公开课教案:课题学习-选择方案

合集下载

人教版数学八年级下册19.3《课题学习选择方案》说课稿

人教版数学八年级下册19.3《课题学习选择方案》说课稿

人教版数学八年级下册19.3《课题学习选择方案》说课稿一. 教材分析人教版数学八年级下册19.3《课题学习选择方案》这一节的内容,主要让学生掌握如何从多个方案中选择最优方案,培养学生解决实际问题的能力。

本节内容是在学生已经学习了概率、统计和二元一次方程组的基础上进行授课的,对学生来说,是一个知识的巩固和拓展。

教材通过实例引入,让学生了解选择方案的实际应用,然后通过分析、讨论、总结,让学生掌握选择方案的方法和技巧。

二. 学情分析八年级的学生已经具备了一定的数学基础,对概率、统计和二元一次方程组的知识有一定的了解。

但是,学生在解决实际问题时,往往缺乏分析问题和解决问题的能力。

因此,在教学过程中,我将会引导学生通过实例分析,总结选择方案的方法,提高学生解决实际问题的能力。

三. 说教学目标1.知识与技能:让学生掌握选择方案的方法和技巧,能运用所学的知识解决实际问题。

2.过程与方法:通过实例分析,培养学生解决实际问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极参与数学学习的习惯。

四. 说教学重难点1.教学重点:选择方案的方法和技巧。

2.教学难点:如何运用所学的知识解决实际问题。

五. 说教学方法与手段在教学过程中,我将采用实例教学法、讨论法、总结法等教学方法,利用多媒体课件辅助教学,帮助学生更好地理解和掌握所学知识。

六. 说教学过程1.导入:通过一个简单的实例,引入选择方案的概念,激发学生的学习兴趣。

2.新课讲解:讲解选择方案的方法和技巧,让学生通过实例分析,理解并掌握所学的知识。

3.课堂练习:设计一些练习题,让学生运用所学的知识解决实际问题,巩固所学内容。

4.总结:通过讨论和总结,让学生进一步理解和掌握选择方案的方法和技巧。

5.布置作业:布置一些相关的作业,让学生课后巩固所学知识。

七. 说板书设计板书设计如下:课题:选择方案1.实例引入2.方法讲解3.课堂练习八. 说教学评价教学评价将从学生的课堂表现、作业完成情况、练习题的正确率等方面进行。

课题学习-方案选择(1)教学设计(精品课)

课题学习-方案选择(1)教学设计(精品课)

Ⅱ.教学过程设计
问题及师生行为 一、巧设阶梯,激发兴趣 练习题: (1) 1 千米= 1 千瓦= (2) 1 度电= 米; 瓦; 千瓦· 时. 1 米= 1 瓦= 千米; 千瓦 . 设计意图 巧设阶梯,为新知作 好铺垫.
(3) 白炽灯 60 瓦,售价 3 元,每度电 0.5 元/ (千瓦· 时),使用 1000 小时的 费用是多少元? (4) 节能灯 10 瓦售价 60 元,每度电 0.5 元/(千瓦· 时),使用 1000 小时的费 用是多少元? 答案: (1)1000,0.001,1000,0.001 . (2)1. (3)0.5×0.06×1000+3=33(元) . (4)0.5×0.01×1000+60=65(元) . 教师点评,并且提醒学生单位换算的进制.
第 13 课时
课题学习 选择方案(1)
Ⅰ.教学任务分析
1.巩固一次函数知识,灵活运用变量关系解决相关实际问题; 教 学 目 标 过程与能力 实际问题的能力. 1.体会数学与生活的联系, 了解数学的价值, 增强对数学的理解和学好数学的信心; 情感与态度 2.认识数学是解决实际问题的重要工具,了解数学对促进人类理性精神的作用. 教学重点 教学难点 1.建立函数模型;2.灵活运用数学模型解决实际问题. 运用一次函数知识解决实际问题. 知识与技能 2.熟练掌握一次函数与方程, 不等式关系, 把各种数学模型通过函数统一起来使用, 提高解决实际问题的能力; 3.让学生认识数学在现实生活中的意义,提高学生运用数学知识解决实际问题的能 力. 经历活动过程,让学生认识数学在现实生活中的意义,提高学生运用数学知识解决
2
通过板书,突出本节 课的重点.
1. 一个节能灯,一个白炽灯; 2. 两个节能灯; 3. 两个白炽灯. 问题 2:怎样租车 某学校计划在总费用 2300 元的限额内,利用汽车送 234 名学生和 6 名 教师集体外出活动,每辆汽车上至少有 1 名教师. 现有甲、乙两种大客车,它们的载客量和租金如表 : 甲种客车 载客量(单位:人/辆) 租金 (单位:元/辆) (1)共需租多少辆汽车? (2)给出最节省费用的租车方案. 分析: (1)要保证 240 名师生有车坐; (2)要使每辆汽车上至少要有 1 名教师. 根据(1)可知,汽车总数不能小于 6 ; 根据(2)可知,汽车总数不能大于 6 ;综合起来可知汽车总数为 6 . 设租用 x 辆甲种客车,则租车费用 y(单位:元)是 x 的函数,即 y=400x+280(6-x) 化简为: y=120x+1680. 讨论:根据问题中的条件,自变量 x 的取值应有几种可能? 为使 240 名师生有车坐,x 不能 小于 4 ;为使租车费用不超过 2300 元, x 不能超过 5 .综合起来可知 x 的取值为 4 或 5 . 在考虑上述问题的基础上,你能得出几种不同的租车方案?为节省费用 应选择其中的哪种方案?试说明理由. 方案 1: 4 两甲种客车,2 两乙种客车; y1=120×4+1680=2160. 方案 2:5 两甲种客车,1 辆乙种客车; y2=120×5+1680=2280. 应选择方案 1,它比方案 2 节约 120 元. 45 400 乙种客车 30 280

人教版数学八年级下册19.3 课题学习-----选择方案教案

人教版数学八年级下册19.3 课题学习-----选择方案教案

课堂教学设计表
形成性练习
知识点
编号
学习
目标
练习题目内容
19.3-1
19.3-2
19.3-3
19.3-4
19.3-5
知识
和能力
过程
和方法
情感态度
与价值观
1. 某单位需要用车,准备和一个体车主或一国有出租公司其中的一家签订合同. 设
汽车每月行驶x km,应付给个体车主的月租费是y1元,付给出租公司的月租费是y2 元,
y1,y2 分别与x之间的函数关系图象是如图所示的两条直线,观察图象,回答下列问题:
(1)每月行驶的路程在什么范围内,租国有出租公司的出租车合算?
(2)每月行驶的路程等于多少时,租两家车的费用相同?
(3)如果这个单位估计每月行驶的路程为2300km,那么这个单位租哪家的车合算?
2.某班去商店为体育比赛优胜者买奖品,书包每个定价
30元,文具盒每个定价5 元,商品实行两种优惠方案:
①买一个书包赠送一个文具盒;②按总价的九折优惠.
若该班需买8个书包,文具盒x 个(x≥8),付款为y 元.
(1)分别求出两种方案中y 与x 之间的关系式;
(2)若购买文具盒30 个,应选哪种方案?付多少钱?
形成性评价
学生通过观察思考、自主探究、小组合作交流,能建立函数模型解决实际问题。

突出应用意识。

并顺利完成了学习目标。

教学反思通过让学生自主探究、小组合作交流,能灵活运用数学模型解决实际问题。

本节课最大亮点就是把课堂还给学生,让学生成为学习的主人,师生互动活跃,教师以学生为主体,通过引导、指点,调动学生积极主动地学习,激发学生的学习兴趣,使学生有成功的体验。

《一次函数课题学习-选择方案:怎样选取上网收费方式》第1课时示范课教学设计【人教八数下册】

《一次函数课题学习-选择方案:怎样选取上网收费方式》第1课时示范课教学设计【人教八数下册】

第十九章一次函数19. 3课题学习选择方案第1课时怎样选取上网收费方式一、教学目标1.函数知识解决方案选择问题,体会函数模型思想.2.学会综合运用一次函数与方程(组)、不等式(组)等知识解决方案设计问题.3.实际问题的讲解,培养学生收集、选择、处理数学信息,并作出合理的推断,提高学生在实际问题情境中,建立数学模型的能力.4.通过对怎样选取上网收费方式的探究,提高阅读理解和逻辑思维能力,从而激发学习数学的兴趣.二、教学重难点重点:运用函数知识选择最佳方案.难点:从实际问题情境中,建立数学模型,选择最佳方案.三、教学用具电脑、多媒体、课件等.四、教学过程设计下面,我们通过“怎样选择上网收费方式”的问题一起来看下如何进行分析和选择.【探究】下表给出了A,B,C 三种上宽带网的收费方式:选取哪种方式能节省上网费?【分析】设置问题串问题1:哪种方式上网费是会变化的?哪种不变?预设答案:A、B会变化,C不变问题2:方案C上网费是多少钱?预设答案:120元问题3:方式A,B中,上网费由哪些部分组成?当上网时间不超过规定时间时,费用=月费;当上网时间超过规定时间时,费用=月费+超时费超时使用价格×超时时间追问:影响A、B上网费用的因素是什么上网时间是影响上网费的因素.【思考】那这就是两个变量,先变的时间,那上网时间就是自变量,我们设为x h,随之变化的是网费就是函数,我们设方案A网费为y1元,方案B网费为y2元,方案C的网费是常量.三个方案都表示出来了,那么接下来为了找出哪种方案最省钱,我们需要:(1)先比较两个函数值的大小(2)再用其中省钱的方式与方案C 进行比较 问题1:怎么比较两函数值呢?预设答案:要比较它们,需要在x >0的条件下,考虑何时: ① y 1=y 2;② y 1<y 2;③ y 1<y 2.问题2:你能用适当的方法表示出方式A 的上网费用吗? 分析:130(025)30+(25)x y x ⎧=⎨>⎩ ,≤≤超出的网费,追问:超出的网费应该怎么表示?分析:超出的网费=超时使用价格×超时时间,在方案A 中超时使用价格是0.05元/min.★注意这里的时间单位是分钟,需要换算成小时,也就是超时1小时收(0.05×60)元;超时时间呢,用“总共上网时长‒包月时长25h”,也就是(x ‒25)小时.所以超出的网费=0.05×60(x ‒25) 即()1030(0255)3020).0+(5625x y x x ⎧⎪=⎨>⎪-⎩⨯ ,≤≤,化简得:130(025)345(25)x y x x ⎧=⎨>⎩- ,≤≤,这个函数的图象如图所示:问题3:类比方式A ,你能得出方式B ,C 的收费金额y 2,y 3关于上网时间x 的函数解析式吗?250(050)3(10050)x y x x ⎧=⎨>⎩- ,≤≤, 3120(0)y x = ,≥同一平面直角坐标系中画出y2,y3的图象:引导:结合函数解析式和图象进行比较(1)在x>0的条件下,考虑何时:①y1=y2;②y1<y2;③y1>y2.结合图象可知:若y1=y2,即3x‒45=50,解方程,2313 x=即20313x≤≤时,方式A省钱;当2313x>时,方式B省钱.(2)再用其中省钱的方式与方案C (y3)进行比较当20313x≤≤时,方式A省钱;→y1与y3比较结合图象可知:在20313x≤≤范围内,当取相同的自变量时,y1在y3的下方,即y1<y3,故选择方式A最省钱.当2313x>时,方式B省钱. →y2与y3比较结合图象可知:若y2=y3,即3x-100=120,解方程,1733 x=即21317333x<≤时,方式B省钱;当1733x>时,方式C省钱.汇总:当上网时间231h3不超过时,选择方式A省钱;当上网时间2131h73h33超过而不超过时,选择方式B省钱;当上网时间173h3超过时,选择方式C省钱;补充:思路清晰了,有没有更直接的方法呢?★小妙招~比较函数值大小把最低的部分描出来,就是最省钱的方案.【归纳】这个实际问题的解决过程中是怎样思考的?教师活动:教师提出问题,对于学生的回答,给予激励性评价.你分别给出甲乙二人经济合理的选择方案. 思路:用函数表示三种方案的费用,并画出图象. 解:设每月上网流量为x M ,每月的流量费用为y 元. 方案A :y A =0.1x ,(x ≥0)方案B :B 20(0500)=200.22(500)(5001000)200.22500(1000)x y x x x ⎧⎪+-⎨⎪+⨯⎩<>, ≤≤,≤, 化简得,B 20(0500)=0.2290(5001000)130(1000)x y x x x ⎧⎪-⎨⎪⎩<>, ≤≤,≤, 方案C :y C =120,(x ≥0) 函数图象如图所示:令y A =0.1x =20,解得x =200. 令y A =y B ,即0.1x =0.22x ‒90, 解得x =750.令y B =0.22x ‒90=120,解得 x =1200.故甲选用方案B ,乙选方案A 比较经济合理.通过例题,进一步巩固所学知识,加深对方案选择问题的理解.环节四 巩固【随堂练习】教师活动:通过抢答的形式,让学生独立思考,再由老师带领整理思路过程.练习1. 通讯公司就上宽带网推出A ,B ,C 三种月收费方式,这三种收费方式每月所需的费用y (元)与上网时间x (h)的函数关系如图所示,则下列判断错误的是( )A .每月上网时间不足25h 时,选择A 方式最省钱方案AB .每月上网费用为60元时,B 方式可上网的时间比A 方式多C .每月上网时间为50h 时,选择A 方式最省钱D .每月上网费用为120元时,选择C 方式上网的时间最长答案:C练习2.现有某教学网站策划了A 、B 两种上网学习的月收费方式,设每月上网学习时间为x 小时,方案A ,B 的收费金额分别为y A ,y B .(1)如图是y B 与x 之间函数关系的图象,则m = ;n = (2)写出y A 与x 之间的函数关系式. (3)选择哪种方式上网学习合算,为什么? 解:(1)当x =0时,y =10,∴m =10, ∵当x =50时,折线拐弯,∴n =50. (2)当0<x ≤25时,y A =7,当x ≥25时,y A =7+(x ‒25)×0.01×60=0.6x ‒8. ∴y A 与x 之间的函数关系式为A 7(025)0.68(25)x y x x ⎧=⎨-⎩<≤≥(3)当0<x ≤50时,y B =10,当x ≥50时,y B =10+(x ‒50)×0.01×60=0.6x ‒20. 令y A =10,则有0.6x ‒8=10,解得x =30. ∵ ‒ 8>‒20,7<10,∴当0<x <30时,选择A 种方式上网学习合算;当x =30时,选项A 、B 两种方式上网学习钱数相同;当x >30时,选择B 种方式上网学习合算以思维导图的形式呈现本节课所讲解的内容. 巩固例题练习。

19.3 课题学习 选择方案-(新导学案)2022春八年级下册初二数学(人教版)山西专版

19.3 课题学习 选择方案-(新导学案)2022春八年级下册初二数学(人教版)山西专版

19.3 课题学习选择方案-(新导学案)2022春八年级下册初二数学(人教版)山西专版课题背景本课题为初二数学教学内容,主要讨论学生们在教学过程中,如何针对不同的问题,在多种可行方案中做出最优选择。

教学目标•了解并掌握选择方案的基本概念与思想方法。

•培养学生分析问题、解决问题的能力,增强其综合应用知识的能力。

•培养学生合作探讨的意识和能力,提高学生的团队合作精神。

•提高学生对数学学科的兴趣,增强学生的自主学习能力和创造力。

教学内容选择方案的基本概念选择方案是指在多种可行方案(包括选择、排列、组合等)中,选取一种科学、符合要求、优良的方案的过程。

选择方案一般需要考虑多种因素,如成本、时间、可行性、安全等。

选择方案的思想方法一般情况下,选择方案需要遵循以下几个步骤:1.明确目标和要求:选择方案的第一步就是明确目标和要求,以便选择出最优方案。

明确目标和要求需要结合实际情况,根据情况合理确定要求。

例如,考虑购买电脑时,需要先确定使用目的和购买预算,再选择性价比高、质量可靠等因素来确定要求。

2.收集情报资料:为了作出最优选择方案,需要充分收集相关情报和资料。

情报资料可以来自多个方面,如熟人介绍、网上搜索、问卷调查等。

例如,考虑购买电脑时,可以通过互联网搜索、问卷调查等方式收集相关资料。

3.分析和比较方案:收集到情报和资料后,需要对比分析多个可行方案。

对比分析需要综合考虑多种因素,如性价比、质量、售后服务等。

例如,考虑购买电脑时,需要比较多家电脑品牌的产品性价比、质量、售后服务等。

4.作出最终决策:在分析比较多个方案后,需要作出最终决策。

决策可以根据目标和要求,选取最优方案。

例如,考虑购买电脑时,在研究分析多个品牌的电脑产品性价比、质量、售后服务等因素后,做出最终决策选择最优方案。

实例分析以下是一个具体实例,以帮助学生了解和掌握选择方案的思想方法。

实例:如何选择健康的午餐?游客到一个小城市旅游,到处都是美食,但是游客不能放纵自己吃大餐或者垃圾食品。

人教版数学八年级下册19.3课题学习--选择方案(教案)

人教版数学八年级下册19.3课题学习--选择方案(教案)
-学生在分析实际问题时,可能会对如何提取关键信息、如何设置方程或不等式感到困惑。
-另一个难点是学生在团队合作中如何有效沟通与协作,将个人思考与团队智慧相结合,共同解决问题。
-举例:在解决“旅行路线规划”问题时,学生需要考虑时间、费用、景点满意度等多个因素,建立相应的方程组或不等式组。难点在于如何将这些因素合理地转化为数学变量,以及如何求解得到最佳路线。教师需要引导学生逐步分析问题,帮助学生突破这一难点。
最后,针对本节课的教学内容,我认识到要让学生真正掌握选择方案的方法,不仅需要他们在课堂上积极参与,还需要他们在课后进行大量的练习和思考。因此,我将在课后布置一些具有挑战性的实际问题,鼓励学生运用所学知识解决,以提高他们的实际操作能力。
其次,学生在小组讨论中表现出较强的合作意识和创新精神。他们能够主动提出自己的观点,并与组员展开热烈的讨论。这使得课堂氛围变得更加活跃,也让学生在实践中加深了对选择方案的理解。但我注意到,部分学生在讨论过程中过于依赖他人,缺乏独立思考。因此,在接下来的教学过程中,我要关注这部分学生,引导他们发挥自己的主观能动性,培养独立解决问题的能力。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了选择方案的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对选择方案的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-另一个重点是培养学生的数据分析能力,使学生能够从实际问题中提取关键信息,运用数学模型进行有效分析。
-举例:在讲解选择方案时,教师可通过案例“购物优惠方案”的对比分析,让学生理解如何运用数学知识进行选择。如比较不同商场的打折活动,通过建立方程组或不等式组,计算得出最佳购物方案。

人教版数学八年级下册《19.3 课题学习——选择方案》教案

人教版数学八年级下册《19.3 课题学习——选择方案》教案

人教版数学八年级下册《19.3 课题学习——选择方案》教案一. 教材分析人教版数学八年级下册《19.3 课题学习——选择方案》这一节主要让学生学会如何从多个方案中选择最优方案。

通过引入实际问题,让学生运用概率知识、列举法等方法,解决实际选择问题。

教材以案例的形式呈现,让学生在解决问题的过程中,掌握选择方案的方法和技巧。

二. 学情分析学生在学习本节内容前,已经掌握了概率基础知识,能够理解并运用列举法。

但如何在实际问题中灵活运用这些知识,选择最优方案,对学生来说还较为困难。

因此,在教学过程中,教师需要引导学生将所学知识与实际问题相结合,提高学生的解决问题的能力。

三. 教学目标1.让学生理解选择方案的概念,掌握选择方案的方法和技巧。

2.培养学生运用概率知识、列举法解决实际问题的能力。

3.培养学生独立思考、合作交流的能力。

四. 教学重难点1.重点:选择方案的方法和技巧。

2.难点:如何将所学知识应用于实际问题中,灵活选择最优方案。

五. 教学方法1.案例教学法:通过引入实际问题,让学生在解决问题的过程中掌握选择方案的方法。

2.引导发现法:教师引导学生发现问题的解决方法,培养学生的独立思考能力。

3.合作交流法:分组讨论,让学生在合作中发现问题、解决问题,提高学生的沟通能力。

六. 教学准备1.准备相关案例材料,用于引导学生解决实际问题。

2.准备多媒体教学设备,用于展示案例和引导学生思考。

七. 教学过程1.导入(5分钟)利用多媒体展示一个实际问题:某商场举行抽奖活动,奖品有电视机、洗衣机、电风扇和玩具。

奖品设置如下:一等奖:电视机,概率为1/10;二等奖:洗衣机,概率为2/10;三等奖:电风扇,概率为3/10;四等奖:玩具,概率为4/10。

提问:如果你参加这次抽奖活动,你希望获得哪个奖项?为什么?2.呈现(10分钟)引导学生分析问题,让学生认识到选择最优方案的重要性。

呈现教材中的案例,让学生了解选择方案的方法和技巧。

【人教版】八年级数学下册教案:19.3 课题学习 选择方案

【人教版】八年级数学下册教案:19.3 课题学习 选择方案

19.3课题学习选择方案1.巩固一次函数知识,灵活运用变量关系解决相关实际问题;(重点)2.有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力.(难点)一、情境导入某校打算组织八年级师生进行春游,负责组织春游的老师了解到本地有甲乙两家旅行社满足要求,针对团体出游,两家旅行社的优惠方案各不相同,甲旅行社表示可在原价基础上打八折优惠,乙旅行社则推出学生半价,教师九折的优惠,经统计得知有300名学生和24名老师将参加此次春游,你能帮忙分析出如何选择旅行社更划算吗?二、合作探究探究点:运用一次函数解决方案选择性问题【类型一】利用一次函数解决自变量是非负实数的方案选择问题小刚和他父亲一起去灯具店买灯具,灯具店老板介绍说,一种节能灯的功率是10瓦(即0.01千瓦)的,售价60元;一种白炽灯的功率是60瓦(即0.06千瓦)的,售价为3元.两种灯的照明效果是一样的.使用寿命也相同(3000小时以上).如果当地电费为0.5元/千瓦·时,请你帮助他们选择哪种灯可以省钱?解析:设照明时间是x个小时,节能灯的费用为y1元,白炽灯的费用为y2元.根据“费用=灯的售价+电费”,分别列出y1、y2与x的函数解析式;然后根据y1=y2,y1>y2,y2>y1三种情况进行讨论即可求解.解:设照明时间是x个小时,节能灯的费用为y1元,白炽灯的费用为y2元,由题意可知y1=0.01×0.5x+60=0.005x+60,y2=0.06×0.5x+3=0.03x+3.①当使用两灯费用相等时,y1=y2,即0.005x+60=0.03x+3,解得x=2280;②当使用节能灯的费用大于白炽灯的费用时,y1>y2,即0.005x+60>0.03x+3,解得x<2280;③当使用节能灯的费用小于白炽灯的费用时,y2>y1,即0.03x+3>0.005x+60,解得x>2280.所以当照明时间小于2280小时,应买白炽灯;当照明时间大于2280小时,应买节能灯;当照明时间等于2280小时,两种灯具费用一样.本题中两种灯的照明效果是一样的.使用寿命也相同(3000小时以上),所以买节能灯可以省钱.方法总结:解题的关键是要分析题意,根据实际意义求解.注意要把所有的情况都考虑进去,分情况讨论问题是解决实际问题的基本能力.【类型二】利用一次函数解决自变量是非负整数的方案选择问题某灾情发生后,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据表中提供的信息,解答的车辆数为y .求y 与x 的函数关系式;(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.解析:(1)装运生活用品的车辆为(20-x -y )辆,根据三种救灾物资共100吨列出关系式;(2)根据题意求出x 的取值范围并取整数值从而确定方案;(3)分别表示装运三种物资的费用,求出表示总运费的表达式,运用函数性质解答.解:(1)根据题意,装运食品的车辆为x 辆,装运药品的车辆为y 辆,那么装运生活用品的车辆数为(20-x -y )辆,则有6x +5y +4(20-x -y )=100,整理得,y =-2x +20;(2)由(1)知,装运食品,药品,生活用品三种物资的车辆数分别为x ,20-2x ,x ,由题意得⎩⎪⎨⎪⎧x ≥5,20-2x ≥4,解得5≤x ≤8.因为x为整数,所以x 的值为5,6,7,8.所以安排方案有4种:方案一:装运食品5辆、药品10辆,生活用品5辆;方案二:装运食品6辆、药品8辆,生活用品6辆;方案三:装运食品7辆、药品6辆,生活用品7辆;方案四:装运食品8辆、药品4辆,生活用品8辆;(3)设总运费为W (元),则W =6x ×120+5(20-2x )×160+4x ×100=16000-480x .因为k =-480<0,所以W 的值随x 的增大而减小.要使总运费最少,需x 最大,则x =8.故选方案四,W 最小=16000-480×8=12160(元).答:选方案四,最少总运费为12160元.方法总结:解答此类问题往往通过解不等式(组)求出自变量的取值范围,然后求出自变量取值范围内的非负整数,进而得出每种方案,最后根据一次函数的性质求出最佳方案.【类型三】 利用一次函数、统计等知识解决最省钱、更划算、更优惠的问题已知A 、B 两地的路程为240千米.某经销商每天都要用汽车或火车将x 吨保鲜品一次性由A 地运往B 地.受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.现有货运收费项目及收费标准表、行驶路程s (千米)与行驶时间t (时)的函数图象(如图①)、上周货运量折线统计图(如图②)等信息如下:货运收费项目及收费标准表货运收费项目及收费标准表:(1)汽车的速度为______千米/时,火车的速度为______千米/时;(2)设每天用汽车和火车运输的总费用分别为y 汽(元)和y 火(元),分别求y 汽、y 火与x 的函数关系式(不必写出x 的取值范围),当x 为何值时,y 汽>y 火(总费用=运输费+冷藏费+固定费用);(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省?解析:(1)根据图①上两点的坐标分别为(2,120),(2,200),直接得出两车的速度即可;(2)根据图表得出货运收费项目及收费标准表、行驶路程s (千米)与行驶时间t (时)的函数图象,得出关系式即可;(3)根据平均数的求法以及折线图走势两个角度分析得出运输总费用较省方案.解:(1)60 100(2)根据题意得y 汽=240×2x +24060×5x+200=500x +200;y火=240×1.6x +240100×5x +2280=396x +2280.若y 汽>y 火,得出500x +200>396x +2280.解得x >20,当x >20时,y 汽>y 火;(3)上周货运量x =(17+20+19+22+22+23+24)÷7=21>20,从平均数分析,建议预定火车费用较省.从折线图走势分析,上周货运量周四(含周四)后大于20且呈上升趋势,建议预订火车费用较省.方法总结:解答方案选择问题,要注意根据具体情境适当调整方法,如解统计有关的方案选择问题时,要注意从统计图表中读取信息,然后利用这些信息解决问题. 三、板书设计1.利用一次函数解决自变量是非负实数的方案选择问题2.利用一次函数解决自变量是非负整数的方案选择问题3.利用一次函数、统计等知识解决最省钱、更划算、更优惠的问题教学时,突出重点把握难点.能够让学生经历数学知识的应用过程,关注对问题的分析过程,让学生自己利用已经具备的知识分析实例.同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的思想.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选取哪种方式能节省上网费?
问题1:“选择哪种方式上网”的依据是什么?
师生活动:学生讨论得出需要知道三种方式的上网费分别是多少,费用最少的就是最佳方案.设计意图:让学生明确问题的目标.
问题2:哪种方式上网费是会变化的?哪种不变?
师生活动:学生讨论得出方式A、B会变化;方式C不变.
追问1:方式C上网费是多少钱?
追问2:方式A、B中,上网费由哪些部分组成的?
师生活动:老师引导学生分析得出:
(1)当上网时间不超过规定时间时,上网费用=月使用费;
(2)当上网时间超过规定时间时,上网费用=月使用费+超时费.
追问4:影响方式A、B上网费用的因素是什么?
师生活动:学生独立思考得出上网时间是影响上网费用的因素.
问题3:你能用适当的方法表示出方式A的上网费用吗?
师生活动:学生小组讨论得出结论.
方式A:当上网时间不超过25h时,上网费=30元;
当上网时间超过25h时,上网费=30+超时费
即上网费=30+0.05×60×(上网时间-25)
追问1:设上网时间为t h,上网费用为y元,你能用数学关系式表达y与t的关系吗?
师生活动:老师引导,注意时间单位统一,得出结论:当0≤t≤25时,y=30;
当t>25时,y=30+0.05×60(t-25)即y=3t-45

问题4:类比方式A,你能用数学关系式表示出方式B中上网费用y与上网时间t的关系吗?
师生活动:学生思考后,小组讨论,得出结论,老师适时引导评价.
设计意图:让学生从粗到细的感知问题的整体结构和数量关系,感知上网费用随上网时间的变化而变化,并把这两个变量作为研究对象,教师引导学生最终把问题转化为一次函数问题.3.建立模型,解决问题
问题4:你能把上面的问题描述为函数问题吗?
师生活动:学生讨论后建立函数模型,把实际问题转化为函数问题.
设上网时间为t h,方式 A上网费用为元,方式B上网费用为元,方式C上网费用为元,则
;;,比较、、的大小.
设计意图:让学生在感知问题、分析问题基础上建立一次函数模型,把实际问题转化为一次函数的问题.
追问1:用什么方法比较函数、、的大小呢?
师生活动:学生独立思考.有的学生会提出用不等式或方程考虑当t满足什么条件时,>,=,<,分组讨论后,学生会发现由于、是分段函数,用不等式比较麻烦,此时教师引导学生借助函数图象来分析问题.
由函数图象可知:
(1)当时,函数、的图像有一个交点,求出此
交点的横坐标,即=时, 3t-45=50,解方程,得;
(2)当时,函数的图像在函数图像的下方,
即<时,方式A比方式B省钱;
(3)当时,函数的图像在函数图像的上方,即>,方式B比方式A省钱;
(4)当时,函数、的图像有一个交点,求出此交点的横坐标,即
=时, 3t-100=120,解方程,得t=;
(5)当t>时,函数的图像在函数图像的上方,即>,方式C比方式B省钱.设计意图:上述分段函数问题,需要在画出函数图象观察函数图象的基础上对上网时间进行分段讨论,让学生感受函数图象与方程、不等式数形结合的方法.
问题5:上述比较函数值大小结果的实际意义是什么?
师生活动:教师引导学生解释上述结果的实际意义.
当上网时间不超过31小时40分钟时,选择方式 A最省钱;
当上网时间为31小时40分钟至73小时20分钟时,选择方案B最省钱;
当上网时间超过73小时20分钟时,选择方案C最省钱.
设计意图:让学生解释函数模型中解的实际意义,从而解决实际问题.
4.小结
用一次函数解决实际问题的基本思路:
(1)明确问题的目标;
(2)发现问题中数量之间的关系;
(3)找出问题中变量之间的函数关系;
(4)函数问题的解的实际意义.
设计意图:提高学生反思过程的针对性,展示函数的应用价值,突出建立数学模型的思想方法和实际意义.
5、课堂练习
如图,、分别表示一种白炽灯和一种节能灯的费用y元(费用=灯的售价+电费)与使用时间(小时)的函数图象,若两种灯的使用寿命都为2000小时,照明效果一样.
(1)根据图象分别求出、的解析式;
(2)当照明时间为多少时,两种灯的费用相等?
(3)某用户计划照明2500小时,现在购买了一个白炽灯和一个节能灯,请你为该用户设计一个最省钱的用灯方法.
设计意图:评价学生利用一次函数模型解决方案选择问题的水平.
布置作业:练习册45页至46页。

相关文档
最新文档