大连理工大学高等代数考研试题
大连理工大学线性代数与解析几何A卷答案(2014.6)

姓名:__________大 连 理 工 大 学 学号:__________课 程 名 称: 线性代数与解析几何 试卷: A 考试形式: 闭卷院系:__________ 授课院(系): 数学科学学院 考试日期: 2014年6月16日 试卷共 6 页 _____ 级_____ 班装 得 分 一、(每小题4分,共40分)填空题1.已知222222222222kk k k ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A , 则3(6)(2)k k =+-A . 2. 设1300250000200003--⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦A , 则1530021001000210003-⎡⎤⎢⎥--⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A 订 3. 设123,,a a a 是一线性无关的向量组,若向量组122313,,k k -++a a a a a a 线性相关, 则k 需满足条件1-1k =或4. 矩阵111022021113-⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦A 的行最简形为1-10000100001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦5. 已知25141001k -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦A 有三个线性无关的特征向量,则=1k 线6. 设1231233,2223p k ⎡⎤⎡⎤⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A b ,方程组=Ax b 无解,则,p k 应满足关系2k p =7. 过点0(1,2,3)P ,且垂直于直线4010x y z y z +++=⎧⎨--=⎩的平面的一般式方程为230x y z -++-=8. 已知二次型10()9000T k f k k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦x x x 为正定二次型,则k 需满足条件03k <<9. 在空间直角坐标系Oxyz 中,设22a i j k =+- ,b i j =+,则a 与b 的夹角为π410. 设[]1234,,,=A a a a a ,123,,a a a 线性无关,且412323=++a a a a , 则齐次线性方程组=Ax 0的通解为[]1,2,3,1Tk -得 分 二、(每小题2分,共10分)单项选择题1.方阵A 是降秩矩阵的充要条件是( D )(A )()()r r <AB B (B )方程组=Ax b 有无穷多个解 (C )存在非零矩阵B ,使得≠AB O (D )存在非零矩阵B ,使得=AB O 2.设,A B 都是n 阶方阵,E 为n 阶单位矩阵,且,,≠≠+=+A E B E AB E A B , 则必有( A )(A ) 0,0-=-=A E B E (B ) 0,0-=-≠A E B E (C ) 0,0-≠-≠A E B E (D ) 0,0-≠-=A E B E 3.设矩阵,,A B P 都是n 阶方阵,若=B AP ,且P 可逆,则( B ) (A )矩阵A 的行向量组与矩阵B 的行向量组等价 (B )矩阵A 的列向量组与矩阵B 的列向量组等价 (C )矩阵P 的行向量组与矩阵B 的行向量组等价 (D )矩阵P 的列向量组与矩阵B 的列向量组等价4.已知123,,ηηη是齐次线性方程组=Ax 0的基础解系,则该方程组的基础解系还可选用( C )(A )122331,,ηηηηηη--- (B )与123,,ηηη等秩的向量组 (C )122331,,ηηηηηη+++ (D )与123,,ηηη等价的向量组5.设对称矩阵111111111⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,200000000⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B ,则A 与B ( B ) (A )合同且相似 (B )合同但不相似(C )不合同但相似 (D )不合同且不相似得 分 三、(8分)已知210120,2,001**⎡⎤⎢⎥==+⎢⎥⎢⎥⎣⎦A ABA BA E 求.B解:由2**=+ABA BA E ,得(2),(2)*-=-=A E BA E A E B A A11(2)3-=-B A E A10100102100,(2)100001001-⎡⎤⎡⎤⎢⎥⎢⎥-=-=⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦A E A E12012103001⎡⎤⎢⎥=⎢⎥-⎢⎥⎣⎦B 得 分 四、(8分)求向量组[][][]1231,1,0,1,3,2,2,4,2,1,2,3,TTT===a a a[]41,0,2,1T=--a 的秩和一个极大无关组,并将其余向量用该极大无关组线性表示。
高等代数考研真题第一章多项式

且f(x)在有理数域上不可约。
第一章多项式1 (清华2 000— 20分)试求7次多项式f(X ),使f(M 1能被(X -1)4整除,而f(X )-1能被(X 1)4整除。
2、 (南航 2001 — 20 分)(1) 设 x —2px+2 I x +3x +px+q ,求 p,q 之值。
(2) 设f(x) , g(x), h(x) € R[x],而满足以下等式2(x +1)h(x)+(x -1) f(x)+ (x -2) g(x)=02(x +1)h(x)+(x+1) f(x)+ (x+2) g(x)=02 2证明:x +1 I f(x) , x +1 I g(x)3、 (北邮2002 —12分)证明:x d - 1 I x "- 1的充分必要条件是d I n (这里里记号 d I n 表示正整数d 整除正整数n )。
4、 、(北邮 2003 —15分)设在数域 P 上的多项式 g 1(x), g 2(x) , g 3(x) , f(x),已知 g 1(x) I f(x),g 2(x) I f(x) , g 3(x) I f(x),试问下列命题是否成立,并说明理由:(〔)如果 g 1(x) ,g 2(x) , g 3(x)两两互素,则一定有 g 1(x) , g 2(x) , g 3(x) I f(X )(2)如果g1(x) , g 2(x) , g 3(x)互素,则一定有 g 1(x)g 2(x)g 3(x)I f(X )5、 (北师大2003—25分)一个大于1的整数若和其因子只有1和本身,则称之为素数。
证明P 是素数当且仅当任取正整数a ,b 若p I ab 则p I a 或p I b 。
6、 (大连理工2003 —12分)证明:次数>0且首项系数为1的多项式f(x)是某一不可约多项式的方幕主充分必要条件是,对任意的多项式g(x) , h(x),由f(x) I g(x) h(x)可以推出f(x) I g(x),或者对某一正整数 m , f(x) I h m(x)。
2021-2022年部分高校高等代数考研真题

A
=
1 0 2
−1 1 3
−1 0 1
2 0 −1
1 −2 −2 −1
求 A 的包含 ε1 的最小的不变子空间.
3 1 −1 3. 求 A = −1 3 1 的若尔当标准形及有理标准形.
022
二、证明题.
1. 已知向量组 α1, α2, · · · , αr 线性无关, 且可由向量组 β1, β2, · · · , βs 线性表 出, 证明: 存在某个向量 βj (1 ≤ j ≤ s), 使得向量组 βj, α2, · · · , αr 线性无关.
1 2
1 1
c −2 0
112
(1) 若 A 有特征值 4, 1, −2 , 求 a, b, c. (2) 设 α = (1, k, 1)T 是 B−1 的一个特征向量, 求 k .
五、(15 分) 设 A, B 都是 n 阶实对称矩阵, 且 A 正定, 证明: AB 的特征值 都是实数.
六、(15 分) 设 σ 是 n 维线性空间 V 上的一个线性变换, 证明: σ 的秩 +σ 的零度 = n.
1
北京交通大学 2022 年高等代数考研真题
北京交通大学 2022 年高等代数考研真题
一、填空题 (每题 3 分)
1. 2n 级排列 13 · · · (2n − 1)(2n)(2n − 2) · · · 42 的逆序数为
.
2. 设 4 阶方阵 A, B 的伴随矩阵为 A∗, B∗, 且它们的秩为 r(A) = 3, r(B) =
1
2x1 3x1
+ 3x2 + 5x2
+ (a + 2)x3 + 4x4 = b + 3 + x3 + (a + 8)x4 = 5
大连理工代数学

大连理工大学硕士生入学考试数学分析试题解答一.从以下8题中选答6题1.证 利用极限的定义,和已知连续的定义来证明因为()[,)f x C a ∈+∞,且存在lim ()x f x A →+∞=,所以根据极限的定义, 0ε∀>,0G ∃>,当x G ∀>,|()|2f x A ε-<,即12,[,)x x G ∀∈+∞,有12|()()|f x f x ε-<又因为当[,1]x a G ∈+时,函数连续,所以在该闭区间一致连续,所以对0ε∀>,01δ∃<<,所以对于1212,[,1],||x x a G x x δ∀∈+-<,都有12|()()|f x f x ε-< 综上所述,知对于整个区间,函数都是一致连续的.█2.证 利用定义和反证法证明,其实第一小题直接利用闭区间连续函数一致连续的定理就可以了1()f x x=,[,1]x δ∈对于0ε∀>,20γδε∃<<,对于1212,[,1],||x x x x δγ∀∈-<的时候, 121221212||11|()()|||x x f x f x x x x x γεδ--=-=<=.从而可见,在闭区间一致收敛.1()f x x=,(0,1]x ∈,反证法:1ε∃=,0δ∀>,对1x δ∃=,2112x δ=+,此时12||x x δ-<, 121211|()()|||2f x f x x x ε-=-=>.由此可见对于此区间函数并非一致收敛. █3.解 不断利用积分判别法和p-级数以及比较收敛法则来讨论(1)当1α>,11(ln )(ln ln )n n n n αβγ∞=∑小于一个1p α=>的p-级数,根据比较收敛法则,知该级数收敛.(2) 当1α<,11(ln )(ln ln )n n n n αβγ∞=∑大于一个1p α=<的p-级数,该级数发散.(3)当1α=时,根据积分判别法,考虑如下的积分:ln ln (ln )(ln ln )(ln )(ln ln )ln N N N dn d n dnn n n n n n n βγβγβγ+∞+∞+∞==⎰⎰⎰的敛散性,相当于考虑11(ln )n n n βγ∞=∑的敛散性,根据上面的讨论: [1] 1β>该级数收敛. [2] 1β<该级数发散.[3] 1β=,根据上面的讨论,相当于讨论11n nγ∞=∑的敛散性:<1>1γ>该级数收敛. <2>1γ<该级数发散.<3>1γ=该级数发散.█4.证 利用级数收敛和极限的定义以及放缩法来证明,利用p-级数举反例 如果级数1i i x ∞=∑收敛,那么根据定义和Cauchy 收敛法则,取1ε=,N ∃,n N ∀>,1nx<.由于是正项级数,那么2ii i Ni Nxx ∞∞==<∑∑根据比较收敛法则,知命题成立,级数收敛但是,反过来命题不成立,例如211i i n x ∞∞===∑收敛,但是11i i n x ∞∞===∑.█5.证 利用极限的定义证明对于0ε∀>,11[]1δε∃=+,||x δ∀<,即111x N N <<+,其中1||[]N ε>, 此时111|[]1|min{,}1x x N N ε-<=+,从而可知命题成立.█6.证 利用极限的定义证明:对于任意的点0[0,1]x ∈,对于0ε∀>,1[]1N ε∃=+,必0δ∃>,当00(,)x x x δδ∀∈-+,111{1,1,,,...,,}22x N N 1∀∉---,那么1||1x N ε≤<+,从而命题成立.█7.证 利用定义证明一致收敛首先,显然函数在整个实数域收敛于0,对于0ε∀>,1[]1N ε∃=+,对于n N ∀>,根据基本不等式有:221||||1x x n x nx nε≤=<+,所以,可见命题成立.█8.证 首先如上讨论,知函数序列收敛于0,然后,考虑如下的序列: 111()0112n S n==≠+,利用定理(参见陈纪修老师的《数学分析》)或者反证法,可以得到非一致收敛的结论.█ 一. 以下6题选答4题 9.证 利用反证法如果,所有的点,函数的一阶导数都是0,那么命题得证否则,必然存在某个点,在该点函数的一阶导数不等于0,不妨设为0'()0f x A =>根据题目的已知条件"()0f x ≥,可见,函数的导函数连续而且单调递增,即'()f x A ≥,0x x ∀>.所以, 0x x ∀>,00()()()f x f x A x x -≥-,这显然和题目中的函数上有界矛盾 反之,如果,该点的导数小于0,只需考虑下界即可推出矛盾 综上所述,知函数必为常值函数.命题得证.█10.证 同样利用反证法和极限的定义来证明lim ()x f x A →∞=相当于对于0ε∀>,N ∃,x N ∀>,|()|f x A ε-<假设,存在一个点,0()f x A A δ=+≠,只需取||2δε=,当m 足够大的时候,02m x N >,00(2)()mf x f x =.但是0|(2)|mf x A ε->和题目假设的有所矛盾,从而知命题成立.█11.证 利用定义证明由于积分绝对收敛,不妨假设|()|af x dx M +∞=⎰函数一致连续即对0ε∀>,A ∃,使||()||Aaf x dx M ε-<⎰,uεδ∃=,对12||x x δ∀-<,12|()sin ()sin |AAaaf x ux dx f x ux dx -⎰⎰1212()()2|()cos sin |22A au x x u x x f x dx +-=⎰12()2|()|sin2Aau x x f x dx -<⎰|()|A a A f x dx M δε<<⎰ (1)12|()sin ()sin |2AAf x ux dx f x ux dx ε+∞+∞-≤⎰⎰(2)综合(1)(2)得到12|()sin ()sin |(2)aaf x ux dx f x ux dx M ε+∞+∞-<+⎰⎰由于ε的任意性,知命题成立.█12.证 由于没有函数连续的条件, 所以01[()]'()xf t dt f x x=⎰不一定成立,所以不可以用L ’Hospital 法则,所以还是要回到定义证明由于lim ()x f x λ→∞=,所以根据定义0ε∀>,A ∃,x A ∀>,|()|f x λε-<()()()()()()1()AAxf x dx x A f x dx x A f t dt xx xλελε+--++-<<⎰⎰⎰,由于ε的任意性和夹逼定理,不难证明,命题成立.█13.证 和上一题类似,要利用L ’Hospital 法则的推导过程 01lim()x x f t dt x λ→+∞=⎰即0ε∀>,A ∃,x A ∀>,01|()|xf t dt xλε-<⎰不妨设21x x A ∀>>, 1110()()()x x f t dt x λελε-<<+⎰2121112120()()()()()()()x x x x f x f t dt x x x f x λελε-+-<<++-⎰ (1)2220()()()x x f t dt x λελε-<<+⎰(2) 联立(1,2)2121112122()()()()()()()()x x x x f x x x x f x x λελελελε-<-+-≤++-<+12()()f x f x λελε⇒-<≤<+由于ε的任意性不难得到命题成立.█14.解 利用Gauss 定理和换元法来解决问题2222()SVI x dydz y dzdx z dxdy x y z dxdydz =++=++⎰⎰⎰⎰⎰换元:cos sin ,[0,2),[,]x a r y b r r m R R z c m θθθπ=+⎧⎪=+∈∈∈-⎨⎪=+⎩20202232(cos sin )(cos sin )2))()()38()6VRR RR R R RRI a b c m r r rdrd dma b c m r r rd drdm a b c m rdrdm a b c m dr dm a b c m R m dmR a b c R πθθθθθθππππ----=+++++=+++++=+++=+++=+++-+++=⎰⎰⎰⎰⎰⎰⎰█由于时间仓促,没有输入题目,请原谅!。
大连理工大学06解答

T
P1 , P2 , P3 两两正交,故 P2 = (0,0,1) T .令 P = ( P1 , P2 , P3 ) ,则
∗
解答人: 陈现平
聊城大学
0 1 −1 A = P − 1 P = 1 .■ − 1 0
只有零解,其中 y1 , y 2 分别为 n 维和 1 维列向量.由于
(λE − A) y1 + xy 2 = 0 x T y1 = 0 Ax = λx x T A = λx T
于是
0 = x T (λE − A) y1 + x T xy 2 = λx T y1 − x T Ay1 + x T xy 2 = x T xy 2
二.(10 分) 设三元非齐次线性方程组的系数矩阵的秩为 1,已知η1 ,η2 ,η3 是它的三个解 向量 , 且 η1 + η2 = (1, 2,3) ' , η 2 + η3 = (0, −1,1) ' , η3 + η1 = (1, 0, −1) ' . 求该方程组的通解 , 其中对任意向量 b , b ' 表示 b 的转置<下同>. 三. (10 分)设 λ + an −1λ
m
⊥
v ∈ R n 使得 A = uv ' .
十.(15 分) 若 A 是实对称正定矩阵,则存在实对称正定矩阵 B,使得 A = B .
2
十一.(15 分) 证明:设 f ( x ) 是整系数多项式,且 f (1) = f (2) = f (3) = p < p 为素数>, 则不存在整数 m ,使 f ( m) = 2 p .
大连理工2004年高等代数试题

大连理工大学2004年硕士生入学考试<<高等代数>>试题说明:填空题的括号在原试题中均是横线一.填空题(每小题四分)()上的最大公因式是在有理数域则在复数域内无公共根,是有理系数多项式,且设=)(),()(),()(),(.1x g x f x g x f x g x f =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=111212112111.2 n n n D n n 阶行列式 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=αααααααT T T 则的转置矩阵,若是是三维列向量,设,111111111.3 ()324.432131332123211321321321线性,,则线性表示:,,可又向量组,,线性无关,向量组,,设向量组βββααβαααβαααβαααβββααα-=-+=++=得通解是()则齐次线性方程组且代数余子式阶矩阵,如果是设0,0,1)(.511=≠-=Ax A n A r n A()向量,则有三个线性无关的特征已知=⎪⎪⎪⎭⎫ ⎝⎛=x x A 00101100.6及符号差分别是()数正惯性指数,负惯性指的秩各正实数,则,个的特征值中有阶实对称矩阵已知,A 0.7t m A n 的一组基为()(),的维数则令上的线性空间是的加法及数乘运算,矩阵的集合,对于矩阵上的所有表示是数域,设V V TrA p A V P p P p P ==∈=⨯⨯⨯⨯},0|{,33.8333333下的矩阵是()在则上的线性变换,且是若的过渡矩阵是到的两组基,且是线性空间和设i i i n n n n i f e V P f f f e e e V f f f e e e βσσσ,...,2,1,)(,,,,,,,,,.9212,1212,1== 的长度为()则向量,其度量矩阵为,,中有一组基已知三维欧式空间32132132,300021011.10αααβααα-+=⎪⎪⎪⎭⎫ ⎝⎛---=A V 二:(24分)设R,Q 分别表示实数域和有理数域,f(x),g(x)属于Q[x].证明:(1)若在R[x]中有g(x)|f(x),则在Q[x]中也有g(x)|f(x)。
大连理工大学(已有10试题)

大连理工大学应用数学系数学分析2001——2005,2009(2005有答案)高等代数2000——2005、2007(2005有答案)物理系数学物理方法2000——2005量子力学2000,2002——2005热力学与统计物理2000,2002——2005电动力学2000,2002——2005普通物理2000——2005光学(几何光学与波动光学)2000晶体管原理2000半导体材料2004——2005半导体器件2004——2005半导体物理2001——2002,2004——2005神经科学基础2004——2005生物统计学2004——2005生物物理学2004——2005工程光学2005微电子技术2003——2005离散数学及应用2000——2001(2000有答案)离散数学与数据结构2002——2005模拟电子技术2001——2005工程力学系材料力学1999——2001,2003——2005,2010(2010为回忆版)理论力学1995,1999——2001,2003——2005理论力学(土)2000土力学1999——2005自动控制原理(含现代20%) 1999——2005杆系结构静力学1998,2000弹性力学(不含板壳)1999——2004流体力学1999——2005流体力学(土)2004——2005流体力学基础2002——2005岩石力学1999——2000钢筋混凝土结构1999——2000工程流体力学2001,2004——2005水力学1999——2000,2002,2004——2005机械工程学院机械设计2001——2005(2001——2005有答案)机械原理1999——2000,2003——2005画法几何及机械制图2003——2005控制工程基础2001,2003——2005微机原理及应用(8086)1999——2000微机原理及应用(机)2004——2005微机接口与通讯及程序设计1999——2000模拟电子技术2001——2005离散数学及应用2000——2001(2000有答案)离散数学与数据结构2002——2005过程控制(含计算机控制)2000杆系结构静力学1998,2000微电子技术2003——2005系统工程概论1999——2002晶体管原理2000系统工程概论1999——2005管理基础知识1999——2001,2003——2005(2003——2005有答案)计算机组成原理(软)2005管理学基础2004——2005(2004——2005有答案)管理学2010(回忆版)材料力学1999——2001,2003——2005,2010(2010为回忆版)自动控制原理(含现代20%) 1999——2005材料科学与工程学院材料科学基础2003——2005,2010(2010为回忆版)机械设计2001——2005(2001——2005有答案)模拟电子技术2001——2005微电子技术2003——2005物理化学2004物理化学及物理化学实验1991——1993,2000,2002——2005(2002——2004有答案)胶凝材料学2001——2005硅酸盐物理化学2001——2002,2005杆系结构静力学1998,2000金属学2000金属热处理原理2000金属材料学2000钢筋混凝土结构1999——2000晶体管原理2000土木水利学院材料力学(土)2000,2003——2005材料力学1999——2001,2003——2005,2010(2010为回忆版)土力学1999——2005结构力学2000——2001,2003——2005水力学1999——2000,2002,2004——2005杆系结构静力学1998,2000理论力学(土)2000弹性力学(不含板壳)1999——2004流体力学1999——2005流体力学(土)2004——2005流体力学基础2002——2005岩石力学1999——2000钢筋混凝土结构1999——2000工程流体力学2001,2004——2005系统工程概论1999——2005工程经济学2004——2005无机化学2003——2005传热学2002,2004——2005工程力学2004——2005工程项目管理2004——2005建筑材料2005工程热力学2001——2002,2004——2005热工基础(含工程热力学和传热学)2003化工学院无机化学2003——2005物理化学2004物理化学及物理化学实验1991——1993,2000,2002——2005(2002——2004有答案)有机化学及实验2001,2003——2005高分子化学及物理2002——2005化工原理及化工原理实验2001——2005材料力学1999——2001,2003——2005,2010(2010为回忆版)工程流体力学2001,2004——2005硅酸盐物理化学2001——2002,2005热力学基础2005天然药物化学2005药剂学2005生物化学及生物化学实验1999——2005船舶工程学院船舶动力装置2002——2005船舶设计原理2001——2005水声学原理2002——2005船舶静力学2001——2005杆系结构静力学1998,2000电子与信息工程学院模拟电子技术2001——2005信号与系统(含随机信号20%)1999——2005 自动控制原理(含现代20%) 1999——2005工程光学2005通信原理2004——2005离散数学及应用2000——2001(2000有答案)离散数学与数据结构2002——2005离散数学与计算机组成原理2005离散数学与数据库原理2004——2005数据结构与计算机组成原理2004——2005计算机组成原理与计算机体系结构2004——2005 计算机组成原理与数字逻辑2000计算机组成原理(软)2005编译方法1999——2000操作系统1999——2001高等代数2000——2005过程控制(含计算机控制)2000微电子技术2003——2005微机接口与通讯及程序设计1999——2000系统工程概论1999——2005晶体管原理2000能源与动力学院汽车理论2000——2005机械原理1999——2000,2003——2005自动控制原理(含现代20%) 1999——2005化工原理及化工原理实验2001——2005普通物理2000高等代数2000——2005离散数学及应用2000——2001(2000有答案)离散数学与数据结构2002——2005运筹学基础及应用2004——2005计算机信息管理1999——2001,2004——2005 微电子技术2003——2005杆系结构静力学1998,2000系统工程概论1999——2005晶体管原理2000信息管理与信息系统2010(回忆版)管理学院计算机信息管理1999——2001,2004——2005 运筹学基础及应用2004——2005离散数学及应用2000——2001(2000有答案)离散数学与数据结构2002——2005公共经济学基础2004——2005,2010(2010为回忆版)过程控制(含计算机控制)2000微电子技术2003——2005系统工程概论1999——2002政治学原理2004——2005行政管理学2004——2005,2010(2010为回忆版)经济学基础2001——2005(2001——2005有答案)运筹学基础及应用2004——2005公共管理学2005社会保障学2004——2005管理学2010(回忆版)信息管理与信息系统2010(回忆版)人文社会科学学院经济学基础2001——2005(2001——2005有答案)管理基础知识1999——2001,2003——2005(2003——2005有答案)管理学基础2004——2005(2004——2005有答案)管理学2010(回忆版)系统工程概论1999——2002现代科学技术基础知识1999——2000,2004——2005思想政治教育学2004——2005马克思主义哲学原理2004——2005马克思主义哲学2001——2002西方哲学史2005哲学概论2004——2005科学技术史(含命题作文)2004——2005科学史、技术史、命题作文2001——2003政治学原理2004——2005行政管理学2004——2005,2010(2010为回忆版)传播学2004——2005新闻传播实务2004——2005民法学2004——2005法理学与商法总论2004——2005政治学2004——2005中外教育史2004——2005教育学2005中国近现代史2004——2005世界近现代史2004——2005电气工程及应用电子技术系电路理论2002——2005自动控制原理(含现代20%) 1999——2005过程控制(含计算机控制)2000微电子技术2003——2005系统工程概论1999——2005晶体管原理2000外国语学院二外德语2002,2004二外俄语2002——2004二外法语2004——2005二外日语2002——2004专业基础英语2003英汉翻译2003,2005英汉翻译与写作2004英语水平测试2004——2005二外英语2002——2005日语水平测试2004——2005翻译与写作(日)2004——2005专业基础日语2002——2003外国语言学与应用语言学(日语)专业综合能力测试2002——2003体育教学部运动生物力学2005人体测量与评价2004——2005生物学基础2005体质学2004——2005建筑艺术学院建筑设计(8小时)2000,2004——2005建筑设计原理1999——2000,2003建筑设计理论综合2004——2005城市建设史2002——2003中国与外国建筑史2000建筑构造与建筑结构1999——2000城市规划历史与理论2004——2005城市规划原理2003城市设计2002规划设计(8小时)2004-2005素描(8小时)2005泥塑(8小时)2005色彩(4小时)2005软件学院离散数学及应用2000——2001(2000有答案)离散数学与数据结构2002——2005离散数学与计算机组成原理2005离散数学与数据库原理2004——2005数据结构与计算机组成原理2004——2005计算机组成原理与计算机体系结构2004——2005计算机组成原理与数字逻辑2000计算机组成原理(软)2005编译方法1999——2000操作系统1999——2001环境与生命学院物理化学2004物理化学及物理化学实验1991——1993,2000,2002——2005(2002——2004有答案)化工原理及化工原理实验2001——2005硅酸盐物理化学2001——2002,2005基因工程原理2004——2005微生物学2004——2005细胞生物学2005环境化学2004——2005环境工程原理2004——2005,2010(2010为回忆版)分子遗传学2004——2005环境微生物2002经济系经济学基础2001——2005(2001——2005有答案)公共经济学基础2004——2005,2010(2010为回忆版)高科技研究院数学分析2001——2005,2009(2005有答案)高等代数2000——2005数学物理方法2000——2005量子力学2000,2002——2005热力学与统计物理2000,2002——2005电动力学2000,2002——2005物理化学2004物理化学及物理化学实验1991——1993,2000,2002——2005(2002——2004有答案)硅酸盐物理化学2001——2002,2005微电子技术2003——2005。
高等代数考研真题 第一章 多项式

第一章 多项式1、(清华2000—20分)试求7次多项式()f x ,使()1f x +能被4(1)X -整除,而()1f x -能被4(1)X +整除。
2、(南航2001—20分)(1)设x 2-2px+2∣x 4+3x 2+px+q ,求p,q 之值。
(2)设f(x),g(x),h(x)∈R[x],而满足以下等式 (x 2+1)h(x)+(x -1) f(x)+ (x -2) g(x)=0 (x 2+1)h(x)+(x+1) f(x)+ (x+2) g(x)=0 证明:x 2+1∣f(x),x 2+1∣g(x) 3、(北邮2002—12分)证明:x d -1∣x n -1的充分必要条件是d ∣n (这里里记号d ∣n 表示正整数d 整除正整数n )。
4、、(北邮2003—15分)设在数域P 上的多项式g 1(x),g 2(x ),g 3(x ),f(x),已知g 1(x)∣f(x),g 2(x)∣f(x), g 3(x)∣f(x),试问下列命题是否成立,并说明理由:(1)如果g 1(x),g 2(x), g 3(x)两两互素,则一定有g 1(x),g 2(x),g 3(x)∣f(x) (2)如果g 1(x),g 2(x), g 3(x)互素,则一定有g 1(x)g 2(x)g 3(x)∣f(x) 5、(北师大2003—25分)一个大于1的整数若和其因子只有1和本身,则称之为素数。
证明P 是素数当且仅当任取正整数a ,b 若p ∣ab 则p ∣a 或p ∣b 。
6、(大连理工2003—12分)证明:次数>0且首项系数为1的多项式f(x)是某一不可约多项式的方幂主充分必要条件是,对任意的多项式g(x),h(x) ,由f(x)∣g(x) h(x)可以推出f(x)∣g(x),或者对某一正整数m ,f(x)∣h m (x)。
7、(厦门2004—16分)设f(x),g(x)是有理数域上的多项式,且f(x)在有理数域上不可约。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大连理工大学2004年硕士生入学考试<<高等代数>>试题
说明:填空题的括号在原试题中均是横线
一.填空题(每小题四分)
()
上的最大公因式是在有理数域则在复数域内无公共根,是有理系数多项式,且设=)(),()(),()(),(.1x g x f x g x f x g x f =⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡−−−=111212112111.2""""""""n n n D n n 阶行列式 =⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡−−−−=αααααααT T T 则的转置矩阵,若是是三维列向量,设,111111111.3 ()
324.43213
133
2123
211321321321线性,,则线性表示:,,可又向量组,,线性无关,向量组,,设向量组βββααβαααβαααβαααβββααα−=−+=++=得通解是()
则齐次线性方程组且代数余子式阶矩阵,如果是设0
,0,1)(.511=≠−=Ax A n A r n A
()向量,则有三个线性无关的特征已知=
⎟⎟⎟⎠
⎞⎜⎜⎜⎝⎛=x x A 00101100.6 及符号差分别是()
数正惯性指数,负惯性指的秩各正实数,则,个的特征值中有阶实对称矩阵已知,A 0.7t m A n 的一组基为()
(),的维数则令上的线性空间是的加法及数乘运算,矩阵的集合,对于矩阵上的所有表示是数域,设V V TrA p A V P p P p P ==∈=××××},0|{,33.8333333下的矩阵是()
在则上的线性变换,且是若的过渡矩阵是到的两组基,且是线性空间和设i i i n n n n i f e V P f f f e e e V f f f e e e βσσσ,...,2,1,)(,,,,,,,,,.9212,1212,1==""""的长度为()
则向量,其度量矩阵为,,中有一组基已知三维欧式空间32132132,
300021011.10αααβααα−+=⎟⎟⎟⎠
⎞⎜⎜⎜⎝⎛−−−=A V 二:(24分)设R,Q 分别表示实数域和有理数域,f(x),g(x)属于Q[x].证明:。