用加减消元法解二元一次方程组练习题

合集下载

加减消元法解二元一次方程组(1)

加减消元法解二元一次方程组(1)

基本思路:二元
一元
五、分层练习,自我提升
1、已知方程组
2 x y 10 ① 中,①+②,得5x=5,解得x= 1 3x y 5 ②
.
3x 3 y 6 2、解方程组 3x 2 y 5


,发现x的系数特点是 相同 ,
只要将这两个方程相 减 ,便可消去未知数
4x +10y=3.6 ① 15x -10y=8
② ①+②消去y
3x +10 y=2.8 ①
15x -10 y=8

解:把 ①+②得: 18x=10.8 x=0.6 把x=0.6代入①,得: 3×0.6+10y=2.8 解得:y=0.1 所以这个方程组的解是
x 0.6 y 0.1
基本思路: 加减消元: 二元 一元
主要步骤:
加减
消去一个元
求解
写解
分别求出两个未知数的值
写出方程组的解
1、方程组
① ,①-②得(B ) ② 5y 8 5 y 8 B、5 y 8 C、 A、
2 x 3 y 5 2 x 8 y 3
5 y 8 D、
2 x - 4 y 8 2、用加减法解方程组3x 4 y 2
加减消元法的概念
两个二元一次方程中同一未知数 的系数相反或相等时,将两个方 程的两边分别相加或相减,就能 消去这个未知数,得到一个一元 一次方程,这种方法叫做加减消 元法,简称加减法(addition- subtraction method)。
试一试,你会解吗?
用加减法解下列方程:
3u 2t 7 (1) 6u 2t 11

加减消元法—解二元一次方程组(1)

加减消元法—解二元一次方程组(1)

追问3
如何用加减法消去x?
应用新知
二 元 一 次 方 程 组 3x 3 x+4y y= =16 16
①×5
使未知数x 系数相等
15x+20y=80
5x-6y=33
代 入
②×3
15x-18y=99
解得x
x=6
1 y= 2
解得y
两 式 相 减
消 x
38y=-19
初步尝试:

解下列方程组: 1. 3x 2 y 6, 2.
y 4.
探究新知
x y 10 ,① 问题1 我们知道,对于方程组 2 x y 16 ②
可以用代入消元法求解,除此之外,还有没有 其他方法呢? 追问5 ①-②也能消去未知数y,求出x吗?
(x y )( 2x y ) 10 16.
探究新知
问题2 联系上面的解法,想一想应怎样解方程组
3x 10 y 2.8, ① ② 15 x 10 y 8 .
追问1 此题中存在某个未知数系数相等吗?你发 现未知数的系数有什么新的关系? 未知数y的系数互为相反数,由①+②,可消去 未知数y,从而求出未知数x的值. 追问2 两式相加的依据是什么? “等式性质”
探究新知
问题3 这种解二元一次方程组的方法叫什么?有 哪些主要步骤? 当二元一次方程组中的两个二元一次方程中同一 未知数的系数相反或相等时,把这两个方程的两边分 别相加或相减,就能消去这个未知数,得到一个一元 一次方程,这种方法叫做加减消元法,简称加减法.
自测
x = 1 mx + n = 5 1、已知方程组 的解是 y = 2 my - n = 1
2 m=____________,n=________________ 3

二元一次方程组求解方法练习题30道

二元一次方程组求解方法练习题30道

二元一次方程组求解方法练习题30道1. 解方程⚪1:已知方程组$$\begin{cases}2x + 3y = 7 \\3x - 5y = -1\end{cases}$$求 $x$ 和 $y$ 的值。

<details><summary>点击查看解答</summary>首先,我们可以使用消元法解这个方程组。

1. 对第一个方程乘以2,得到 $4x + 6y = 14$。

2. 对第二个方程乘以3,得到 $9x - 15y = -3$。

现在,我们将这两个方程相加,消去$x$的项:$$(4x + 6y) + (9x - 15y) = 14 - 3$$化简得:$13x - 9y = 11$。

现在,我们可以解得 $x = \frac{11+9y}{13}$。

接下来,将 $x$ 的值代入第一个方程:$$2 \cdot \left(\frac{11+9y}{13}\right) + 3y = 7$$化简得:$4y^2 - 5y - 2 = 0$。

解这个二次方程,可以得到 $y$ 的两个值:$y = 1$ 或 $y = -\frac{1}{4}$。

将 $y$ 的值代入 $x$ 的表达式,可以得到对应的 $x$ 值。

因此,方程组的解为:$(x, y) = \left(\frac{20}{13}, 1\right)$ 或 $\left(-\frac{3}{13}, -\frac{1}{4}\right)$。

</details>2. 解方程⚪2:已知方程组$$\begin{cases}x + 3y = 5 \\2x - 4y = 10\end{cases}$$求 $x$ 和 $y$ 的值。

<details><summary>点击查看解答</summary>我们可以使用消元法解这个方程组。

首先,将第一个方程乘以2,得到 $2x + 6y = 10$。

1.2二元一次方程组的解法(2)加减消元法同步练习含答案

1.2二元一次方程组的解法(2)加减消元法同步练习含答案

1.2 二元一次方程组的解法第2课时加减消元法核心笔记:加减消元法:两个二元一次方程中同一未知数的系数相同或相反时,把这两个方程相减或相加,就能消去这个未知数,从而得到一个一元一次方程,这种解方程组的方法叫做加减消元法,简称加减法.基础训练1.方程组由②-①,得正确的方程是( )A.3x=10B.x=5C.3x=-5D.x=-52.二元一次方程组的解为( )A. B. C. D.3.若方程mx+ny=6的两个解是和则m,n的值分别为( )A.4,2B.2,4C.-4,-2D.-2,-44.用加减消元法解方程组的具体步骤如下:第一步:①-②,得x=1;第二步:把x=1代入①,得y=-;第三步:所以其中开始出现错误的是( )A.第一步B.第二步C.第三步D.没有出错5.已知方程组:①②其中方程组①采用消元法解简单,方程组②采用消元法解简单.6.若a+b=3,a-b=7,则ab=______________.7.用加减法解方程组:(1)(2)8.已知-2x m-1y3与x n y m+n是同类项,求m,n的值.培优提升1.利用加减消元法解方程组下列做法正确的是( )A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×22.已知x,y满足方程组则x+y的值为( )A.9B.7C.5D.33.已知5|x+y-3|+2(x-y)2=0,则( )A. B. C. D.4.二元一次方程组的解是______________.5.对于X,Y定义一种新运算“@”:X@Y=aX+bY,其中a,b为常数,等式右边是通常的加法和乘法的运算.已知:3@5=15,4@7=28,那么2@3=_____________.6.已知是二元一次方程组的解,则m+3n=_____________.7.用加减消元法解方程组:(1)(2)8.在解方程组时,哥哥正确地解得弟弟因把c写错而解得求a+b+c的值.9.阅读理解题特殊的题有特殊的解法,阅读下面的解题过程,我们从中可以得到启发:解方程组解:由①+②得:500x+500y=1 500,即x+y=3, ③由①-②得:6x-6y=54,即x-y=9, ④由③+④得:2x=12,解得:x=6,又由③-④得:2y=-6,解得:y=-3,所以原方程组的解为【归纳】对于大系数的二元一次方程组,当用代入法和加减法解非常麻烦时,可以通过观察各项系数的特点,寻求特殊解法.根据上述例题的解题方法解下面的方程组:参考答案【基础训练】1.【答案】B解:注意符号问题.2.【答案】C3.【答案】A4.【答案】A5.【答案】加减;代入6.【答案】-10解:两个方程相加,解得a=5,将a=5代入a+b=3,解得b=-2, 故ab=-10.7.解:(1)①+②得3x=15,所以x=5.将x=5代入①,得5+y=6,所以y=1,所以方程组的解为(2)②×3,得3x+9y=21,③③-①,得11y=22.所以y=2.把y=2代入②,得x+6=7,所以x=1,所以原方程组的解为8.解:因为-2x m-1y3与x n y m+n是同类项,所以经变形可得所以【培优提升】1.【答案】D2.【答案】C解:①+②得4x+4y=20,则x+y=5.故选C.3.【答案】D解:由绝对值和数的平方的性质可以得到解得故选D.4.【答案】5.【答案】2解:因为3@5=15,4@7=28,所以3a+5b=15①,4a+7b=28②,由②-①,得a+2b=13③,由①-③,得2a+3b=2,所以2@3=2a+3b=2.6.【答案】8解:本题运用整体思想解题更简便.把代入方程组得两式相加得m+3n=8.7.解:(1)②×2-①,得n=20,把n=20代入②,得2m+3×20=240,解得m=90.所以原方程组的解为(2)①×4-②×3得:7y=-7,解得y=-1,将y=-1代入①得:3x-4=5,解得x=3,所以原方程组的解为8.解:把x=3,y=-2代入得把x=-2,y=2代入ax+by=2.得-2a+2b=2.因为弟弟把c写错了,所以弟弟的解不满足cx-7y=8.联立方程组:解得由3c+14=8得c=-2.故a+b+c=4+5-2=7.9.解:由①+②得:4 025x+4 025y=16 100, 即x+y=4,③由②-①得:x-y=100,④由③+④得:2x=104,解得x=52, 由③-④得:2y=-96,解得y=-48, 则原方程组的解为。

北京市七年级数学下学期期试题知识点分类汇编-10解二元一次方程组(选择、填空题)

北京市七年级数学下学期期试题知识点分类汇编-10解二元一次方程组(选择、填空题)

北京市七年级数学下学期期末三年(2020-2022)试题知识点分类汇编-10解二元一次方程组(选择、填空题)1.(2022春•顺义区期末)用加减消元法解二元一次方程组时,下列做法正确的是()A.要消去x,可以将①×3+②×5B.要消去x,可以将①×5﹣②×3C.要消去y,可以将①×2﹣②D.要消去y,可以将①×2+②2.(2022春•西城区期末)解方程组的思路可用如图的框图表示,圈中应填写的对方程①②所做的变形为()A.①×2+②×3B.①×2﹣②×3C.①×3﹣②×2D.①×3+②×2 3.(2021春•丰台区校级期末)设y=kx+b,当x=1时,y=1;当x=2时,y=﹣4,则k,b的值分别为()A.3,﹣2B.﹣3,4C.﹣5,6D.6,﹣5 4.(2021春•丰台区校级期末)解方程组,你认为下列四种方法中,最简便的是()A.代入消元法B.①×27﹣②×13,先消去xC.①×4﹣②×6,先消去y D.②×3﹣①×2,先消去y5.(2021春•海淀区校级期末)二元一次方程组的解是()A.B.C.D.6.(2021春•海淀区校级期末)已知二元一次方程组,则x﹣y的值为()A.﹣5B.﹣2C.﹣1D.17.(2021春•海淀区校级期末)解方程组加减消元法消元后,正确的方程为()A.6x﹣3y=3B.y=﹣1C.﹣y=﹣1D.﹣3y=﹣1 8.(2021春•丰台区校级期末)关于x,y的二元一次方程组的解满足x<y,则a的取值范围是()A.a>B.a<C.a<D.a>9.(2021春•丰台区校级期末)对于非零的两个实数a,b,规定a⊕b=am﹣bn,若3⊕(﹣5)=15,4⊕(﹣7)=28,则(﹣1)⊕2的值为()A.﹣13B.13C.2D.﹣210.(2021春•石景山区校级期末)二元一次方程组的解是()A.B.C.D.11.(2021春•东城区校级期末)二元一次方程组的解是()A.B.C.D.12.(2020春•海淀区校级期末)由方程组可得x与y的关系式是()A.3x=7+3m B.5x﹣2y=10C.﹣3x+6y=2D.3x﹣6y=2 13.(2020春•海淀区校级期末)已知方程组,则x﹣y的值是()A.2B.﹣2C.0D.﹣114.(2020春•丰台区期末)二元一次方程组的解是()A.B.C.D.15.(2020春•通州区期末)已知二元一次方程组,那么a+b的值是()A.1B.0C.﹣2D.﹣116.(2020春•东城区期末)用加减法解方程组时,(1)×2﹣(2)得()A.3x=﹣1B.﹣2x=13C.17x=﹣1D.3x=1717.(2020春•东城区校级期末)方程组的解是()A.B.C.D.18.(2020春•通州区期末)若x,y满足方程组,则x﹣6y=.19.(2020春•顺义区期末)已知x,y是有理数,且满足|2x﹣y+1|+(5x﹣2y﹣3)2=0,则x=,y=.20.(2020春•通州区期末)用代入消元法解二元一次方程组时,由①变形得y=.21.(2020春•东城区校级期末)已知a、b满足方程组,则a+b的值为.22.(2020春•东城区校级期末)若(x﹣2y+1)2+|x+y﹣5|=0,则x=,y=.23.(2021春•西城区期末)已知|2x﹣y|+(x+2y﹣5)2=0,则x﹣y的值是.24.(2021春•海淀区校级期末)已知关于x,y的二元一次方程y+ax=b的部分解如表①所示,二元一次方程2x﹣cy=d的部分解分别如表②所示,则关于x,y的二元一次方程组的解为.x﹣10123y﹣4﹣3﹣2﹣10表①x﹣10123y531﹣1﹣3表②25.(2021春•西城区校级期末)若(a+3b﹣9)2与互为相反数,则a=,b=.26.(2021春•海淀区校级期末)若实数a、b满足|2a﹣b﹣2|+(2a﹣2b)2=0,则a+b的值为.27.(2021春•东城区校级期末)对于实数x,y我们定义一种新运算F(x,y)=mx+ny(其中m,n均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,例如m=3,n=1时,F(2,4)=3×2+1×4=10.若F(1,﹣3)=6,F(2,5)=1,则F(3,﹣2)=.28.(2021春•海淀区校级期末)已知关于x,y的二元一次方程组,则x﹣y 的值是29.(2021春•海淀区校级期末)已知方程组,则x+y的值为.30.(2021春•西城区校级期末)已知|x+3y﹣4|+(2y﹣x﹣6)2=0,则=.31.(2020秋•顺义区期末)方程组的解是.32.(2022春•怀柔区校级期末)如图是小强同学解方程组过程的框图表示,请你帮他补充完整:其中,①为,②为.33.(2022春•平谷区期末)观察下列表格,写出方程组的解是.7x﹣3y=50x…﹣125811…y…﹣19﹣12﹣529…8x﹣y=62x…﹣125811…y…﹣70﹣46﹣22226…34.(2022春•房山区期末)若有理数a,b满足|2a﹣b+6|+(a+4b)2=0,则a+b的值为.35.(2022春•朝阳区期末)二元一次方程组的解是.参考答案与试题解析1.【解析】解:∵①×3+②×5得:15x﹣3y+15x+10y=18+70,∴30x+7y=88,∴A不合题意.∵①×5﹣②×3得:25x﹣5y﹣9x﹣6y=30﹣42,∴16x﹣11y=﹣12,∴B不合题意.∵①×2﹣②得:10x﹣2y﹣﹣3x﹣2y=12﹣14,∴7x﹣4y=﹣2,∴C不合题意.∵①×2+②得:10x﹣2y+3x+2y=12+14,∴13x=26,∴D符合题意.【答案】D.2.【解析】解:,①×3,得6x+9y=24③,②×2,得6x﹣4y=﹣2④,③﹣④,得(6x+9y)﹣(6x﹣4y)=24﹣(﹣2),即变形的思路是①×3﹣②×2,【答案】C.3.【解析】解:∵设y=kx+b,当x=1时,y=1;当x=2时,y=﹣4,∴,解得:,【答案】C.4.【解析】解:解方程组,你认为下列四种方法中,最简便的是②×3﹣①×2,先消去y,【答案】D.5.【解析】解:,①+②得:2x=6,即x=3,把x=3代入①得:y=1,则方程组的解为,【答案】B.6.【解析】解:由二元一次方程组,两式相加得:3x﹣3y=3,则x﹣y=1.【答案】D.7.【解析】解:,①﹣②得:﹣y=﹣1,【答案】C.8.【解析】解:,①×3﹣②得:8x=7a﹣5,即x=,①﹣②×3得:8y=13a﹣15,即y=,根据题意得:<,去分母得:7a﹣5<13a﹣15,移项合并得:6a>10,解得:a>.【答案】D.9.【解析】解:根据题意得:3⊕(﹣5)=3m+5n=15,4⊕(﹣7)=4m+7n=28∴,解得:∴(﹣1)⊕2=﹣m﹣2n=35﹣48=﹣13【答案】A.10.【解析】解:,①+②得,3x=3,解得x=1,把x=1代入①得,1+y=2,解得y=1,所以,方程组的解是.【答案】B.11.【解析】解:,把①代入②得,3y﹣y=4,即y=2.再把y=2代入x=3y得,x=6.∴原方程组的解为.【答案】D.12.【解析】解:,①×2﹣②得:3x﹣6y=2,【答案】D.13.【解析】解:,②﹣①得:x﹣y=2,【答案】A.14.【解析】解:,①﹣②得:x=1,把x=1代入②得:y=﹣1,所以方程组的解为:,【答案】A.15.【解析】解:,①﹣②得:a+b=﹣1.【答案】D.16.【解析】解:(1)×2﹣(2),得2(5x+y)﹣(7x+2y)=2×4﹣(﹣9),去括号,得10x+2y﹣7x﹣2y=2×4+9,化简,得3x=17.【答案】D.17.【解析】解:,①+②得:3x=6,x=2,把x=2代入①得:y=0,∴,【答案】D.18.【解析】解:,②﹣①得:x﹣6y=8,【答案】819.【解析】解:∵x,y是有理数,且满足|2x﹣y+1|+(5x﹣2y﹣3)2=0,∴,②﹣①×2得:x=5,把x=5代入①得:y=11,【答案】5,11.20.【解析】解:用代入消元法解二元一次方程组时,由①变形得y=3x﹣2.【答案】3x﹣2.21.【解析】解:,①+②得:3a+3b=15,则a+b=5,【答案】522.【解析】解:由题意得:,解得:,【答案】3;2.23.【解析】解:∵|2x﹣y|+(x+2y﹣5)2=0,∴2x﹣y=0,x+2y﹣5=0,即,解得:x=1,y=2,∴x﹣y=1﹣2=﹣1,【答案】﹣1.24.【解析】解:把x=0,y=﹣3;x=1,y=﹣2代入y+ax=b得:,解得:;把x=0,y=3;x=1,y=1代入2x﹣cy=d得:,解得:,代入方程组得:,解得:.【答案】25.【解析】解:∵(a+3b﹣9)2与互为相反数,∴(a+3b﹣9)2+=0,∴,②×3得,6a﹣3b﹣12=0③,①+③得,a=3,将a=3代入②得,b=2,故答案为3,2.26.【解析】解:∵|2a﹣b﹣2|+(2a﹣2b)2=0,∴2a﹣b﹣2=0,2a﹣2b=0,∴2a=b+2,a=b,∴a=2,b=2,∴a+b=4,故答案为4.27.【解析】解:∵F(1,﹣3)=6,F(2,5)=1,∴根据题中的新定义化简得:,解得:,即F(x,y)=3x﹣y,则F(3,﹣2)=9+2=11.【答案】11.28.【解析】解:,①﹣②×2得:3y=3k﹣3,解得:y=k﹣1,把y=k﹣1代入②得:x﹣2(k﹣1)=﹣k+2,解得:x=k,x﹣y=k﹣(k﹣1)=1,【答案】129.【解析】解:,①+②得:3x+3y=3(x+y)=9,则x+y=3.【答案】3.30.【解析】解:∵|x+3y﹣4|+(2y﹣x﹣6)2=0,∴,解得:,则==2,【答案】2.31.【解析】解:在方程组中,①+②得:3x=6,解得:x=2.代入①得:y=1.即原方程组的解为.32.【解析】解:由代入法求解二元一次方程组的步骤可知:①为代入,②为消去y,【答案】代入,消去y.33.【解析】解:观察表格得:方程组的解是.【答案】.34.【解析】解:∵|2a﹣b+6|+(a+4b)2=0,∴2a﹣b=﹣6①,a+4b=0②,∴①+②得,3a+3b=﹣6;因此a+b=﹣2.【答案】﹣2.35.【解析】解:方程组,①+②得:2x=6,解得:x=3,①﹣②得:2y=﹣2,解得:y=﹣1,则方程组的解为.【答案】.。

5-8.2 加减消元法解二元一次方程组(2)

5-8.2 加减消元法解二元一次方程组(2)

4(x+y)=1000
4(x-y)=600 解法三(整体代入) 解:由(2)式得: 4x=600+4y (3) 将(3)式代入(1)得: 600+4y+4y=1000, y=50 将y=50代入(3)得: 4x=600+200 x=200

4x+4y=1000 4x-4y=600
解法四: 先化简再选加减消 元或代入消元法解化 简得:
x 原方程 a, 组可以 3 变形为 y b 2 x =2, 3 所以 y = 1 2
a b 3, a b 1;
换元
x=6, 解, 得 y= 2.
还原
备选题
解二元一次方程组:
方法1:整理,得 2 x y) 3( x y )= 6, ( 2 x y) 3( x y )= 42. (
a=2, 解, 得 b=3
1、一旅游者从下午2时步行到晚上7时,他先走平路, 然后登山,到山顶后又沿原路下山回到出发点,已知他 走平路时每小时走4千米,爬山时每小时走3千米,下坡 时每小时走6千米,问旅游者一共走了多少路?
解:旅游者一共走了20千米路。
设平路长x千米,坡路长y千米,依时间关系有:
所以原方程组的解是
m 1, n 2.
备选题
举一反三:解方程组(1),再利用它的 解用简便方法解方程组(2)、(3):
2m 3n=8, (1) 3m 2n= 1;
① ②
m 1, n 2.
2(x y ) 3(x y )=8, (2) 3(x y ) 2(x y )= 1;
备选题
解二元一次方程组:
y x 3, 3 2 ⑴ x y 1; 2 3

_加减消元法解二元一次方程组_(3)

_加减消元法解二元一次方程组_(3)

2
大显身手
X=-2 3、已知 y=4 和
的解,求ab的值。
X=4 都是方程 y=ax+b y=1
2x + 3y = 10 ax + by = 2 的解与 4.关于x、y的二元一次方程组 4x - 5y = -2 ax - by = 4
的解相同,求a、b的值
2x + 3y = 10 ax + by = 2 的解与 8.关于x、y的二元一次方程组 4x - 5y = -2 ax - by = 4
解这个方程,得
3 y = 7
x = 2 所以原方程组的解是 y = 3 7
x + y = 22 2x + y = 40
3x + 7 y = 9 4 x 7 y = 5
上面这些方程组的特点是什么? 解这类方程组基本思路是什么?主要步骤有哪些? 特点: 同一个未知数的系数相同或互为相反数 基本思路: 加减消元: 二元 一元 主要步骤:加减 消去一个未知数(元) 求解 分别求出两个未知数的值 写解 写出方程组的解 加减消元法的概念 当两个二元一次方程中同一个未知数的系数相反或相等 时,把这两个方程的两边分别相加或相减,就能消去这 个未知数,得到一个一元一次方程。这种方法叫做加减 消元法,简称加减法。
-
例2 解方程组 2x - 3y = 0.5 ① 5x – 6y = 4 ② 解: ①×2得: 4x – 6y = 1 ③ ③ - ②得: -x = -3 x=3 把x = 3代入①得:
2×3 – 3y = 0.5 解得: y = 11/6 x=3 ∴ y = 11/6
一般步骤
①变形:使同一个未知数 的系数相同或互为相反数
① - ②得

解二元一次方程组 练习题及答案

解二元一次方程组 练习题及答案

解二元一次方程组 练习题及答案1.方程组1325y x x y +=⎧⎨+=⎩的解是A .32x y =⎧⎨=-⎩B .34x y =-⎧⎨=⎩C .32x y =⎧⎨=⎩D .32x y =-⎧⎨=-⎩2.用加减消元法解方程组231354y x x y +=⎧⎨-=-⎩①②,①-②得A .2y =1B .5y =4C .7y =5D .-3y =-33.用加减消元法解方程组358752x y x y -=⎧⎨+=⎩将两个方程相加,得A .3x =8B .7x =2C .10x =8D .10x =104.解关于x y ,的方程组239x y mx y m +=⎧⎨-=⎩,得2x y +的值为A .12mB .0C .2m -D .7m5.解方程组:(1)4273210x y x y -=⎧⎨+=⎩;(2)2359x y x y =⎧⎨-=⎩;(3)459237x y x y +=⎧⎨-=⎩;(4)7341x y x y +=⎧⎨-=⎩,比较适宜的方法是A .(1)(2)用代入法,(3)(4)用加减法B .(1)(3)用代入法,(2)(4)用加减法C .(2)(3)用代入法,(1)(4)用加减法D .(2)(4)用代入法,(1)(3)用加减法6.若2425y x a b -与352x y a b +是同类项,则x 、y 的值为A .21x y =⎧⎨=⎩B .31x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=-⎩7.由方程组63x m y m +=⎧⎨-=⎩①②可得出x 与y 的关系式是A .9x y +=B .3x y +=C .3x y +=-D .9x y +=-8.小亮解方程组2212x y x y +=∆⎧⎨-=⎩的解为5x y =⎧⎨=∑⎩,由于不小心,滴上了两滴墨水,刚好遮住了两个数∆和∑,则两个数∆和∑的值为A .82∆=⎧⎨∑=⎩B .82∆=⎧⎨∑=-⎩C .82∆=-⎧⎨∑=⎩D .82∆=-⎧⎨∑=-⎩9.若二元一次方程组2143221x y x y +=⎧⎨-+=⎩的解为x ay b=⎧⎨=⎩,则a +b 值为A .19B .212C .7D .1310.用代入法解方程组2503510x y x y -=⎧⎨+-=⎩①②时,最简单的方法是A .先将①变形为x =52y ,再代入② B .先将①变形为y =25x ,再代入②C .先将②变形为xD .先将①变形为5y =2x ,再代入②11.不解方程组,下列与237328x yx y+=+=⎧⎨⎩的解相同的方程组是A.2836921y xx y=-+=⎧⎨⎩B.283237y xx y=+=+⎧⎨⎩CD12.方程组221x yx y+=-=⎧⎨⎩的解是__________.13.已知23523x yx y+=⎧⎨+=-⎩,则3x+3y的值为__________.14.若方程组35ax byax by-=-⎧⎨+=⎩与23144516x yx y+=⎧⎨-=-⎩的解相同,则a=__________,b=__________.15.解方程组:学科=网(1)23328y xx y=-⎧⎨+=⎩(代入法);(2)223210x yx y+=⎧⎨-=⎩(加减法);(3)357 425 x yx y-=⎧⎨+=⎩;(4)2()1343()2(2)8x y x yx y x y-+⎧=-⎪⎨⎪+=-+⎩.16.数学课上老师要求学生解方程组:213 3113a bb a=-+⎧⎨=-⎩.同学甲的做法是:213 3113a bb a=-+⎧⎨=-⎩①②,由①,得a=-12+32b.③把③代入②,得3b=11-3(-12+32b),解得b=53,把b=53代入③,解得a=2,所以原方程组的解是253ab=⎧⎪⎨=⎪⎩.老师看了同学甲的做法说:“做法正确,但是方法复杂,要是能根据题目特点,采用更加灵活简便的方法解此题就更好了.”请你根据老师提供的思路解此方程组.17.3()2()5 4(2)3x y x yx y x y-++=⎧⎨-+-=-⎩.18.已知23x yx y-=⎧⎨+=⎩,则xy的值是A.2 B.1 C.-1 D.219.用加减消元法解方程组23537x yx y-=⎧⎨=+⎩①②正确的方法是A.①+②得2x=5 B.①+②得3x=12C.①+②得3x+7=5 D.先将②变为x-3y=7③,再①-③得x=-220.用加减法解方程组326231x y x y +=⎧⎨+=⎩时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是(1)966462x y x y +=⎧⎨+=⎩(2)9618462x y x y +=⎧⎨-=⎩(3)9618462x y x y +=⎧⎨+=⎩(4)6412693x y x y +=⎧⎨+=⎩ A .(1)(2) B .(2)(3) C .(3)(4)D .(4)(1)21.已知方程组323()11x y y x y -=⎧⎨+-=⎩,那么代数式3x -4y 的值为A .1B .8C .-1D .-822.已知关于x ,y 的方程组343x y a x y a +=-⎧⎨-=⎩,给出下列结论:①51x y =⎧⎨=-⎩是方程组的一个解;②当2a =时,x ,y 的值互为相反数;③当a =1时,方程组的解也是方程x -2y =3的解;④x ,y 间的数量关系是x +y =4-a ,其中正确的是 A .②③ B .①②③ C .①③D .①③④23.若方程组(31)2y kx by k x =+=-+⎧⎨⎩有无穷多组解,则2k +b 2的值为A .4B .5C .8D .1024.已知甲、乙两人的收入比为32∶,支出之比为74∶,一年后,两人各余400元,若设甲的收入为x元,支出为y 元,可列出的方程组为ABCD25.若关于x 、y 的二元一次方程组59x y kx y k+=-=⎧⎨⎩的解也是二元一次方程2x +3y =6的解,则k 的值为__________.26.若方程组7353x y x y +=⎧⎨-=-⎩,则3()(35)x y x y +--的值是__________.27.用合适的方法解下列方程组:(1)4023222y x x y =-⎧⎨+=⎩①②;(2)235421x y x y +=⎧⎨-=⎩①②;(3)651533x y x y +=⎧⎨-=-⎩①②.28.已知方程组82x y x y +∆=⎧⎨∆-=⎩中,y x 、的系数部已经模糊不清,但知道其中表示同一个数,∆也表示同一个数,⎩⎨⎧-==11y x 是这个方程组的解,你能求出原方程组吗?29.解方程组:6323()2()28x y x yx y x y +-⎧+=⎪⎨⎪+--=⎩.30.请你根据萌萌所给的如图所示的内容,完成下列各小题.(1)若m ※n =1,m ※2n =-2,分别求m 和n 的值;(2)若m 满足m ※2≤0,且3m ※(-8)>0,求m 的取值范围.31.(2018·怀化)二元一次方程组22x y x y +=⎧⎨-=-⎩的解是A .02x y =⎧⎨=-⎩B .02x y =⎧⎨=⎩C .20x y =⎧⎨=⎩D .20x y =-⎧⎨=⎩32.(2018·天津)方程组10216x y x y +=⎧⎨+=⎩的解是A .64x y =⎧⎨=⎩B .56x y =⎧⎨=⎩C .36x y =⎧⎨=⎩D .28x y =⎧⎨=⎩33.(2018·台湾)若二元一次联立方程式73838x y x y -=⎧⎨-=⎩的解为x =a ,y =b ,则a +b 之值为何?A .24B .0C .-4D .-834.(2018·桂林)若|321|20x y x y --+-=,则x ,y 的值为A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩35.(2018·常德)阅读理解:a ,b ,c ,d 是实数,我们把符号a b c d称为22⨯阶行列式,并且规定:a b a d b c c d=⨯-⨯,例如:323(2)2(1)62412=⨯--⨯-=-+=---.二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解可以利用22⨯阶行列式表示为:xy D x DD y D⎧=⎪⎪⎨⎪=⎪⎩;其中1122a b D a b =,1122x c b D c b =,1122y a c D a c =.问题:对于用上面的方法解二元一次方程组213212x y x y +=⎧⎨-=⎩时,下面说法错误的是 A .21732D ==--B .14x D =-C .27yD =D .方程组的解为23x y =⎧⎨=-⎩36.(2018·无锡)方程组225x y x y -=⎧⎨+=⎩的解是__________.37.(2018·福建)解方程组:1410x y x y +=⎧⎨+=⎩.38.(2018·湘西州)解方程组:335x y x y +=⎧⎨-=⎩.39.(2018·武汉)解方程组:10216x y x y +=⎧⎨+=⎩.40.(2018·宿迁)解方程组:20 346 x yx y+=⎧⎨+=⎩.41.(2018·舟山)用消元法解方程组35432x yx y-=⎧⎨-=⎩①②时,两位同学的解法如下:(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”.(2)请选择一种你喜欢的方法,完成解答.参考答案1. A2. C3. D4. A5. D6. D7. A8. B9. D10.D11.A12.11 xy==⎧⎨⎩13.3 214.1;115.(1)21xy=⎧⎨=⎩.(2)22xy=⎧⎨=-⎩.(3)3212xy⎧=⎪⎪⎨⎪=-⎪⎩.(4)22xy=⎧⎨=⎩.16.253ab=⎧⎪⎨=⎪⎩.17.651xy⎧=⎪⎨⎪=⎩.18.B19.D20.C21.B22.C23.B24.C25.3 426.24贾老师数学27. (1)5876x y =⎧⎨=-⎩.(2)131698x y ⎧=⎪⎪⎨⎪=⎪⎩.(3)03x y =⎧⎨=⎩. 28. 538352x y x y -=⎧⎨--=⎩. 29. 84x y =⎧⎨=⎩. 30. (1)11n m =⎧⎨=⎩.(2)-2<m ≤32. 31. B32. A33. A34. D35. C36. 31x y =⎧⎨=⎩37. 32x y =⎧⎨=-⎩. 38. 21x y =⎧⎨=⎩. 39. 64x y =⎧⎨=⎩. 40. X=6,y=-341. (1)解法一中的计算有误.(2)用消元法解方程组35432x y x y -=⎧⎨-=⎩①②时,两位同学的解法如下:由①-②,得33x -=,解得1x =-,把1x =-代入①,得135y --=,解得2y =-,所以原方程组的解是12x y =-⎧⎨=-⎩.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用加减消元法解二元一次方程组练习题
1.用代入法解方程组由①可得__________.
⎩⎨⎧=-=-)2(1483)
1(3 y x y x 2.方程组的解是__________.

⎨⎧=-=+1035
2y x y x 3.已知x +y =4且x -y =10,则2xy =________.
4.已知 是方程组 的解,则a =_____,b =______.
5.对于x 、y ,规定一种新的运算:x*y =ax +by ,其中a 、b 为常数,等式右边
是通常的加法和乘法运算,已知3*5=15,4*7=28,则a +b =_______.
6.将方程x +2y =1中的x 项的系数化为2,则下列结果中正确的是( )
3
1
A 、2x +6y =1
B 、2x +2y =6
C 、2x +6y =3
D 、2x +12y =6
7.某校课外小组的学生准备分组外出活动,若每组7人,则余下3人;若每组
8人,则最后一组只有3人,设课外小组的人数为x ,分成的组数为y .依题意可得方程组为( )
A 、
B 、
C 、
D 、
8.用代入法解下列方程组:(1)
m =1 n =2am +bn =2
am -bn =3
y =x +6 ①2x +3y =8 ②
2x +3y =-19 ①x +5y =1 ②(2)
7y =x +3 8y +5=x 7x +3=y 8x -5=y 7y =x -3
8y =x +5
7y =x +38y =x +5
9.用加减法解下列方程组:(1)
(2

10.已知代数式x 2+bx +c ,当x =-3时,它的值为9,当x =2时,它的值为
14,当x =-8时,求代数式的值。

11.若∣m +n -
5∣+(2m +3n -5)2=0,求(m +n )2的值
12.甲、乙两个小马虎,在练习解方程组 时,由于粗心,甲看错
了方程组中的a ,得到方程组的解为 ;乙看错了方程组中的b ,得到方
程组的解为
问原方程组的解为多少?
2x +5y =12 ①2x +3y =6 ②
5x -5y =7 ①15x +20y =7 ②
ax +y =10
x +by =7
x =1
y =6
x =-1 y =12。

相关文档
最新文档