出口的人数均是匀速出入,当风景区人数已达到可容纳人数的20%时,若同时开放4个入口和2个出口,则1.6小时刚好达到可容纳人数;若同时开放2个入口和2个出口,则8小时刚好达到可容纳人数.受疫情影响,2020年五一期间,该风景区游览人数只允许达到平时可容纳人数的60%,当风景区人数已达到平时可容纳人数的10%时,若同时开放3个入口和2个出口,则经过__________小时刚好达到平时可容纳人数的60%. 21.130+-++=x y y ,则x y -=________.22常数,0k ≠)则称点P'为点P 的“k 属派生点”,例如:()1,4P 的“2属派生点”为()'124,214P +⨯⨯+,即()'9,6P .(1)点()2,3P -的“3属派生点”的坐标为________; (2)若点P 的“5属派生点”的坐标为()3,9-,求点P 的坐标.23.甲,乙两位同学在解方程组11ax by cx y +=⎧⎨+=-⎩时,甲正确解得方程组的解为11x y =-⎧⎨=⎩.乙因抄错了方程中的系数c ,得到的解为21x y =⎧⎨=-⎩,若乙没有再发生其他错误,试求a 、b 、c 的值.24.列方程解应用题:为让同学们幸福成长,年级准备组织师生秋游.关于租车问题:若只租45座的客车若干辆,则刚好坐满;若只租60座的客车,则可少租4辆,且余30个座位. (1)若只租45座的客车,求需要多少辆车?(2)已知一辆45座的客车租金每天2500元,一辆60座的客车租金每天3000元,若可以同时租用这两种类型的客车,则两种客车分别租多少辆最省钱25.学校为了提高绿化品位,美化环境,准备将一块周长为76m 的长方形草地,设计分成长和宽分别相等的9块小长方形,(放置位置如图所示),种上各种花卉.经市场预测,绿化每平方米造价约为108元. (1)求出每一个小长方形的长和宽.(2)请计算完成这项绿化工程预计投入资金多少元?1.已知下列各式:①12+=y x ;②2x ﹣3y =5;③xy =2;④x+y =z ﹣1;⑤12123x x +-=,其中为二元一次方程的个数是( )A .1B .2C .3D .42.下列方程中是二元一次方程的是( ) A .(2)(3)0x y +-= B .-1x y = C .132x y=+D .5xy =3.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,根据题意列方程组正确的是( ) A . 4.512x y y xB . 4.512x y yxC .4.512xy x yD .4.512xyy x4.有若干只鸡和兔关在一个笼子里,从上面数,有30个头,从下面数,有84条腿﹐问笼中各有几只鸡和兔?若设笼中有x 只鸡,y 只兔,则列出的方程组为( ) A .30284x y x y +=⎧⎨+=⎩B .302484x y x y +=⎧⎨+=⎩C .304284x y x y +=⎧⎨+=⎩D .30284x y x y +=⎧⎨+=⎩5.二元一次方程组22x y x y +=⎧⎨-=-⎩的解是( )A .02x y =⎧⎨=-⎩B .02x y =⎧⎨=⎩C .20x y =⎧⎨=⎩D .20x y =-⎧⎨=⎩6.已知x ,y 满足方程组4,5,x m y m +=⎧⎨-=⎩则无论m 取何值,x ,y 恒有的关系式是( )A .1x y +=B .1x y +=-C .9x y +=D .9x y -=-7.如图,周长为34的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为 ( )A .280B .140C .70D .1968.已知关于x ,y 的二元一次方程组323223x y m x y m +=-⎧⎨+=⎩的解适合方程x-y=4,则m 的值为( )A .1B .2C .3D .4 9.下列方程中,是二元一次方程的是( ).A .324x y z -=B .690+=xC .42x y =-D .123y x+= 10.解关于,x y 的方程组()()()1328511m x n y n x my ①②⎧+-+=⎪⎨-+=⎪⎩可以用①2+⨯②,消去未知数x ,也可以用①+②5⨯消去未知数y ,则mn 、的值分别为( ) A .23,39-- B .23,40-- C .25,39-- D .25,40-- 11.已知关于x 、y 方程组734521x y x y m +=⎧⎨-=-⎩的解能使等式4x ﹣3y =7成立,则m 的值为( ) A .8 B .0C .4D .﹣2 二、填空题12.现有甲、乙、丙三个圆柱形的杯子,杯深均为20cm ,各装有12cm 高的水,甲、乙、丙三个杯子的底面积如下表.分别从甲、乙两杯中取出相同体积的水倒入丙杯,过程中水没溢出,最后甲、乙两杯水的高度之和等于丙杯水的高度.则从甲杯中倒出的水的体积为__________3cm .底面积(2cm ) 甲杯40 乙杯60 丙杯 80132783222值为_______.14.一笔奖金总额为1092元,分为一等奖、二等奖和三等奖,奖金金额均为整数,每个一等奖的奖金是每个二等奖奖金的2倍,每个二等奖的奖金是每个三等奖奖金的2倍,若把这笔奖金发给6个人,并且要求一等奖的人数不能超过二等奖人数,二等奖人数不能超过三等奖人数,那么三等奖的奖金金额是___________元.15.已知关于x ,y 的方程组35223x y m x y m +=+⎧⎨+=⎩,给出下列结论:①34x y =⎧⎨=-⎩是方程组的解;②2m =时,x ,y 的值互为相反数;③无论m 的x ,y 都满足的关系式22x y +=;④x ,y 的都为自然数的解有2对,其中正确的为__________.(填正确的序号)16.若1,3x y =-⎧⎨=⎩是关于x ,y 的二元一次方程组5,x y m x my n +=⎧⎨-=⎩的解,则n 的值为______. 17.据人口抽样调查,2019年末太原市常住人口446.19万人,比上年末增加4.04万人.其中城镇人口比上年增加1.36%,乡村人口比上年减少1.57%.若设2018年末太原市常住人口中城镇人口有x 万人,乡村人口有y 万人,则根据题意列出的方程组为_____________ 18.已知x a y b=⎧⎨=⎩是方程组2025x y x y -=⎧⎨+=⎩的解,则2a b -=_____. 19.若方程2x 2a +b -4+4y 3a -2b -3=1是关于x ,y 的二元一次方程,则a =________,b =________.20.关于,x y 的方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解是41x y =⎧⎨=⎩,则关于,x y 的方程组111222(1)()2(1)()2a x b y c a x b y c -+-=⎧⎨-+-=⎩的解是_____________. 21.“九九重阳节, 浓浓敬老情”,今年某花店在重阳节推出“松鹤长春”“欢乐远长”“健康长寿”三种花束.“松鹤长春”花束中有8枝百合,16 枝康乃馨;“欢乐远长”花束中有6枝百合,16枝康乃馨,2枝剑兰;“健康长寿”花束中有4枝百合,12枝康乃馨,2枝剑兰.已知百合花每枝1元,康乃馨每枝34元,剑兰每枝5元,重阳节当天销售这三种花束共2549元,其中百合花的销售额为458元,则剑兰的销售量为________枝. 三、解答题22.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民居民“一户一表”生活用水阶梯式计费价格表的部分信息:每户每月用水量单价:元/吨 单价:元/吨 17吨及以下a 0.80 超过17吨但不超过30吨的部分b 0.80 超过30吨的部分 6.00 0.80(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费) 已知小王家2020年4月份用水15吨,交水费45元;5月份用水25吨,交水费91元. (1)求a, b 的值;(2)如果小王家6月份上交水费150元,则小王家这个月用水多少吨?23.一个电器超市购进A 、B 两种型号的电风扇进行销售,已知购进2台A 型号和3台B 型号共用910元,购进3台A 型号比购进2台B 型号多用260元.(1)求A 、B 两种型号的电风扇每台进价分别是多少元?(2)超市根据市场需求,决定购进这两种型号的电风扇共30台进行销售,A 种型号电风扇每台售价260元,B 种型号电风扇每件售价190元,若超市购进的两种电风扇全部售出后,总获利是1400元,求该超市本次购进A 、B 两种型号的电风扇各多少台?24.阅读小林同学数学作业本上的截图内容并完成任务.任务:(1)这种解方程组的方法称为________;(2)小林的解法正确吗?________(填“正确”或“不正确”),如果不正确,错在第________步,并选择恰当的方法解该方程组.25.若x ,y 2235(2313)0x y x y -++-=,求2x y -的值.。
3二元一次方程组-加减消元法三元一次方程基础题培优题

二元一次方程组➢ 加减消元法 【基础练习】1. 二元一次方程组的解是( )A 、B 、C 、C 、2. 已知方程组的解为,则的值为( )A 、B 、C 、C 、3. 若方程,和有公共解,则的取值为 .4. 若 ()13-=+b a ,()12=-b a ,则92009200b a+的值是( )A 、2B 、1C 、0D 、1- 5. 已知与是同类项.则s+t= .6. 若1122=--+-b a ba y x是二元一次方程,则=-22b a .7. 已知与都是方程y=kx+b 的解,则k 与b 的值为( ) (A ),b=-4; (B ),b=4; (C ),b=4;(D ),b=-4 8. 加减法解方程组20328x y y x -=⎧⎨+=⎩32725x y x y -=⎧⎨+=⎩,32x y =⎧⎨=⎩,12x y =⎧⎨=⎩,42x y =⎧⎨=⎩,31x y =⎧⎨=⎩,42ax by ax by -=⎧⎨+=⎩,21x y =⎧⎨=⎩,23a b -466-4-3x y +=1x y -=20x my -=m ts s b a 2322-533b a t -⎩⎨⎧-==24y x ⎩⎨⎧-=-=52y x 21=k 21-=k 21=k 21-=k9. 用加减法解方程组:355223x y x y -=⎧⎨+=⎩10. 解方程组23123417x y x y +=⎧⎨+=⎩11. 用加减法解下列方程组210250x y x y -+=--=⎧⎨⎩12. 用加减法解下列方程组223210x y x y +=⎧⎨-=⎩13. 用加减消元法解下列方程组:(1)⎩⎨⎧=-=+2463247y x y x (2)⎪⎪⎩⎪⎪⎨⎧=--=+-131221231y x y x14.用适当方法解下列方程组433 344 x yx y-=⎧⎨-=⎩15.解方程组327 328 x yy x+=⎧⎨+=⎩16.已知2728x yx y+=⎧⎨+=⎩,则x- y = .17.若二元一次方程组2527x y kx y k+=⎧⎨-=⎩的解满足方程.则 k= .18.若方程组的解满足,则m=________.19.20.已知21xy=⎧⎨=⎩是关于x,y的二元一次方程组()-x m ynx y⎧+=⎪⎨+=⎪⎩2121的解,试求(m+n)2004的值。
解二元一次方程组(第二课时 加减消元法)(练习)七年级数学下册同步课堂(人教版)(解析版)

第八章二元一次方程组8.2解二元一次方程组(第二课时加减消元法)精选练习答案基础篇一、单选题(共10小题)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为()A .﹣4B .4C .﹣2D .2【答案】B 【详解】试题解析:512{34a b a b +=-=①②,①+②:4a+4b=16则a+b=4,故选B .2.若|321|20x y x y --++-=,则x ,y 的值为()A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩【答案】D 【详解】详解:∵32120x y x y --++-,∴321020x y x y --⎧⎨+-⎩==将方程组变形为32=1=2x y x y -⎧⎨+⎩①②,①+②×2得,5x=5,解得x=1,把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩.故选D .3.以方程组21x y x y +=⎧⎨-=⎩的解为坐标的点(x ,y )在平面直角坐标系中的位置是()A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【详解】解:解方程组21x yx y+=⎧⎨-=⎩,得1.50.5xy=⎧⎨=⎩,∴点(1.5,0.5)在第一象限.故选:A.4.用加减消元法解二元一次方程组3421x yx y+=⎧⎨-=⎩①②时,下列方法中无法消元的是()A.①×2﹣②B.②×(﹣3)﹣①C.①×(﹣2)+②D.①﹣②×3【答案】D【详解】方程组利用加减消元法变形即可.解:A、①×2﹣②可以消元x,不符合题意;B、②×(﹣3)﹣①可以消元y,不符合题意;C、①×(﹣2)+②可以消元x,不符合题意;D、①﹣②×3无法消元,符合题意.故选:D.5.方程组3276211x yx y+=⎧⎨-=⎩,的解是()A.15xy=-⎧⎨=⎩,B.12xy=⎧⎨=⎩,C.31xy,=⎧⎨=-⎩D.212xy=⎧⎪⎨=⎪⎩,【答案】D 【详解】解:327 6211x yx y+=⎧⎨-=⎩①②,①+②得:9x=18,即x=2,把x=2代入②得:y=1 2,则方程组的解为:212 xy=⎧⎪⎨=⎪⎩,故选D.6.若二元一次方程组3,354x yx y+=⎧⎨-=⎩的解为,,x ay b=⎧⎨=⎩则-a b的值为()A .1B .3C .14-D .74【答案】D 【详解】解:3,354,x y x y +=⎧⎨-=⎩①②+①②,得447x y -=,所以74x y -=,因为,,x a y b =⎧⎨=⎩所以74x y a b -=-=.故选D.7.若方程组31331x y ax y a+=+⎧⎨+=-⎩的解满足x +y =0,则a 的值为()A .﹣1B .1C .0D .无法确定【答案】A 【详解】方程组两方程相加得:4(x+y )=2+2a ,即x+y=12(1+a ),由x+y=0,得到12(1+a )=0,解得:a=-1.故选A .8.用加减法解方程组2333211x y x y +=⎧⎨-=⎩时,有下列四种变形,其中正确的是()A .4669633x y x y +=⎧⎨-=⎩B .6396222x y x y +=⎧⎨-=⎩C .6936411x y x y +=⎧⎨-=⎩D .4639611x y x y +=⎧⎨-=⎩【答案】A 【详解】解:若消去x ,则有:6996422x y x y +=⎧⎨-=⎩;若消去y ,则有:4669633x y x y +=⎧⎨-=⎩;∴用加减消元法正确的是A ;9.关于x ,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a ,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x y b x y ++-=⎧⎨+--=-⎩的解为()A .34x y =⎧⎨=⎩B .71x y =⎧⎨=-⎩C . 3.50.5x y =⎧⎨=-⎩D . 3.50.5x y =⎧⎨=⎩【答案】C 【详解】详解:由题意知:3{4x y x y +=-=①②,①+②,得:2x =7,x =3.5,①﹣②,得:2y =﹣1,y =﹣0.5,所以方程组的解为 3.50.5x y =⎧⎨=-⎩.故选C .10.“若方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是()A .48x y =⎧⎨=⎩B .912x y =⎧⎨=⎩C .1520x y =⎧⎨=⎩D .9585x y ⎧=⎪⎪⎨⎪=⎪⎩【答案】D 【详解】∵方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,∴111222985985a b c a b c +=⎧⎨+=⎩,两边都除以5得:11122298559855a b c a b c ⎧+=⎪⎪⎨⎪+=⎪⎩,对照方程组111222a x b y c a x b y c +=⎧⎨+=⎩可得,方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为9585x y ⎧=⎪⎪⎨⎪=⎪⎩,提升篇二、填空题(共5小题)11.已知x 、y 满足方程组3123x y x y +=-⎧⎨+=⎩,则x y +的值为__________.【答案】1【详解】解:3123x y x y +=-⎧⎨+=⎩①②①2⨯得:262x y +=-③③-②得:55,y =-1,y ∴=-把1y =-代入①:31,x ∴-=-2,x ∴=所以方程组的解是:2,1x y =⎧⎨=-⎩1.x y ∴+=故答案为:1.12.已知x 2{y 1==是二元一次方程组mx ny 7{nx my 1+=-=的解,则m+3n 的立方根为.【答案】2【详解】把x 2{y 1==代入方程组mx ny 7{nx my 1+=-=,得:2m n 7{2n m 1+=-=,解得13m 5{9n 5==,∴139m 3n 3855+=+⨯=33m 3n 82+,故答案为2.13.若单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,则m-7n 的算术平方根是_________.【答案】4【详解】根据同类项定义由单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,可以得到关于m 、n 的二元一次方程4=m ﹣n ,2m+n=2,解得:m=2,n=﹣2,因此可求得m ﹣7n=16,即m ﹣7n 的算术平方根==4,故答案为4.14.二元一次方程组627x y x y +=⎧⎨+=⎩的解为_____.【答案】15x y =⎧⎨=⎩【详解】627x y x y +=⎧⎨+=⎩①②,②﹣①得1x =③将③代入①得5y =∴15x y =⎧⎨=⎩故答案为15x y =⎧⎨=⎩15.已知32x y =⎧⎨=-⎩是方程组37ax by bx ay +=⎧⎨+=-⎩的解,则代数式(a+b)(a-b)的值为_________【答案】−8【详解】解:把32x y =⎧⎨=-⎩代入方程组得:323 327a b b a -=⎧⎨-=-⎩①②,①×3+②×2得:5a =−5,即a =−1,把a =−1代入①得:b =−3,则(a+b)(a-b)=a 2−b 2=1−9=−8,故答案为−8.三、解答题(共2小题)16.解二元一次方程组(1)31529x y x y +=⎧⎨-=⎩(2)3523153232x y x y x+=⎧⎪-+⎨-=-⎪⎩【答案】(1)12x y =⎧⎨=-⎩(2)2345x y ⎧=-⎪⎪⎨⎪=⎪⎩【详解】(1)31529x y x y +=⎧⎨-=⎩①②,将①式×2+②得6529x x +=+,1111x =,解得1x =,将1x =代入①得:2y =-,故解为:12x y =⎧⎨=-⎩(2)3523153232x y x y x +=⎧⎪-+⎨-=-⎪⎩,将方程组整理得:()()35223135312x y x y x +=⎧⎪⎨--+=-⎪⎩即35231510x y x y +=⎧⎨--=-⎩①②,①+②得:108y -=-,解得:45y =,将45y =代入①得:23x =-,∴解为2345x y ⎧=-⎪⎪⎨⎪=⎪⎩17.用消元法解方程组35432x y x y -=⎧⎨-=⎩①②时,两位同学的解法如下:解法一:解法二:由②,得3(3)2x x y +-=,③由①-②,得33x =.把①代入③,得352x +=.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“⨯”.(2)请选择一种你喜欢的方法,完成解答.【答案】(1)解法一中的计算有误;(2)原方程组的解是12x y =-⎧⎨=-⎩【详解】(1)解法一中的计算有误(标记略)(2)由①-②,得:33x -=,解得:1x =-,把1x =-代入①,得:135y --=,解得:2y =-,所以原方程组的解是12x y =-⎧⎨=-⎩.。
1.2二元一次方程组的解法(2)加减消元法同步练习含答案

1.2 二元一次方程组的解法第2课时加减消元法核心笔记:加减消元法:两个二元一次方程中同一未知数的系数相同或相反时,把这两个方程相减或相加,就能消去这个未知数,从而得到一个一元一次方程,这种解方程组的方法叫做加减消元法,简称加减法.基础训练1.方程组由②-①,得正确的方程是( )A.3x=10B.x=5C.3x=-5D.x=-52.二元一次方程组的解为( )A. B. C. D.3.若方程mx+ny=6的两个解是和则m,n的值分别为( )A.4,2B.2,4C.-4,-2D.-2,-44.用加减消元法解方程组的具体步骤如下:第一步:①-②,得x=1;第二步:把x=1代入①,得y=-;第三步:所以其中开始出现错误的是( )A.第一步B.第二步C.第三步D.没有出错5.已知方程组:①②其中方程组①采用消元法解简单,方程组②采用消元法解简单.6.若a+b=3,a-b=7,则ab=______________.7.用加减法解方程组:(1)(2)8.已知-2x m-1y3与x n y m+n是同类项,求m,n的值.培优提升1.利用加减消元法解方程组下列做法正确的是( )A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×22.已知x,y满足方程组则x+y的值为( )A.9B.7C.5D.33.已知5|x+y-3|+2(x-y)2=0,则( )A. B. C. D.4.二元一次方程组的解是______________.5.对于X,Y定义一种新运算“@”:X@Y=aX+bY,其中a,b为常数,等式右边是通常的加法和乘法的运算.已知:3@5=15,4@7=28,那么2@3=_____________.6.已知是二元一次方程组的解,则m+3n=_____________.7.用加减消元法解方程组:(1)(2)8.在解方程组时,哥哥正确地解得弟弟因把c写错而解得求a+b+c的值.9.阅读理解题特殊的题有特殊的解法,阅读下面的解题过程,我们从中可以得到启发:解方程组解:由①+②得:500x+500y=1 500,即x+y=3, ③由①-②得:6x-6y=54,即x-y=9, ④由③+④得:2x=12,解得:x=6,又由③-④得:2y=-6,解得:y=-3,所以原方程组的解为【归纳】对于大系数的二元一次方程组,当用代入法和加减法解非常麻烦时,可以通过观察各项系数的特点,寻求特殊解法.根据上述例题的解题方法解下面的方程组:参考答案【基础训练】1.【答案】B解:注意符号问题.2.【答案】C3.【答案】A4.【答案】A5.【答案】加减;代入6.【答案】-10解:两个方程相加,解得a=5,将a=5代入a+b=3,解得b=-2, 故ab=-10.7.解:(1)①+②得3x=15,所以x=5.将x=5代入①,得5+y=6,所以y=1,所以方程组的解为(2)②×3,得3x+9y=21,③③-①,得11y=22.所以y=2.把y=2代入②,得x+6=7,所以x=1,所以原方程组的解为8.解:因为-2x m-1y3与x n y m+n是同类项,所以经变形可得所以【培优提升】1.【答案】D2.【答案】C解:①+②得4x+4y=20,则x+y=5.故选C.3.【答案】D解:由绝对值和数的平方的性质可以得到解得故选D.4.【答案】5.【答案】2解:因为3@5=15,4@7=28,所以3a+5b=15①,4a+7b=28②,由②-①,得a+2b=13③,由①-③,得2a+3b=2,所以2@3=2a+3b=2.6.【答案】8解:本题运用整体思想解题更简便.把代入方程组得两式相加得m+3n=8.7.解:(1)②×2-①,得n=20,把n=20代入②,得2m+3×20=240,解得m=90.所以原方程组的解为(2)①×4-②×3得:7y=-7,解得y=-1,将y=-1代入①得:3x-4=5,解得x=3,所以原方程组的解为8.解:把x=3,y=-2代入得把x=-2,y=2代入ax+by=2.得-2a+2b=2.因为弟弟把c写错了,所以弟弟的解不满足cx-7y=8.联立方程组:解得由3c+14=8得c=-2.故a+b+c=4+5-2=7.9.解:由①+②得:4 025x+4 025y=16 100, 即x+y=4,③由②-①得:x-y=100,④由③+④得:2x=104,解得x=52, 由③-④得:2y=-96,解得y=-48, 则原方程组的解为。
初一数学下册知识点《解二元一次方程组--加减消元法》150例题及解析

初一数学下册知识点《解二元一次方程组--加减消元法》150例题及解析副标题题号一二三四总分得分一、选择题(本大题共45小题,共135.0分)1.已知等腰三角形的两边长分別为a、b,且a、b满足,则此等腰三角形的周长为( )A. 7或8B. 6或10C. 6或7D. 7或10【答案】A【解析】【分析】本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.【解答】解:∵,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选A.2.如果关于x,y的二元一次方程组的解x,y满足x-y=7,那么k的值是()A. -2B. 8C.D. -8【答案】A【解析】【分析】此题考查了二元一次方程组的解法,二元一次方程组的解,以及二元一次方程的解,熟练掌握二元一次方程组的解法是解本题的关键.把k看作已知数求出方程组的解,代入已知方程求出k的值即可.【解答】解:,①×3-②得:y=2k+1,把y=2k+1代入①得:x=-3k-2,代入x-y=7得:-3k-2-2k-1=7,解得:k=-2,故选A.3.用加减法解方程组时,若要求消去y,则应()A. ①×3+②×2B. ①×3-②×2C. ①×5+②×3D. ①×5-②×3【答案】C【解析】解:用加减法解方程组时,若要求消去y,则应①×5+②×3,故选:C.利用加减消元法消去y即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.已知方程组,与的值之和等于2,则的值为()A. 4B. -4C. 3D. -3【答案】A【解析】【分析】此题考查学生灵活利用消元法解方程组的能力,是一道基础题.此题的关键在于把k看作常数解方程组.把方程组中的k看作常数,利用加减消元法,用含k的式子分别表示出x与y,然后根据x与y的值之和为2,列出关于k的方程,求出方程的解即可得到k 的值.【解答】解:,①×2-②×3得:y=2(k+2)-3k=-k+4,把y=-k+4代入②得:x=2k-6,又x与y的值之和等于2,所以x+y=-k+4+2k-6=2,解得:k=4,故选A.5.用加减法解方程组时,下列四种变形中正确的是()A. B. C. D.【答案】C【解析】解:用加减法解方程组时,下列四种变形中正确的是,故选:C.方程组中第一个方程左右两边乘以2,第二个方程左右两边乘以3,将两方程y系数化为互为相反数,利用加减法求解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减6.方程组的解为()A. B. C. D.【答案】D【解析】解:,①×3-②得:5y=-5,即y=-1,将y=-1代入①得:x=2,则方程组的解为;故选:D.方程组利用加减消元法求出解即可;此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.7.利用加减消元法解方程组,下列做法正确的是()A. 要消去y,可以将①×5+②×2B. 要消去x,可以将①×3+②×(-5)C. 要消去y,可以将①×5+②×3D. 要消去x,可以将①×(-5)+②×2【答案】D【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.加减消元法的条件是同一个未知数的系数要相同或互为相反数,相同用减法,相反用加法,解答此题根据加减消元法解答即可.【解答】解:利用加减消元法解方程组,要消去y,可以将①×3+②×5;要消去x,可以将①×(-5)+②×2,故选D.8.已知a,b满足方程组,则a+b的值为()A. -4B. 4C. -2D. 2【答案】B【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.求出方程组的解得到a与b的值,即可确定出a+b的值.【解答】解:解法1:,①+②×5得:16a=32,即a=2,把a=2代入①得:b=2,解法2:①+②得:4a+4b=16,则a+b=4,故选:B.9.若方程mx+ny=6的两个解是,,则m,n的值为()A. 4,2B. 2,4C. -4,-2D. -2,-4【答案】A【解析】【分析】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.将x与y的两对值代入方程计算即可求出m与n的值.【解答】解:将,分别代入mx+ny=6中,得:,①+②得:3m=12,即m=4,将m=4代入①得:n=2,故选:A.10.已知方程组和有相同的解,则的值为( ).A. 15B. 14C. 12D. 10【答案】D【解析】【分析】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.将第一个方程组中第一个方程与第二个方程组的第二个方程联立求出x与y的值,代入剩下的两方程计算即可求出a与b的值,再代入a-2b求值.【解答】解:根据题意得:,①×2+②得11x=11,x=1,把x=1代入①得5+y=3,y=-2,把x=1,y=-2代入,得,a-2b=14-4=10,故选D.11.若满足方程组的x与y互为相反数,则m的值为()A. 1B. -1C. 11D. -11【答案】C【解析】解:由题意得:y=-x,代入方程组得:,消去x得:=,即3m+9=4m-2,解得:m=11,故选:C.由x与y互为相反数,得到y=-x,代入方程组计算即可求出m的值.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.12.已知与都是方程y=kx+b的解,则k与b的值为()A. ,B. ,C. ,D. ,【答案】A【解析】【分析】此题主要考查利用加减消元法解方程组的方法,关键是把x、y的值代入原方程中,得出关于k和b的方程组.将与代入方程y=kx+b,得到关于k和b的二元一次方程组,再求出k和b的值.【解答】解:把与代入方程y=kx+b,得到关于k和b的二元一次方程组,解这个方程组,得.故选A.13.已知方程组和有相同的解,则a-2b的值为().A. 15B. 14C. 12D. 10【答案】D【解析】【分析】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.将第一个方程组中第一个方程与第二个方程组的第二个方程联立求出x与y的值,代入剩下的两方程计算即可求出a与b的值,再代入求值.【解答】解:根据题意得:,①×2+②得11x=11,x=1,把x=1代入①得5+y=3,y=-2,把x=1,y=-2代入得,a-2b=14-4=10.故选D.14.如果2x+3y-z=0,且x-2y+z=0,那么的值为()A. -B. -C.D. -3【答案】A【解析】【分析】本题考查用加减法解二元一次方程组,关键是掌握两个方程中含有三个未知数,为不定方程组,只能用一个未知数来表示另外两个未知数,然后化简即可.根据原题中虽然有三个未知数,但是可把2x+3y-z=0和x-2y+z=0组成方程组,把其中的z当成已知量,解关于x,y的方程组,得x、y用含有z的代数式来表示,即可求出的值.【解答】解:,①×2+②×3得7x+z=0,即z=-7x,所以==-.故选A.15.若关于x,y的方程组的解满足x-y>-,则m的最小整数解为()A. -3B. -2C. -1D. 0【答案】C【解析】解:,①-②得:x-y=3m+2,∵关于x,y的方程组的解满足x-y>-,∴3m+2>-,解得:m>-,∴m的最小整数解为-1,故选:C.方程组中的两个方程相减得出x-y=3m+2,根据已知得出不等式,求出不等式的解集即可.本题考查了解一元一次不等式和解二元一次方程组、二元一次方程组的解、一元一次不等式的整数解等知识点,能得出关于m的不等式是解此题的关键.16.二元一次方程组的解是()A. B. C. D.【答案】D【解析】解:,①+②得,2x=6,解得,x=3,把x=3代入①得,y=-1,则方程组的解为:,故选:D.利用加减法解出二元一次方程组即可.本题考查的是二元一次方程组的解法,掌握用加减法解二元一次方程组的一般步骤是解题的关键.17.方程组的解为,则被遮盖的前后两个数分别为()A. 1、2B. 1、5C. 5、1D. 2、4【答案】C【解析】解:将x=2代入第二个方程可得y=1,将x=2,y=1代入第一个方程可得2x+y=5∴被遮盖的前后两个数分别为:5,1故选:C.根据方程组的解满足方程组中的每个方程,代入求值可求出被遮盖的前后两个数.本题考查了解二元一次方程组,利用方程组的解满足每个方程即可.18.若关于x、y的二元一次方程组的解满足x+y=9,则k的值是()A. 1B. 2C. 3D. 4【答案】B【解析】解:①-②,得3y=k+7,∴y=;①+2×②,得3x=13k-8,∴x=∵x+y=9,∴=9即14k=28,∴k=2故选:B.解方程组,先用含k的代数式表示出x、y,根据x+y=9,得到关于k的一元一次方程,求解即可.本题考查了二元一次方程组的解法,解决本题的关键是用含k的代数式表示出方程组中的x、y.19.若方程组中x与y互为相反数,则m的值是()A. 1B. -1C. -36D. 36【答案】C【解析】解:,根据题意得:x+y=0,即y=-x③,把③代入②得:-2x=8,即x=-4,y=4,把x=-4,y=4代入①得:-20-16=m,解得:m=-36,故选:C.根据x与y互为相反数,得到x+y=0,即y=-x,代入方程组求出m的值即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.方程组的解是()A. B. C. D.【答案】B【解析】解:,①+②得:3x=6,解得:x=2,把x=2代入①得:y=1,则方程组的解为,故选:B.方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用消元的思想,消元的方法有:代入消元法与加减消元法.21.若3x2a+b y2与-4x3y3a-b是同类项,则a-b的值是()A. 0B. 1C. 2D. 3【答案】A【解析】解:∵3x2a+b y2与-4x3y3a-b是同类项,∴,①+②得:5a=5,即a=1,把a=1代入①得:b=1,则a-b=1-1=0,故选:A.利用同类项的定义列出方程组,求出方程组的解得到a与b的值,即可确定出a-b的值.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.二元一次方程组的解是()A. B. C. D.【答案】B【解析】解:,①+②得:2x=0,解得:x=0,把x=0代入①得:y=2,则方程组的解为,故选:B.方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.已知方程组,x与y的值之和等于2,则k的值为()A. -2B. -C. 2D.【答案】D【解析】【分析】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.方程组两方程相加表示出x+y,代入x+y=2中求出k的值即可.【解答】解:,①+②得:8(x+y)=4k+2,即x+y=,代入x+y=2得:=2,解得:k=,故选:D.24.若方程组的解中x与y相等,则m的值为()A. 10B. -10C. 20D. 3【答案】A【解析】解:由题意得,解得,把x=,y=代入(m-1)x+(m+1)y=4得,(m-1)+(m+1)=4,解得m=10,故选:A.将2x+3y=1与x=y组成方程组,求出x、y的值,再代入(m-1)x+(m+1)y=4即可求出m的值.本题考查了二元一次方程组的解,求出x与y的值是解题的关键.25.在方程组中,代入消元可得()A. 3y-1-y=7B. y-1-y=7C. 3y-3=7D. 3y-3-y=7【答案】D【解析】解:将x=y-1代入3x-y=7,得:3(y-1)-y=7,去括号,得:3y-3-y=7,故选:D.将第2个方程代入第1个方程,再去括号即可得.本题考查了解二元一次方程的代入法.代入法解二元一次方程组的一般步骤:(1)变形组中的一个方程,用含一个未知数的代数式表示出另一个未知数;(2)代入另一个方程;(3)求解方程得未知数的值;(4)把该值代入变形后的方程,求出另一个未知数的值.26.解方程组时,把①代入②,得()A. 2(3y-2)-5x=10B. 2y-(3y-2)=10C. (3y-2)-5x=10D. 2y-5(3y-2)=10【答案】D【解析】解:把①代入②得:2y-5(3y-2)=10,故选:D.根据二元一次方程组解法中的代入消元法求解.此题考查了解二元一次方程组,利用了消元的思想.27.方程3x+y=6的一个解与方程组的解相同,则k的值为()A. B. C. 2 D. -2【答案】A【解析】【分析】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.将k看做已知数求出方程组的解得到x与y,代入已知方程计算即可求出k的值.【解答】解:,①+②×2得,,代入①得,y=-,∴,代入方程3x+y=6,∴,解得,k=,故选A.28.如果方程组的解也是方程3x-my=8的一个解,则m的值是()A. -2B. -1C. 1D. 2【答案】D【解析】【分析】此题考查了二元一次方程组的解和用加减法解二元一次方程组,方程组的解即为能使方程组中两方程成立的未知数的值.求出已知方程组的解得到x与y的值,代入方程3x-my=8中,即可求出m的值.【解答】解:,①+②×4得:11x=22,解得:x=2,将x=2代入②得:4-y=5,解得:y=-1,∴方程组的解为,将x=2,y=-1代入3x-my=8中得:6+m=8,解得m=2.故选D.29.已知方程组,则x-y的值是()A. 2B. -2C. 0D. -1【答案】A【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.方程组两方程相减即可求出所求.【解答】解:,②-①得:x-y=2,故选:A.30.已知m为正整数,且关于x,y的二元一次方程组有整数解,则m2的值为()A. 9B. 1,9C. 0,1,81D. 1,81【答案】A【解析】【分析】本题考查了方程组的解,正确理解3+m是10和15-m的公约数是关键.首先解方程组求得方程组的解是:,则3+m是12和15-m的公约数,且是正整数,据此即可求得m的值,求得代数式的值.【解答】解:两式相加得:(3+m)x=12,则x=,代入第二个方程得:y=,当方程组有整数解时,3+m是12和15-m的公约数.又∵m是正整数,∴m+3=4或m+3=6或m+3=12,解得m=1或m=3或m=9,当m=1时,y=,不是整数,不符合题意;当m=3时,y=2,是整数,符合题意;当m=9时,y=,不是整数,不符合题意,故m=3则m2=9.故选A.31.已知方程组和有相同的解,则a,b的值为()A. a=2,b=3B. a=-11,b=7C. a=3,b=2D. a=7,b=-11【答案】B【解析】【分析】此题考查了二元一次方程组的解,二元一次方程组的两个方程的公共解叫做二元一次方程组的解.二元一次方程组的解必须同时满足方程组中的两个方程.将两方程组中的第一个方程联立,求出x与y的值,代入两方程组中的第二个方程中得到关于a与b的方程组,求出方程组的解即可得到a与b的值.【解答】解:先解方程组,解得:,将x=2、y=3代入另两个方程,得方程组:,解得:.故选B.32.若满足方程组的x与y互为相反数,则m的值为()A. 1B. -1C. 11D. -11【答案】C【解析】【分析】本题考查了含参二元一次方程组的解法,用含m的代数式表示出x和y的值,列出关于m的一元一次方程是解答本题的关键.解方程组,用含m的代数式表示出x和y的值,再把求得的x和y的值代入到x+y=0,得到关于m的一元一次方程,解这个关于m的方程即可求出m的值. 【解答】解:方程组,①+②得,5x=3m+2,∴,①×2-②×5得,5y=-4m+9,∴,∵x与y互为相反数,∴,解之得,m=11.故选C.33.已知5|x+y-3|+(x-2y)2=0,则( )A. B. C.【答案】C【解析】【分析】本题考查绝对值的概念和绝对值及偶次方的非负数性,根据题意最后得到一个二元一次方程组,解方程组得到x,y的值,代入计算即可得到答案.【解答】解:已知式中的|x+y-3|及(x-2y)2都是非负数,若两个非负数的和是0,则每个非负数都是0,即可求得x,y的值.根据题意,得,解得,故选C.34.若方程组的解满足x+y=0,则k的值为()A. -1B. 1C. 0D. 不能确定【答案】B【解析】【分析】本题主要考查二元一次方程组的解法及一元一次方程组的解法,可先利用加减消元法解二元一次方程组求解x,y,再根据x+y=0可得到关于k的一元一次方程,解方程即可求解k值.【解答】解:①-②×2得-3y=-3k-3,解得y=k+1,将y=k+1代入②得x+2(k+1)=2,解得x=-2k,∵x+y=0,∴-2k+k+1=0,解得k=1,故选B.35.关于x的方程2x-4=3m和x+2=m有相同的解,则m的值是()A. 10B. -8C. -10D. 8【答案】B【解析】【分析】本题考查了同解方程,联立两个同解方程得出方程组是解题关键.根据同解方程的解相等,联立同解方程,可得方程组,根据加减消元法,可得答案.【解答】解:联立2x-4=3m和x+2=m,得,②×2-①,得-m=8,解得m=-8.36.由方程组,可得出与的关系是()A. B. C.【答案】C【解析】【分析】本题考查了加减消元法解二元一次方程组的知识点,解题关键点是熟练掌握加减消元法解二元一次方程组的计算步骤,比较简单.把两式相加即可得到关于x、y的关系式,即可解答.【解答】解:,①+②得,x+y=7.故选C.37.若关于x、y的方程组的解互为相反数,则m的值为()A. -7B. 10C. -10D. -12【答案】C【解析】解;解得,x、y互为相反数,∴=0,m=-10,故选:C.根据解方程组的步骤,可得方程组的解,根据解方程组,可得方程组的解,根据方程组的解互为相反数,可得一元一次方程,根据解一元一次方程,可得答案.本题考查了二元一次方程组,先求出方程组的解,再求出m的值.38.如果和互为相反数,那么x、y的值为()A. x=3,y=2B. x=2,y=3C. x=0,y=5D. x=5,y=0【答案】D【解析】【分析】本题考查了非负数的性质和解二元一次方程组.根据互为相反数的两个数的和为0,可得二元一次方程组,解二元一次方程组可得答案.【解答】解:(x+y-5)2与|3y-2x+10|互为相反数,即(x+y-5)2+|3y-2x+10|=0,∴由得:y=0,将y=0代入(1)得:x=5,所以方程组的解为.故选D.39.已知方程组,那么x+y的值为( )A. -1B. 1C. 0D. 5【答案】D【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.方程组两方程相加即可求出所求.【解答】解:,①+②得:3x+3y=15,则x+y=5,故选D.40.利用加减消元法解方程组下列做法正确的是A. 要消去y,可以将①×2+②×3B. 要消去x,可以将①×3+②×(-5)C. 要消去y,可以将①×5+②×3D. 要消去x,可以将①×(-5)+②×3【答案】D【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.观察方程组中x与y的系数特点,利用加减消元法判断即可.【解答】解:利用加减消元法解方程组,做法正确的是要消去x,可以将①×(-5)+②×3,故选D.41.若方程组与方程组有相同的解,则a、b的值分别为()A. 1,2B. 1,0C. ,D. ,【答案】A【解析】【分析】此题考查了同解方程组,先根据已知方程组求出未知数的值,再把未知数的值代入另一个方程组中得到新的方程组,解此方程组求得要求的字母的值是解得此类题的常用方法. 根据两个方程组有相同的解,即有一对x和y的值同时满足四个方程,所以可以先求出第二个方程组的解,再把求得的解代入第一个方程组中,得到一个新的关于a、b的二元一次方程组,再求出a、b的值即可.【解答】解:先解得:,把代入方程组得:,解得:;故选A.42.二元一次方程组的解是()A. B. C. D.【答案】A【解析】【分析】本题主要考查了二元一次方程组的解法,二元一次方程组的解法有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.本题考查的是二元一次方程组的解法.此题用加减法或代入法解,也可以用检验法来解,以加减法最简单.【解答】解:由①+②,得2x=-2,解得:x=-1;把x=-1代入②,得y=3.即原方程组解为.故选A.43.已知方程组的解也是方程的解,则k的值是A. B. C. D.【答案】A【解析】【分析】解答此题需要充分理解二元一次方程的概念,灵活组合方程,以使计算简便,根据二元一次方程组的概念,先解方程组,得到x,y的值后,代入4x-3y+k=0求得k的值.【解答】解:解方程组,得:,把x,y代入4x-3y+k=0得:-40+45+k=0解得:k=-5.故选:A.44.已知方程组,则x+y的值为()A. ﹣1B. 0C. 2D. 3【答案】D本题考查了解二元一次方程组,注意简便方法的运用,熟练掌握.把①和②相加即可得出3x+3y的值,再除以3即可.【解答】解:①+②得,3x+3y=9,故x+y=3,故选D.45.若与都是方程y =kx+b的解,则k与b的值分别为()A. K=,b=-4B. K=-,b=4C. K=,b=4D. K=-,b=-4【答案】A【解析】【分析】此题主要考查了二元一次方程的解,以及加减消元法解二元一次方程组,要熟练掌握,将题给两组解代入方程中,可得关于k、b的二元一次方程组,采用代入消元法或者加减消元法解之即可.【解答】解:∵与与都是方程y=kx+b的解,∴∴故选A.二、填空题(本大题共22小题,共66.0分)46.对于实数x,y,定义新运算x※y=ax+by+1,其中a,b为常数,等式右边为通常的加法和乘法运算,若3※5=15,4※7=28,则5※9=______.【答案】41【解析】【分析】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.已知等式利用题中的新定义化简求出a与b的值,代入原式计算即可得到结果.【解答】解:根据题中的新定义得:,①×4-②×3得:-b=-25,即b=25,把b=25代入①得:a=-37,则原式=-37×5+25×9+1=41.故答案为:41.47.若二元一次方程组和的解相同,则x= ______ ,y=______ .【答案】3;-2此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值,联立两方程组中不含a与b的方程组成方程组,求出x与y的值即可.【解答】解:联立得:,①+②×3得:5x=15,即x=3,把x=3代入②得:y=-2,故答案为3;-2.48.关于x,y的二元一次方程组的解是正整数,则整数p的值为____________.【答案】5或7【解析】解:,②×3得:3x+3y=3p,③,①-③得:2x=23-3p,x=,②×5得:5x+5y=5p,④,④-①得:2y=5p-23,y=,∵x,y是正整数,∴,解得:<p<,∵p为整数,∴p=5,6,7,又∵x,y是正整数,∴p=6时,不合题意舍去,∴p=5或7,故答案为:5或7.49.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是______.【答案】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想整理找到两个方程组的联系求解即可.【解答】解:关于x、y的二元一次方程组的解是,由关于a、b的二元一次方程组可知解得.故答案为.50.已知两方程组与有公共解,则的值为_____【答案】-1【解析】【分析】此题考查了二元一次方程组的解和二元一次方程组的解法的知识点,方程组的解即为能使方程组中两方程都成立的未知数的值.联立两方程组中不含a与b的方程组成方程组,求出x与y的值,代入剩下两个方程求出a与b的值,代入原式计算即可得到结果.【解答】解:联立得:,由①+②得:7x=14,即x=2,把x=2代入①得:y=3,把代入得:,解得:,把代入,得:原式=.故答案为-1.51.方程组的解是______.【答案】【解析】解:两式相加,得4x=4,解得x=1,把x=1代入x+y=1,解得y=0,方程组的解为,故答案为:.根据加减消元法,可得答案.本题考查了解二元一次方程组,利用加减消元法是解题关键.52.已知|x+y-3|+(x-2y)2=0,则x-y=______.【答案】1【解析】解:∵|x+y-3|+(x-2y)2=0,∴,①-②,得:3y=3,解得y=1,将y=1代入①,得:x+1=3,解得x=2,则x-y=2-1=1,故答案为:1.根据非负数的性质得出,再利用加减消元法解之可得x和y的值,代入计算可得.此题考查了非负数的性质和解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.53.已知m,n满足方程组则m+n=________,_____.【答案】1;-【解析】【分析】本题考查了加减消元法解二元一次方程组,可将两式相加求解m+n,再将两式相减即可求解m-n的值.【解答】解:,①+②得201m+201n=201,∴m+n=1;①-②得5m-5n=-9,∴m-n=,故答案为1;.54.若+(x+2y-3)2=0,则x+y的值为______.【答案】-1【解析】解:∵+(x+2y-3)2=0,∴,①+②,得:3x+3y=-3,则x+y=-1,故答案为:-1.根据非负数性质得出关于x、y的方程组,将两方程相加后两边都除以3即可得.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.55.若,则x-y=______.【答案】3【解析】解:,①+②得:4x-4y=12,方程两边同时除以4得:x-y=3,故答案为:3.利用加减消元法解之即可.本题考查了解二元一次方程组,正确掌握加减消元法是解题的关键.56.若|x+3y-5|与(3x-y-3)2互为相反数,则2x+y=______.【答案】4【解析】解:由题意知|x+3y-5|+(3x-y-3)2=0,则,①+②,得:4x+2y=8,所以2x+y=4,故答案为:4.先根据相反数的性质得出|x+3y-5|+(3x-y-3)2=0,再由非负数的性质得出关于x、y的方程组,将两个方程相加后两边除以2即可得.本题考查了绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键,本题注意利用系数的特点不需要求出x、y的值.57.已知|5x-y+9|与|3x+y-1|互为相反数,则x+y=______.【答案】3【解析】【分析】此题考查了绝对值的非负性,相反数的概念,代数式求值以及解二元一次方程组,解题关键是掌握非负数的性质.解题时,利用互为相反数两数之和为0以及非负数的性质列出方程组,求出方程组的解得到x与y的值,即可求出x+y的值.【解答】解:根据题意得:|5x-y+9|+|3x+y-1|=0,可得,①+②得:8x=-8,解得:x=-1,把x=-1代入①得:y=4,则x+y=-1+4=3,故答案为3.58.对于任意的x、y,若存在a、b使得8x+y(a﹣2b)=ax﹣2b(x﹣2y)恒成立,则a+b=____.【答案】14【解析】解:∵8x+y(a-2b)=ax-2b(x-2y)恒成立,∴8x+y(a-2b)=(a-2b)x+4by,∴a-2b=8,a-2b=4b解得:a=12,b=2,a+b=12+2=14.故答案为:14将已知等式右边展开,再比较等式左右两边对应项系数即可.本题考查了单项式乘多项式,等式恒成立,等式左右两边对应项系数相等是解题的关键.59.若关于x,y的二元一次方程组的解满足,则k的值是_____;【答案】2【解析】【分析】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.方程组中两方程相加表示出x+y,代入x+y=1求出k的值即可.【解答】解:,①+②得:3(x+y)=3k-3,解得:x+y=k-1,代入x+y=1中得:k-1=1,解得:k=2,故答案为2.60.已知m为正整数,且关于x,y的二元一次方程组有整数解,则m2的值为________【答案】4【解析】【分析】本题考查了二元一次方程组的解法,涉及到因式分解相关知识点,解二元一次方程组有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.利用加减消元法易得x、y的解,由x、y均为整数可解得m的值.【解答】解:关于x、y的方程组:①+②得:(3+m)x=10,即把③代入②得:∵方程的解x、y均为整数,∴3+m既能整除10也能整除15,即3+m=5,解得m=2,∴,故答案为4.61.已知x、y满足方程组:,则(x+y)x﹣y的值为.【答案】【解析】【分析】本题主要考查了解二元一次方程组的知识.根据题意,通过对方程组的两方程相加减求出x+y与x-y的值,代入原式计算即可得出结果.【解答】解:由题意得,①+②得:7(x+y)=21,即x+y=3,①-②得:-3(x-y)=3,即x-y=-1,则原式==.故答案为.62.在关于x,y的方程组:①;②中,若方程组①的解是,则方程组②的解是______.【答案】【解析】解:∵方程组①的解是,∴解得,∴方程组②为,整理,可得,(1)×4-(2),可得35x=68,解得x=,把x=代入(2),解得y=,∴方程组②的解是.故答案为:.首先根据:方程组①的解是,可得:,据此求出a、b的值各是多少;然后把求出的a、b的值代入方程组②,再应用加减消元法,求出方程组②的解是多少即可.此题主要考查了二元一次方程组的解,以及解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.63.关于x,y的二元一次方程组,且x-y=18,则实数a的值为______.【答案】-90【解析】解:,①+②×2得:7x=8a-8解得:x=,①×3-②得:7y=10a+46,解得:y=,代入x-y=18得:-=18,解得a=-90,故答案为-90.方程组把a看做已知数表示出x与y,代入已知等式计算即可求出a的值.本题考查解二元一次方程组,解题的关键是熟练掌握基本知识,属于中考常考题型.64.已知,那么x+y的值为______.【答案】3【解析】【分析】本题考查了解二元一次方程组及求代数式的值,解题关键是掌握所求代数式与方程组的关系.把两个方程直接相加即可得出x+y的值.【解答】解:∵,∴①+②得,3x+3y=9,∴x+y=3.。
加减消元法解二元一次方程组

2.分别将两个方程组相加、相减,得到两个新的方程
组,联立新方程组求解即可。
3x 2 y 8 ① 3x y 5
答案: x 2
y 1
2 x y 2 ② 3x 2 y 10 答案: x 2 y 2
3x 2 y 13 ③ 2 x 5 y 6
答案: x 7
33x 17 y 83 ④ 17x 33y 67
y 4
答案: x 2
y 1
谢谢观看!
∴方程组的解为 x 2 y 2
y 2
归纳: 1.观察并确定同一未知数的系数的绝对值,分别确定 它们的最小公倍数,选择较小的最小公倍数的未知数 2.再次分别确定这个最小公倍数与该未知数绝对值的 整倍数,将两个方程的每一项分别乘以这个整数倍 3.所得两个新方程组合进行加减消元法消元。
y 1
x2
∴方程组的解为
x 2 y 1
归纳:当二元一次方程组的两个方程中,同一个未知数
的系数相反或相等时,把这两个方程的两边分别相加或相
减,就能消去这个未知数,得到一个一元一次方程,这种
方法叫做加减消元法,简称加减法。
温馨提示:
1.既能用加法消元又能用减法消元的方程组优先选择
加法消元法。
主讲人
王 伟
例1:3x 7 y
3x 7 y 13②
6 x 12 x2
1①
方法一:解:①+②得
方法二:解:②-①得
把 x 2 带入②得 3 2 7 y 13
把 y 1 带入②得 3 x 7 1 13
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解二元一次方程组(加减法)练习题一、基础过关1.用加、减法解方程组436,43 2.x yx y+=⎧⎨-=⎩,若先求x的值,应先将两个方程组相_______;若先求y的值,应先将两个方程组相________.2.解方程组231,367.x yx y+=⎧⎨-=⎩用加减法消去y,需要()A.①×2-② B.①×3-②×2 C.①×2+② D.①×3+②×2 3.已知两数之和是36,两数之差是12,则这两数之积是()A.266 B.288 C.-288 D.-1244.已知x、y满足方程组259,2717x yx y-+=⎧⎨-+=⎩,则x:y的值是()A.11:9 B.12:7 C.11:8 D.-11:85.已知x、y互为相反数,且(x+y+4)(x-y)=4,则x、y的值分别为()A.2,2xy=⎧⎨=-⎩B.2,2xy=-⎧⎨=⎩C.1,212xy⎧=⎪⎪⎨⎪=-⎪⎩D.1,212xy⎧=-⎪⎪⎨⎪=⎪⎩6.已知a+2b=3-m且2a+b=-m+4,则a-b的值为() A.1 B.-1 C.0 D.m-17.若23x5m+2n+2y3与-34x6y3m-2n-1的和是单项式,则m=_______,n=________.8.用加减法解下列方程组:(1)3216,31;m nm n+=⎧⎨-=⎩(2)234,443;x yx y+=⎧⎨-=⎩(3)523,611;x yx y-=⎧⎨+=⎩(4)357,234232.35x yx y++⎧+=⎪⎪⎨--⎪+=⎪⎩二、综合创新9.(综合题)已知关于x、y的方程组352,23x y mx y m+=+⎧⎨+=⎩的解满足x+y=-10,求代数m2-2m+1的值.10.(应用题)(1)今有牛三头、羊二只共1900元,牛一头、羊五只共850元,•问每头牛和每只羊各多少元?(2)将若干只鸡放入若干个鸡笼中,若每个鸡笼放4只,则有一只鸡无笼可放;•若每个鸡笼放5只,则有一个笼无鸡可放,那么有鸡多少只?有鸡笼多少个?11.(创新题)在解方程组2,78ax bycx y+=⎧⎨-=⎩时,哥哥正确地解得3,2.xy=⎧⎨=-⎩,弟弟因把c写错而解得2,2.xy=-⎧⎨=⎩,求a+b+c的值.12.(1)(2005年,苏州)解方程组11, 23 3210. x yx y+⎧-=⎪⎨⎪+=⎩(2)(2005年,绵阳)已知等式(2A-7B)x+(3A-8B)=8x+10对一切实数x都成立,•求A、B的值.三、培优训练13.(探究题)解方程组200520062004, 200420052003.x yx y-=⎧⎨-=⎩14.(开放题)试在9□8□7□6□5□4□3□2□1=23的八个方框中,•适当填入“+”或“-”号,使等式成立,那么不同的填法共有多少种?四、数学世界到底有哪些硬币?“请帮我把1美元的钞票换成硬币”.一位顾客提出这样的要求.“很抱歉”,出纳员琼斯小组仔细查看了钱柜后答道:“我这里的硬币换不开”.“那么,把这50美分的硬币换成小币值的硬币行吗?”琼斯小组摇摇头,她说,实际上连25美分、10美分、5美分的硬币都换不开.“你到底有没有硬币呢?”顾客问.“噢,有!”琼斯小组说,“我的硬币共有1.15美元.”钱柜中到底有哪些硬币?注:1美元合100美分,小币值的硬币有50美分、25美分、10美分、5美分和1美分.答案:1.加;减2.C3.B 点拨:设两数分别为x、y,则36,12.x yx y+=⎧⎨-=⎩解得24,12.xy=⎧⎨=⎩∴xy=24×12=288.故选B.4.C5.C 点拨:由题意,得4()4,0.x yx y-=⎧⎨+=⎩解得1,212xy⎧=⎪⎪⎨⎪=-⎪⎩故选C.6.A 点拨:23,2 4.a b m a b m+=-⎧⎨+=-+⎩②-①得a-b=1,故选A.7.1;-12点拨:由题意,得5226,321 3.m nm n++=⎧⎨--=⎩解得1,12mn=⎧⎪⎨=-⎪⎩8.(1)2,5.mn=⎧⎨=⎩(2)5,41.2xy⎧=⎪⎪⎨⎪=⎪⎩(3)5,413.8xy⎧=⎪⎪⎨⎪=⎪⎩(4)5,231.4xy⎧=⎪⎪⎨⎪=⎪⎩9.解:解关于x 、y 的方程组352,23x y m x y m +=+⎧⎨+=⎩得26,4.x m y m =-⎧⎨=-+⎩把26,4.x m y m =-⎧⎨=-+⎩代入x+y=-10得(2m-6)+(-m+4)=-10.解得m=-8.∴m 2-2m+1=(-8)2-2×(-8)+1=81.10.(1)解:设每头牛x 元,每只羊y 元,依题意,得321900,5850.x y x y +=⎧⎨+=⎩ 解这个方程组,得600,50.x y =⎧⎨=⎩答:每头牛600元,每只羊50元.(2)解:设有鸡x 只,有鸡笼y 个,依题意,得41,5(1).y x y x +=⎧⎨-=⎩解这个方程组,得25,6.x y =⎧⎨=⎩答:有鸡25只,有鸡笼6个.11.解:把3,2.x y =⎧⎨=-⎩ 代入2,78ax by cx y +=⎧⎨-=⎩ 得322,3148.a b c -=⎧⎨+=⎩把2,2.x y =-⎧⎨=⎩代入ax+by=2 得-2a+2b=2. 解方程组322,3148,22 2.a b c a b -=⎧⎪+=⎨⎪-+=⎩ 得4,5,2.a b c =⎧⎪=⎨⎪=-⎩∴a+b+c=4+5-2=7.点拨:弟弟虽看错了系数c ,但2,2.x y =-⎧⎨=⎩是方程ax+by=2的解. 12.(1)解:①×6,得3x-2y-2=6,即3x-2y=8.③②+③,得6x=18,即x=3.③-②,得4y=2,即y=12. ∴3,1.2x y =⎧⎪⎨=⎪⎩(2)65、-45点拨:∵(2A-7B)x+(3A-8B)=8x+10对一切实数x都成立.∴对照系数可得2A-7B=8,3A-8B=10.∴278, 3810.A BA B-=⎧⎨-=⎩解得6,54.5 AB⎧=⎪⎪⎨⎪=-⎪⎩即A、B的值分别为65、-45.13.解:200520062004, 200420052003.x yx y-=⎧⎨-=⎩①-②,得x-y=1,③③×2006-①,得x=2.把③代入①,得y=1.∴2,1. xy=⎧⎨=⎩点拨:由于方程组中的数据较大,所以正确解答本题的关键是将两方程相减得出x-y=1.14.解:设式中所有加数的和为a,所有减数的和为b,则a-b=23.又∵a+b=9+8+…+1=45,∴b=11.∴若干个减数的和为11.又11=8+3=7+4=6+5=8+2+1=7+3+1=6+4+1=6+3+2=5+4+2=5+3+2+1.∴使等式成立的填法共有9种.点拨:因为只填入“+”或“-”号,所以可以把加数的和,•减数的和看作整体数学世界答案:如果琼斯小姐换不了1美元,那么她钱柜中的50美分硬币不会超过1枚.如果她换不了50美分,那么钱柜中的25美分硬币不会超过1枚,10美分硬币不会超过4枚,10•美分换不了,意味着她的5美分硬币不会超过1枚;5美分换不了,由她的1•美分硬币不超过4枚,因此,钱柜中各种硬币数目的上限是:50美分1枚 $0.5025美分1枚 0.2510美分4枚 0.405美分1枚 0.051美分4枚 0.04$1.24这些硬币还够换1美元(例如,50美分和25美分各1枚,10美分2枚,5美分1枚),•但是我们毕竟知道了钱柜中各种硬币的数目不可能比上面列出的更多,•上面这些硬币加起来总共有1.24美元,比我们所知道的钱柜中的硬币总值1.15美元正好多出9美分.现在,组成9美分的唯一方式是1枚5美分硬币加上4枚1美分,所以必须把这5枚硬币从上面列出的硬币中除去,余下的是1枚50美分、1枚25美分和4枚10美分的硬币.•它们既换不了1美元,也无法把50美分或者25美分、10美分、5•美分的硬币换成小币值的硬币,而且它们的总和正是1.15美元,于是我们便得到了本题的唯一答案.。