平面向量数量积的坐标表示模夹角
平面向量的坐标表示,模,夹角

二、探究解疑
Office组件之word2007
1、平面向量数量积的坐标表示
问题1、如图,i 是x轴上的单位向量,j
是y轴上的单位向量,
i i 1 . j j 1 .
y A(x1,y1)
i j j i 0 .
B(x2,y2) a
bj
oi x
问题2
Office组件之word2007
AB AC 1313 0
是的判两断条B相线(2应段,3)
AB AC
∴ △ABC是直角三角形
或垂A(直直1,2的线) 是重否要 x 0方法之一
Office组件之word2007
uuuv
uuuv
uuuv
方法2:AB= 1,1,AC= -3,3,BC= -4,2
Office组件之word2007
2.4.2 平面向量数量积的 坐标表示、模、夹角
一、复习引入
Office组件之word2007
1、数量积的定义:a b | a || b | cos
2、投影:| b | cos 叫做 b在 a方 向 上 的 投 影
B
r
b
r
Oθ
a
B1
A
| b | cos
2 2
=45o
Office组件之word2007
例3:已知a =(1, 0),b =(2, 1),当k为何实数 时,向量k a- b与 a+3b(1)平行;(2)垂直
解:k a- b =(k-2, -1) a +3 b=(7, 3)
(1)由向量平行条件得3(k-2)+7=0
所以k= 1 3
3.数量积的性质
Office组件之word2007
2.4.2平面向量的数量积的坐标表示 模 夹角

§2.4.2平面向量数量积的坐标表示、模、夹角【学习目标】1. 在坐标形式下,掌握平面向量数量积的运算公式及其变式(夹角公式);2. 理解模长公式与解析几何中两点之间距离公式的一致性. 【学习过程】 一、自主学习(一)知识链接:复习:1.向量a 与b 的数量积a b ⋅= .2.设a 、b 是非零向量,e 是与b 方向相同的单位向量,θ是a 与b的夹角,则①a b a b ⊥⇔⋅=;②a = ;③cos θ= . (二)自主探究:(预习教材P106—P108) 探究:平面向量数量积的坐标表示问题1:已知两个非零向量()()1122,,,a x y b x y ==,怎样用a 与b 的坐标表示a b ⋅ 呢?1. 平面向量数量积的坐标表示已知两个非零向量()()1122a=x y ,b=x y ,a b=⋅⋅⋅(坐标形式)。
这就是说:(文字语言)两个向量的数量积等于 。
问题2:如何求向量(),a x y =和两点()11,A x y ,()22,B x y 间的距离?2.平面内两点间的距离公式(1)设a=(x,y),则2a = ________________或a ________________。
(2)若()11,A x y ,()22,B x y ,=___________________(平面内两点间的距离公式)。
问题3:如何求()()1122,,,a x y b x y ==的夹角θ和判断两个向量垂直?3.两向量夹角的余弦:设θ是a 与b 的夹角,则cos θ=_________=_______________向量垂直的判定:设()()1122a=x ,y ,b=x ,y ,则⇔⊥b a _________________二、合作探究1、已知()()(),4,1,2,3,1,2-C B A(1)试判断ABC ∆的形状,并给出证明. (2)若ABDC 是矩形,求D 点的坐标。
2、已知()()1,3,3,1==,求a 与b的夹角θ.变式:已知a=(3,0),b=(k,5)a b 且与的夹角为3,k=4π则______________.三、交流展示1、若()4,3a =- ,()5,6b = ,则234a a b -⋅=2、已知()3,2a =-- ,()4,b k =- ,若()()5355a b b a -⋅-=-,试求k 的值.3、已知,(1,2),(3,2)a b ==-,当k 为何值时, (1)3ka b a b +-与垂直?(2)3ka b a b +- 与平行吗?它们是同向还是反向?四、达标检测(A 组必做,B 组选做)A 组:1. 已知()3,4a =- ,()5,2b =,则a b ⋅ 等于( ) A.23 B.7 C.23- D.7-2. 若()3,4a =- ,()5,12b =,则a 与b 夹角的余弦为( )A.6365 B.3365 C.3365- D.6365- 3. ()2,3a = ,()2,4b =-,则()()a b a b +⋅- = ,4.已知向量()1,2OA =- ,()3,OB m =,若OA AB ⊥ ,则m = 。
§2.4.2平面向量数量积的坐标表示、模、夹角

二、向量的模和两点间距离公式:
1向量的模(长度公式):
设a (x, y),则
2
a x2 y2,或a
x2 y2
2两点间的距离公式: 设Ax1, y1、Bx2, y2 ,则AB x2 x1, y2 y1
AB x2 x1 2 y2 y1 2
【拓展提升】数量积坐标运算的方法技巧 (1)进行数量积运算时,要正确使用公式 a·b=x1x2+y1y2,并能灵活运用以下几个关系: |a|2=a·a.(a+b)(a-b)=|a|2-|b|2. (a+b)2=|a|2+2a·b+|b|2. (2)利用数量积的条件求平面向量的坐标,一般来 说应当先设出向量的坐标,然后根据题目中已知 的条件找出向量坐标满足的等量关系,利用数量 积的坐标运算列出方程组来进行求解.
记忆口诀:注意坐标形式下两向量垂直的条件与两向量平 行的条件不要混淆, “a⊥b⇔x1x2+y1y2=0”可简记为“对应相乘和为0”; “a∥b⇔x1y2-x2y1=0”可简记为“交叉相乘差为0”.
四、向量夹角公式的坐标表示:
设a x1, y1 ,b x2 , y2 , a与b夹角为,0
(1)掌握向量数量积的坐标表达式, 会进行向量数量积的坐标运算;
(2)能运用数量积表示两个向量的夹角,计 算向量的长度,会用数量积判断两个平面 向量的垂直关系.
一、平面向量数量积的坐标表示:
a x1, y1 ,b x2 , y2 a,b非零向量 y A(x1,y1)
a x1i y1 j,b x2i y2 j
B(x2,y2)
a
bj
a b (x1i y1 j) (x2i y2 j)
平面向量数量积的坐标表示、模、夹角教学设计

“引导-探究式”教学法”。
课堂基调:
自主探索,民主开放。 合作交流,师生对话。
借助:
“多媒体”教学
课堂流程
提供材料 设计问题
复习思考 提出问题
类比化归 解决问题
反思建构 操作练习
教学过程
选择恰当的实例。
新
课
从复习向量加减法的坐标运算开始。
导
开门见山,直奔主题。
入 提供材料,让学生发现问题。
夹角等知识进行简单的计算和证明 。
能力目标:
领悟数形结合的思想方法,培养学生自主学习, 提出问题、分析问题、解决问题的能力。
情感目标:
体验探索的乐趣,认识世间万物之间的联系与转化。 让学生在民主、和谐的共同活动中感受学习的乐趣。
重、难点分析
重点:
数量积坐标表示的推导过程。
难点:
公式的建立与应用。
教法分析
可设计:
向量的两个要素:模、夹角随之确定。
求
a
?
b
?∠AOB=?等。
设计意图: 渗透数形结合意识,突出向量的两个要素。
结论
1.
数量积的定义:
a
b
a
b
cos
2. 数量积的性质:
(1)
a
b
ab
0
(2)当
a与b同向时,a
b
a
b.
可解。
ab
关键:是如何用坐标表示
a
b
?
设计意图:
突出重点,为后面建立模、夹角公式做铺垫,使 学生产生学习数量积坐标表示的积极心理倾向。
教案平面向量数量积的坐标表示模夹角

平面向量数量积的坐标表示与模夹角教案章节一:平面向量数量积的定义1.1 向量的概念回顾:向量是有大小和方向的量。
1.2 数量积的定义:两个向量a和b的数量积,记作a·b,是它们的模长的乘积与它们夹角的余弦值的乘积。
1.3 数量积的坐标表示:如果向量a和b在坐标系中表示为a=(x1,y1)和b=(x2,y2),则它们的数量积可以表示为a·b=x1x2+y1y2。
教案章节二:数量积的性质2.1 数量积的不变性:无论向量的起点如何,向量的数量积保持不变。
2.2 数量积的对称性:向量a和b的数量积等于向量b和a的数量积,即a·b=b·a。
2.3 数量积的交换律:向量a和b的数量积等于它们的相反向量的数量积,即a·b=-b·a。
教案章节三:模长的计算3.1 向量模长的定义:向量a的模长,记作|a|,是向量a的大小,计算公式为|a|=sqrt(x1^2+y1^2)。
3.2 利用数量积计算模长:向量a的模长可以表示为|a|=sqrt(a·a)。
教案章节四:夹角的余弦值4.1 向量夹角的定义:两个非零向量a和b的夹角,记作θ,是它们的数量积与它们的模长的乘积的比值的的反余弦值。
4.2 余弦值的计算公式:cosθ=(a·b)/(|a||b|)。
教案章节五:向量夹角的范围与性质5.1 向量夹角的范围:向量夹角θ的范围是0°≤θ≤180°。
5.2 向量夹角的性质:当向量a和b同向时,它们的夹角为0°,数量积为正值;当向量a和b反向时,它们的夹角为180°,数量积为负值;当向量a和b垂直时,它们的夹角为90°,数量积为0。
教案章节六:数量积的应用6.1 投影向量:向量a在向量b方向上的投影向量可以表示为proj_ba = (a·b/b·b) b。
6.2 向量间的距离:两个向量a和b之间的距离可以表示为|a b| = sqrt((a b)·(a b))。
5.3.2 平面向量数量积的坐标表示, 模, 夹角

宁晋中学“五为”教学高三数学教学提纲
编号:SXTG -
5.3.2 平面向量数量积的坐标表示, 模, 夹角编写:毕朋飞 审核:齐立芳 使用时间: 月 日 班级:______________ 姓名:
______________
[学习目标]
会用坐标形式表示向量的数量积, 模, 夹角
[重点难点]
重点: 理会用坐标形式表示向量的数量积, 模, 夹角; 难点: 利用坐标形式进行向量数量积, 模, 夹角的综合运算
[导学流程]
一、自学互学
1. 向量数量积的坐标表示: 已知两个向量 则_______.
2. 设两个非零向量 则_______.
3. (1) 向量模长公式: 若 则_______.(2) 两点间距离公式: 若 则_______.(3) 向量的夹角公式: 设两个非零向量 设与的夹角为 则_______.
二、深入学习
4. 已知 求 以及的夹角
5. 已知 求
三、迁移学习
6. 已知 试判断的形状, 并给出你的证明.a =(x 1,y 1),b =(x 2,y 2),a ⋅b =a =(x 1,y 1),b =(x 2,y 2),a ⊥b ⇔a =(x ,y ),|a |=A (x 1,y 1),B (x 2,y 2),∣∣∣−−→AB ∣∣∣
=a =(x 1,y 1),b =(x 2,y 2),a b θ,cos θ=a =(1,√3),b =(2,0),a ⋅b ,|a |,∣∣b ∣
∣,a ,b θ.a
=(2,3),b =(−2,4),c =(−1,−2),a ⋅b ,(a +b )⋅(a −b ),a ⋅(b +2c ).A (2,1),B (6,3),C (0,5),ΔABC。
2.4.2 平面向量数量积的坐标表示、模、夹角-新人教(A版)

故两个向量的数量积等于它们对应 坐标的乘积的和。即 y A(x ,y )
1 1
a b x1 x2 y1 y2 .
B(x2,y2)
b
j
a
i
o
x
根据平面向量数量积的坐标表示,向 量的数量积的运算可转化为向量的坐标运 算。
2016/10/11
2、向量的模和两点间的距离公式ຫໍສະໝຸດ y A(x ,y ) 1 1
j
B(x2,y2)
b
a
o i
x
设两个非零向量 a =(x1,y1), b =(x2,y2),则
a x1 i y1 j b x2 i y2 j , a b ( x1 i y1 j ) ( x2 i y2 j ) 2 2 x1 x2 i x1 y2 i j x2 y1 i j y1 y2 j x1 x2 y1 y2
29 C ( 3, ) 3
2、已知A(1,2)、B(4、0)、C(8,6)、D(5,8), 则四边形ABCD的形状是 矩形 .
3、已知 a = (1,2), b = (-3,2),
若k a +2 b 与 2 a - 4
2016/10/11
b 平行,则k = - 1 .
小结
1、理解各公式的正向及逆向运用; 2、数量积的运算转化为向量的坐标运算;
x( x 5) y( y 2) 0 得 2 2 2 2 x y ( x 5 ) ( y 2 )
O
B
X
例5 在△ABC中,AB =(2, 3),AC =(1, k),
且△ABC的一个内角为直角,求k值.
2.4.2平面向量数量积的坐标表示、模、夹角

探究点二
平面向量模的坐标形式及两点间的距离公式
问题 1 若 a=(x,y),试用 x,y 表示|a|.
|a|= x +y .
2
2
问题 2 设 A(x1,y1),B(x2,y2)为平面内任意两 点,试推导平面内两点间的距离公式.
答 → ∵AB= (x2,y2)-(x1,y1)
=(x2-x1,y2-y1), → ∴|AB|= x2-x12+y2-y12.
;
3 π 4 例如,(1)若 a=(3,0),b=(-5,5),则 a 与 b 的夹角为_____.
直角 (2)已知 A(1,2),B(2,3),C(-2,5),则△ABC 的形状是_____
三角形.
【典型例题】 例1 已知 a 与 b 同向,b=(1,2),a· b=10. (1)求 a 的坐标;(2)若 c=(2,-1),求 a· (b· c)及(a· b) · c.
3.平面向量的模
2 2 x + y 1 1 . (1)向量模公式:设 a=(x1,y1),则|a|=__________
(2)两点间距离公式:若 A(x1,y1),B(x2,y2), → x2-x12+y2-y12 则|AB|=_________________________. 4.向量的夹角公式 设两非零向量 a=(x1,y1),b=(x2,y2),a 与 b 的夹角为 θ,
探究点三
平面向量夹角的坐标表示
设 a,b 都是非零向量,a=(x1,y1),b=(x2,y2),θ 是 a 与
x1x2+y1y2 a· b 2 2 2 2 x + y · x + y cos θ= = 1 1 2 2. |a||b|
b 的夹角,根据向量数量积的定义及坐标表示可得:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.4.2平面向量数量积的坐标表示、模、夹角
教材分析
本课的地位及作用:平面向量数量积的坐标表示,就是运用坐标这一量化工具表达向量的数量积运算,为研究平面中的距离、垂直、角度等问题提供了全新的手段.它把向量的数量积与坐标运算两个知识点紧密联系起来,是全章重点之一.
课时分配
本节内容用1课时的时间完成.
课题:§2.4.2平面向量数量积的坐标表示、模、夹角
教学目标
重点:平面向量数量积的坐标表示.
难点:向量数量积的坐标表示的应用.
知识点:平面向量数量积的坐标表示、模、夹角.
能力点:通过对向量平行与垂直的充要条件的坐标表示的类比,教给了学生类比联想的记忆方法. 教育点:经历根据平面向量数量积的意义探究其坐标表示的过程,体验在此基础上探究发现向量的模、夹角等重要的度量公式的成功乐趣,培养学生的探究能力、创新精神.
自主探究点:两个向量的数量积等于它们对应坐标的乘积的和.
考试点:平面向量数量积的坐标表示、模、夹角.
易错易混点:若非零向量与的夹角为锐角(钝角),则0(<0)>⋅a b ,反之不成立.
拓展点:1221//0x y x y ⇔-=a b 与12120x x y y ⊥⇔+=a b .
教具准备:多媒体和实物展台
课堂模式
一、引入新课
复习 1.两个非零向量夹角的概念
已知非零向量与,作OA =a ,OB =b ,则(0π)AOB θθ∠=≤≤叫与的夹角.
2.平面向量数量积(内积)的定义:已知两个非零向量与,它们的夹角是,则数量
cos θa b 叫与的数量积,记作⋅a b ,即有⋅a b =cos θa b ,(0π)θ≤≤.并规定0与任何向量的数量积为0.
平面向量的表示方法有几何法和坐标法,向量的表示形式不同,对其运算的表示方式也会改变.向量的坐标表示,对向量的加、减、数乘运算带来了很大的方便.若已知向量与的坐标,则其数量积是唯一确定的,因此,如何用坐标表示向量的数量积就成为我们需要研究的课题.
【设计意图】回顾两个非零向量夹角的概念及平面向量数量积的意义,为探究数量积的坐标表示做好准备.创设情境激发学生的学习兴趣.
二、探究新知
1.探究一:已知两个非零向量
()()1122,,,x y x y =a =b ,怎样用与的坐标表示数量积⋅a b 呢? 因为()()1122x y x y ⋅++a b =i j i j 22
12122112x x x y x y y y =+⋅+⋅+i i j i j j 又1⋅=i i ,1⋅=j j ,0⋅=⋅=i j j i ,所以⋅a b 2121y y x x +=.
这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即⋅a b 2121y y x x +=.
【设计意图】问题引领,培养学生的探索研究能力
2..探究二:探索发现向量的模的坐标表达式
若
(),x y a =,如何计算向量的模a 呢?
若
(
1,A x )2y ,如何计算向量AB 的模即、两点间的距离呢? AB AB ==
【设计意图】在向量数量积的坐标表示基础上,探索发现向量的模
3.探究三:向量夹角、垂直、平行的坐标表示
设与都是非零向量,
()()1122,,,x y x y =a =b ,如何判定⊥a b 或计算与的夹角a,b 呢?
(1)、向量夹角的坐标表示 cos θ=
(2)、1212=00x x y y ⊥⇔⇔+=a b a b
(3)、
1221//0x y x y ⇔-=a b 【设计意图】在向量数量积的坐标表示基础上两向量垂直,两向量夹角的坐标表达式,提醒学生⊥a b 与//a b 坐标表达式的不同.
三、理解新知
1、向量的坐标表示和向量的坐标运算实现了向量运算的完全代数化,并将数与形紧密结合起来.本节主要应用有:
(1)求两点间的距离(求向量的模);
(2)求两向量的夹角;
(3)证明两向量垂直.
2、已知非零向量
()()1122,,,x y x y =a =b , 若1221//0
x y x y ⇔-=a b ; 1212=00x x y y ⊥⇔⇔+=a b a b
两个命题不能混淆,可以对比学习,分别简记为:纵横交错积相等,横横纵纵积相反.
【设计意图】让学生学会怎样学习概念;培养学生透过现象看本质的能力,使学生养成细致、全面地考虑问题的思维品质.
四、运用新知
例1、已知向量与同向,
()1,2=b ,10⋅a b =,求: (1)向量的坐标;(2)若
()2,1-c =,求()a c b . 解:(1)∵与同向,且
()1,2=b , ∴(),2(0).
λλλλ>a =b = 又∵10⋅a b =,∴410λλ+=,∴2λ=,∴()2,4.a =
(2)∵22(1)40⋅⨯+-⨯=a c =,∴()0=a c b b =0.
【变式】已知()4,3=-a ,1=b ,且5⋅a b =,求向量的坐标.
=a
解: 设(),x y =b ,则221435x y x y ⎧+=⎨-=⎩ 解得4535x y ⎧=⎪⎪⎨⎪=-⎪⎩∴43,55-⎛⎫= ⎪⎝⎭b . 【设计意图】熟练应用向量数量积的坐标公式.
例2、已知向量()4,3=a ,()1,2=-b .
(1)求与的夹角的余弦值;
(2)若向量λ-a b 与+2a b 垂直,求的值.
解:
(1)5==a
,==b
14322⋅-⨯+⨯=a b =,
∴
cos θ=
==a b a b (2).()()()
4,3,24,32λλλλλ---=+-a b = ()()()
8,61,27,8++-=2a b =. 若λ-a b ⊥+2a b ,
则7(4)8(32)0λλ++-=,解得529λ=.
【设计意图】熟练应用向量的夹角公式.
例3.已知()1,2=a ,()1,λ=b ,分别确定实数的取值范围,使得:
(1)与的夹角为直角;
(2)与的夹角为钝角;
(3)与的夹角为锐角.
解:
设与的夹角为,==a
,==b , ()1,2(1,)12λλ
⋅=+a b = (1)因为与的夹角为直角,
所以0⋅a b =,所以120λ+=,所以12λ=-.
(2)因为与的夹角为钝角,所以cos 0θ<且cos 1θ≠-,
即0⋅a b <且与不反向.
由0⋅a b <得120λ+<,故12λ<-,
由与共线得2λ=,故与不可能反向. 所以的取值范围为
1,2⎛⎫-∞- ⎪⎝⎭. (3)因为与的夹角为锐角,所以cos 0θ>且cos 1θ≠,
即0⋅a b >且与不同向.
由0⋅a b >,得12λ>-,由与同向得2λ=.
所以λ的取值范围为()1,22,2⎛⎫-+∞ ⎪⎝⎭
. 【设计意图】熟练应用向量的夹角公式,由于两个非零向量与的夹角满足(0π)θ≤≤,所以用cos θ=
a b
a b 来判断,可将分五种情况:cos 1,0θθ==︒;cos 0,90θθ==︒;cos 1,180θθ=-=︒;
cos 0θ<且cos 1θ≠-,为钝角;cos 0θ>且cos 1θ≠,为锐角.
五、课堂小结
1.向量夹角的坐标表示
cos θ=
2.1221//0x y x y ⇔-=a b 与12120x x y y ⊥⇔+=a b ;
3.若非零向量与的夹角为锐角(钝角),则0(<0)>⋅a b ,反之不成立;
4.已知两向量的坐标,根据平面向量的数量积的定义和性质,可以求其数量积、两向量的长度和它们的夹角,此外,求解数量积的有关综合问题,应该注意函数思想与方程思想的运用.
【设计意图】培养学生归纳整合知识能力,培养学生思维的灵活性与严谨性.
六、布置作业
1.阅读课本106107P
-
2.必做题课本A 组第9、10、11题
【设计意图】学生养成先复习后做作业的学习习惯. 七、教后反思
1.结合本节教材浅显易懂,又有前面平面向量的数量积和向量的坐标表示等知识作铺垫的内容特点,兼顾高一学生已具备一定的数学思维能力和处理向量问题的方法的现状,我主要采用“诱思探究教学法”,其核心是“诱导思维,探索研究”,其教学思想是“教师为主导,学生为主体,训练为主线的原则,为此,我通过精心设置的一个个问题,激发学生的求知欲,积极的鼓励学生的参与,给学生独立思考的空间,鼓励学生自主探索,最终在教师的指导下去探索发现问题,解决问题.在教学中,我适时的对学生学习过程给予评价,适当的评价,可以培养学生的自信心,合作交流的意识,更进一步地激发了学生的学习兴趣,让他们体验成功的喜悦.
2.利用多媒体辅助教学,可以加大一堂课的信息容量,极大提高学生的学习兴趣.。