一元一次不等式培优带答案.doc
《一元一次不等式》综合提优卷(含答案)

《一元一次不等式》综合提优卷(含答案)一.选择题(共10小题)1.如果a>b,那么下列结论中,正确的是()A.a﹣1>b﹣1 B.1﹣a>1﹣b C.D.﹣2a>﹣2b 2.不等式2x+3<﹣1的解集是()A.x>2 B.x<﹣2 C.x<1 D.x>﹣23.不等式组的解集为()A.x<﹣3 B.x≤2 C.﹣3<x≤2 D.无解4.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.不等式组的解集在数轴表示正确的是()A.B.C.D.6.已知关于x的不等式组的最小整数解是2,则实数m的取值范围是()A.﹣3≤m<﹣2 B.﹣3<m≤﹣2 C.﹣3<m<﹣2 D.﹣3≤m≤﹣2 7.关于x的不等式组有3个整数解,则a的取值范围是()A.﹣2<a≤﹣1 B.﹣2≤a<﹣1 C.﹣3<a≤﹣2 D.﹣3≤a<﹣2 8.码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.轮船到达目的地后开始卸货,由于遇到紧急情况,需要将船上的货物不超过五天卸载完毕,那么平均每天至少要卸载货物的重量为()A.60吨B.48吨C.40吨D.30吨9.如果关于x的方程的解是非负数,那么a与b的关系是()A.a b B.b a C.a b D.a b10.某商店计划用不超过2000元的资金,购进甲、乙两种单价分别为30元、60元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利5元、15元,两种商品均售完.若所获利润大于380元,则该店进货方案有()A.3种B.4种C.5种D.6种二.填空题(共10小题)11.3的解集是.12.不等式组的解集是.13.若不等式组无解,则m的取值范围是.14.当m的取值范围是时,关于x的方程1的解不大于11.15.规定[x]为不大于x的最大整数,如[0.7]=0,[﹣2.3]=﹣3,若[x+0.5]=2,且[1﹣x]=﹣2,则x的取值范围为.16.某商店的老板销售一种商品,他要以高于进价20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价元商店老板才能出售.17.已知关于x的不等式组恰有三个整数解,则t的取值范围为.18.对于整数a,b,c,d,符号表示运算ad﹣bc,已知13,则bd的值是.19.一辆公交车每月的支出费用为3000元,乘车平均票价为1.5元/人,设每月有x人乘坐该公交车,每月收入与支出的差额为y元,当每月乘客量达到人以上时,该公交车才不会亏损.20.某班男女同学分别参加植树劳动,要求男女同学各种8行树,男同学种的树比女同学种的树多,如果每行都比预定的多种一棵树,那么男女同学种树的数目都超过100棵;如果每行都比预定的少种一棵树,那么男女同学植树的数目都达不到100棵.这样原来预定男同学种树棵;女同学种树棵.三.解答题(共8小题)21.解不等式组:.22.解不等式组:并把它的解集在数轴上表示出来.23.已知关于x的不等式组.(1)当k为何值时,该不等式组的解集为﹣2<x<3;(2)若该不等式组只有2个正整数解,求k的取值范围.24.如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x﹣1=0,②x+1=0,③x﹣(3x+1)=﹣5中,不等式组的关联方程是;(填序号)(2)若不等式组的一个关联方程的解是整数,则这个关联方程可以是;(写出一个即可)(3)若方程1﹣x=﹣7+3x,6(x)=10﹣x都是关于x的不等式组的关联方程,直接写出m的取值范围.25.某市教育局对某镇实施“教育精准扶贫”,为某镇建了中、小两种图书馆.若建立3个中型图书馆和5个小型图书馆需要30万元,建立2个中型图书馆和3个小型图书馆需要19万元.(1)建立每个中型图书馆和每个小型图书馆各需要多少万元?(2)现要建立中型图书馆和小型图书馆共10个,小型图书馆数量不多于中型图书馆数量,且总费用不超过44万元,那么有哪几种方案?26.某校计划购进A,B两种树木共100棵进行校园绿化,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A,B两种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.27.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过200元,超出200元的部分按80%收费;在乙商场累计购物超过100元,超出100元的部分按85%收费.已知小红在同一商场累计购物x元,其中x>200.(1)当x=300时,小红在甲商场需花费元,在乙商场需花费元.(2)分别用含x的代数式表示小红在甲、乙商场的实际花费.(3)当小红在同一商场累计购物超过200元时,通过计算说明小红在哪家商场购物的实际花费少.28.先阅读短文,然后回答短文后面所给出的问题:对于三个数a、b、c的平均数,最小的数都可以给出符号来表示,我们规定M{a,b,c}表示a,b,c这三个数的平均数,min{a,b,c}表示a,b,c这三个数中最小的数,max{a,b,c}表示a,b,c这三个数中最大的数.例如:M{﹣1,2,3},min{﹣1,2,3}=﹣1,max{﹣1,2,3}=3;M{﹣1,2,a},min{﹣1,2,a}.(1)请填空:max{c﹣1,c,c+1}=;若m<0,n>0,min{3m,(n+3)m,﹣mn}=;(2)若min{2,2x+2,4﹣2x}=2,求x的取值范围;(3)若M{2,x+1,2x}=min{2,x+1,2x},求x的值.一.选择题(共10小题)1.如果a>b,那么下列结论中,正确的是()A.a﹣1>b﹣1 B.1﹣a>1﹣b C.D.﹣2a>﹣2b 【分析】根据不等式的性质对各选项分析判断后利用排除法求解.【解答】解:A、a>b两边都减去1得a﹣1>b﹣1,故本选项正确;B、a>b两边都乘以﹣1再加1得1﹣a<1﹣b,故本选项错误;C、a>b两边都乘以得,故本选项错误;D、a>b两边都乘以﹣2得,﹣2a<﹣2b,故本选项错误.故选:A.【点评】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.不等式2x+3<﹣1的解集是()A.x>2 B.x<﹣2 C.x<1 D.x>﹣2【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:移项,得:2x<﹣1﹣3,合并同类项,得:2x<﹣4,系数化为1,得:x<﹣2,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.3.不等式组的解集为()A.x<﹣3 B.x≤2 C.﹣3<x≤2 D.无解【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式x﹣1>2x+2,得:x<﹣3,解不等式2+5x≤3(6﹣x),得:x≤2,则不等式组的解集为x<﹣3.故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x﹣3≥0,得:x≥1,解不等式x﹣1<5﹣x,得:x<3,则不等式组的解集为1≤x<3,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.不等式组的解集在数轴表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+1≤3,得:x≤2,解不等式﹣2x﹣6<﹣4,得:x>﹣1,则不等式组的解集为﹣1<x≤2,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.已知关于x的不等式组的最小整数解是2,则实数m的取值范围是()A.﹣3≤m<﹣2 B.﹣3<m≤﹣2 C.﹣3<m<﹣2 D.﹣3≤m≤﹣2 【分析】分别求出每一个不等式的解集,根据口诀:同大取大及不等式组的最小整数解求解即可.【解答】解:解不等式2,得:x≥4+m,解不等式x﹣4≤3(x﹣2),得:x≥1,∵不等式组的最小整数解是2,∴1<4+m≤2,解得﹣3<m≤﹣2,故选:B.【点评】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.关于x的不等式组有3个整数解,则a的取值范围是()A.﹣2<a≤﹣1 B.﹣2≤a<﹣1 C.﹣3<a≤﹣2 D.﹣3≤a<﹣2 【分析】分别求出每个不等式的解集,结合不等式组整数解的个数可得a的取值范围.【解答】解:解不等式x﹣a>0,得:x>a,解不等式1﹣x>2x﹣5,得:x<2,则不等式组的解集为a<x<2,∵不等式组有3个整数解,∴不等式组的整数解为1、0、﹣1,则﹣2≤a<﹣1,故选:B.【点评】本题主要考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式的基本步骤,并根据不等式组整数解的情况确定字母a的取值范围.8.码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.轮船到达目的地后开始卸货,由于遇到紧急情况,需要将船上的货物不超过五天卸载完毕,那么平均每天至少要卸载货物的重量为()A.60吨B.48吨C.40吨D.30吨【分析】首先根据题意可知总工作量为30×8=240吨不变,故卸货速度v与卸货时间t 之间为反比例关系,即vt=240,将t≤5代入,即可求出答案.【解答】解:设轮船上的货物总量为k吨,根据已知条件得k=30×8=240,所以v关于t的函数关系式为v,∵v,∴t,∵t≤5,∴5,解得:v≥48.即平均每天至少要卸载48吨.故选:B.【点评】本题考查了一元一次不等式的应用,解答该类问题的关键是确定两个变量之间的函数关系.9.如果关于x的方程的解是非负数,那么a与b的关系是()A.a b B.b a C.a b D.a b【分析】解方程求出x,根据方程的解是非负数得出0,求出不等式的解集即可.【解答】解:,5(2x+a)=3(4x+b),10x+5a=12x+3b,10x﹣12x=3b﹣5a,﹣2x=3b﹣5a,x,∵关于x的方程的解是非负数,∴0,解得:a b,b a,故选:C.【点评】本题考查了解一元一次方程,一元一次方程的解,解一元一次不等式等知识点,能求出方程的解是解此题的关键.10.某商店计划用不超过2000元的资金,购进甲、乙两种单价分别为30元、60元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利5元、15元,两种商品均售完.若所获利润大于380元,则该店进货方案有()A.3种B.4种C.5种D.6种【分析】设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据“购进甲乙商品不超过2000元的资金、两种商品均售完所获利润大于380元”列出关于x的不等式组,解之求得整数x的值即可得出答案.【解答】解:设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据题意,得:,解得:x<37,∵x为整数,∴x=34、35、36,∴该店进货方案有3种,故选:A.【点评】本题主要考查一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的不等关系,并据此列出不等式组.二.填空题(共10小题)11.3的解集是x≥7.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项可得.【解答】解:去分母,得:x﹣1≥6,移项、合并,得:x≥7,故答案为:x≥7.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12.不等式组的解集是3≤x<4.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式1<1,得:x<4,解不等式2﹣3x≤﹣7,得:x≥3,则不等式组的解集为3≤x<4,故答案为:3≤x<4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.若不等式组无解,则m的取值范围是m≤2.【分析】求出第一个不等式的解集,根据口诀:大大小小找不到可得答案.【解答】解:解不等式x﹣2<3x﹣6,得:x>2,∵不等式组无解,∴m≤2,故答案为:m≤2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.当m的取值范围是m≤1时,关于x的方程1的解不大于11.【分析】解关于x的方程得出x,再根据解不大于11得出关于m的不等式,解之可得答案.【解答】解:解关于x的方程1得x,根据题意,得:11,解得m≤1,故答案为:m≤1.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15.规定[x]为不大于x的最大整数,如[0.7]=0,[﹣2.3]=﹣3,若[x+0.5]=2,且[1﹣x]=﹣2,则x的取值范围为2<x<2.5.【分析】根据新定义得出2≤x+0.5<3且﹣2≤1﹣x<﹣1,再分别求出其解集,继而找到其解集的公共部分即可.【解答】解:∵[x+0.5]=2,且[1﹣x]=﹣2,∴2≤x+0.5<3且﹣2≤1﹣x<﹣1,解2≤x+0.5<3得1.5≤x<2.5,解﹣2≤1﹣x<﹣1得2<x≤3,∴2<x<2.5,故答案为:2<x<2.5.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.某商店的老板销售一种商品,他要以高于进价20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价120元商店老板才能出售.【分析】设这件商品的进价为x,根据题意可得高出进价80%的价格标价为360元,列出方程,求出x的值,然后再求出最低出售价,用标价﹣最低出售价即可得出答案.【解答】解:设这件商品的进价为x.根据题意得:(1+80%)•x=360,解得:x=200.盈利的最低价格为200×(1+20%)=240,则商店老板最多会降价360﹣240=120(元).故答案为:120.【点评】本题考查一元一次方程的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.17.已知关于x的不等式组恰有三个整数解,则t的取值范围为t.【分析】求出每个不等式的解集,根据已知得出不等式组的解集,根据不等式组的整数解即可得出:一定存在一个整数k,满足满足下列关系:,并分情况讨论得出k的取值,再得t的取值范围.【解答】解:解不等式①得:x,解不等式②得:x<3﹣2t,则不等式组的解集为:x<3﹣2t,∵不等式组有3个整数解,∴一定存在一个整数k,满足满足下列关系:,解不等式组①得,,解不等式组②得,,(1)当,即时,则,于是,,解得,,∴k,∵k为整数,∴k=3,∴,∴t;(2)当时,即时,不存在整数k,∴此时无解;(3)当,此时无解;(4)当,即k时,则,于是,,解得,,∴,不存在整数k,∴此时无解.综上,t.故答案为:t.【点评】本题考查一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式的方法.难点是由不等式组有3个整数解,得出t的不等式组,以及分情况解k及t.难度大.18.对于整数a,b,c,d,符号表示运算ad﹣bc,已知13,则bd的值是2.【分析】根据题中已知条件得出关于bd的不等式,直接进行解答即可.【解答】解:已知13,即1<4﹣bd<3所以解得1<bd<3因为b,d都是整数,则bd一定也是整数,因而bd=2.【点评】读懂题目,把题目中的式子转化为一般的式子是解决本题的关键.19.一辆公交车每月的支出费用为3000元,乘车平均票价为1.5元/人,设每月有x人乘坐该公交车,每月收入与支出的差额为y元,当每月乘客量达到2000人以上时,该公交车才不会亏损.【分析】设当每月乘客量达到x人以上时,该公交车才不会亏损,根据题意列出不等式,求出不等式的解集即可.【解答】解:设当每月乘客量达到x人以上时,该公交车才不会亏损,则1.5x﹣3000≥0,解得:x≥2000,故答案为:2000.【点评】此题主要考查了函数的表示方法,解题的关键首先正确理解题意,然后根据题目的数量关系列出关系式即可求解.20.某班男女同学分别参加植树劳动,要求男女同学各种8行树,男同学种的树比女同学种的树多,如果每行都比预定的多种一棵树,那么男女同学种树的数目都超过100棵;如果每行都比预定的少种一棵树,那么男女同学植树的数目都达不到100棵.这样原来预定男同学种树104棵;女同学种树96棵.【分析】关系式为:8×(原来每行树的棵数+1)>100;8×(原来每行树的棵数﹣1)<100,把相关数值代入求得整数解,根据男同学种的树比女同学种的树多可得男同学和女同学原来种的每行树的棵数,乘以8即为总的种树棵树.【解答】解:设原来每行树的棵数为x.,解得11.5<x<13.5,∵x为整数,∴x为12,13.∵男同学种的树比女同学种的树多,∴男同学每行种13棵树,女同学每行种12棵树.∴男同学种了13×8=104棵树,女同学种了12×8=96棵树.故答案为:104;96.【点评】考查一元一次不等式组的应用;得到种树总棵数和100的2个关系式是解决本题的关键.三.解答题(共8小题)21.解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式x+5>3,得:x>﹣2,解不等式,得:x≥2,则不等式组的解集为x≥2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.解不等式组:并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:解不等式5x+6>3(x+1),得:x,解不等式,得:x≤4,则不等式组的解集为,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.已知关于x的不等式组.(1)当k为何值时,该不等式组的解集为﹣2<x<3;(2)若该不等式组只有2个正整数解,求k的取值范围.【分析】(1)先解每个不等式得出其解集,结合已知的不等式组的解集得出关于k的方程,解之即可;(2)根据不等式组只有2个整数解知01,解之即可.【解答】解:(1)解不等式2x+4>0,得:x>﹣2,解不等式3x﹣k<6,得:x,则不等式组的解集为﹣2<x,∵该不等式组的解集为﹣2<x<3,∴3,解得k=3;(2)∵不等式组只有2个正整数解,∴23,解得0<k≤3.【点评】本题主要考查一元一次不等式组的整数解,解题的关键是掌握解一元一次不等式的能力,并根据不等式组的整数解个数得出关于k的不等式组.24.如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x﹣1=0,②x+1=0,③x﹣(3x+1)=﹣5中,不等式组的关联方程是③;(填序号)(2)若不等式组的一个关联方程的解是整数,则这个关联方程可以是3x﹣3=﹣3(答案不唯一);(写出一个即可)(3)若方程1﹣x=﹣7+3x,6(x)=10﹣x都是关于x的不等式组的关联方程,直接写出m的取值范围0<m≤1.【分析】(1)求出三个方程的解,并解不等式组求出其解集,从而得出答案;(2)解不等式组求出其解集,得出其整数解,继而得出答案;(3)先求出方程的解和不等式组的解集,根据关联方程的概念得到关于m的不等式组,解之即可得出答案.【解答】解:(1)解方程3x﹣1=0得:x,解方程x+1=0得:x,解方程x﹣(3x+1)=﹣5得:x=2,解不等式组得:x,所以不等式组的关联方程是③,故答案为:③;(2)解不等式(x﹣2)<2x+1,得:x>﹣1,解不等式,得:x,∴不等式组的解集为﹣1<x,则不等式组的整数解为x=0,∴此不等式组的关联方程可以为3x﹣3=﹣3,故答案为:3x﹣3=﹣3(答案不唯一);(3)解方程1﹣x=﹣7+3x,得:x=2,解方程6(x)=10﹣x,得:x=3,解不等式3x﹣m≥x+3m,得:x≥2m,解不等式x﹣m x+3,得:x<m+3,则不等式组的解集为2m≤x<m+3,根据题意知2m≤2且m+3>3,解得0<m≤1,故答案为:0<m≤1.【点评】本题主要考查解一元一次方程和一元一次不等式组,熟练掌握解一元一次方程和一元一次不等式组的技能是解题的关键.25.某市教育局对某镇实施“教育精准扶贫”,为某镇建了中、小两种图书馆.若建立3个中型图书馆和5个小型图书馆需要30万元,建立2个中型图书馆和3个小型图书馆需要19万元.(1)建立每个中型图书馆和每个小型图书馆各需要多少万元?(2)现要建立中型图书馆和小型图书馆共10个,小型图书馆数量不多于中型图书馆数量,且总费用不超过44万元,那么有哪几种方案?【分析】(1)设建立每个中型图书馆x万元,建立每个小型图书馆y万元,根据建立3个中型图书馆和5个小型图书馆需要30万元,建立2个中型图书馆和3个小型图书馆需要19万元,列方程组求解.(2)设建立中型图书馆a个,根据要建立中型图书馆和小型图书馆共10个,小型图书馆数量不多于中型图书馆数量,且总费用不超过44万元,列出不等式组求解.【解答】解:(1)设建立每个中型图书馆x万元,建立每个小型图书馆y万元,根据题意列方程组:.解得:.答:建立每个中型图书馆需要5万元,建立每个小型图书馆需要3万元.(2)设建立中型图书馆a个,根据题意得:.解得:5≤a≤7.∵a取正整数,∴a=5,6,7.∴10﹣a=5,4,3答:一共有3种方案:方案一:中型图书馆5个,小型图书馆5个;方案二:中型图书馆6个,小型图书馆4个;方案三:中型图书馆7个,小型图书馆3个.【点评】本题主要考查了二元一次方程组的应用,以及一元一次不等式组的应用,找到关键描述语,进而找到所求的量的数量关系,列出方程组或不等式组求解.26.某校计划购进A,B两种树木共100棵进行校园绿化,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A,B两种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.【分析】(1)设A种树每棵x元,B种树每棵y元,根据“购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元”列出方程组并解答;(2)设购买A种树木为a棵,则购买B种树木为(100﹣a)棵,根据“购买A种树木的数量不少于B种树木数量的3倍”列出不等式并求得a的取值范围,结合实际付款总金额=0.9(A种树的金额+B种树的金额)进行解答.【解答】解:(1)设A种树每棵x元,B种树每棵y元,依题意得:,解得.答:A种树每棵100元,B种树每棵80元;(2)设购买A种树木为a棵,则购买B种树木为(100﹣a)棵,则a≥3(100﹣a),解得a≥75.设实际付款总金额是y元,则y=0.9[100a+80(100﹣a)],即y=18a+7200.∵18>0,y随a的增大而增大,∴当a=75时,y最小.即当a=75时,y最小值=18×75+7200=8550(元).答:当购买A种树木75棵,B种树木25棵时,所需费用最少,最少为8550元.【点评】本题考查了一次函数的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.27.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过200元,超出200元的部分按80%收费;在乙商场累计购物超过100元,超出100元的部分按85%收费.已知小红在同一商场累计购物x元,其中x>200.(1)当x=300时,小红在甲商场需花费280元,在乙商场需花费270元.(2)分别用含x的代数式表示小红在甲、乙商场的实际花费.(3)当小红在同一商场累计购物超过200元时,通过计算说明小红在哪家商场购物的实际花费少.【分析】(1)在甲商场累计购物超过200元,超出200元的部分按80%收费,则多出的100元按80%收费,于是得到小红在甲商场所花费用为200+(300﹣200)×80%;在乙商场累计购物超过100元,超出100元的部分按85%收费,则多出的200元按85%收费,于是得到小红在乙商场所花费用为100+(300﹣100)×80%;(2)与(1)的思路一样,用x代替300即可;(3)讨论:当0.8x+40>0.85x+15时,小红在乙商场购物的实际花费少;当0.8x+40=0.85x+15时,小红在甲乙商场购物的实际花费一样;当0.8x+40<0.85x+15时,小红在甲商场购物的实际花费少,然后分别解不等式或方程确定x的范围或值即可.【解答】解:(1)当x=300时,小红在甲商场所花费用为200+(300﹣200)×80%=280(元);在乙商场所花费用为100+(300﹣100)×85%=270(元);故答案为280,270;(2)x>200,小红在甲商场所花费用为200+(x﹣200)×80%=(0.8x+40)元;在乙商场所花费用为100+(x﹣100)×85%=(0.85x+15)元;(3)当0.8x+40>0.85x+15时,解得x<500,所以当200<x<500时,小红在乙商场购物的实际花费少;当0.8x+40=0.85x+15时,解得x=500,所以当x=500时,小红在甲乙商场购物的实际花费一样;当0.8x+40<0.85x+15时,解得x>500,所以当x>500时,小红在甲商场购物的实际花费少.【点评】本题考查了一元一次不等式的应用:由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.28.先阅读短文,然后回答短文后面所给出的问题:对于三个数a、b、c的平均数,最小的数都可以给出符号来表示,我们规定M{a,b,c}表示a,b,c这三个数的平均数,min{a,b,c}表示a,b,c这三个数中最小的数,max{a,b,c}表示a,b,c这三个数中最大的数.例如:M{﹣1,2,3},min{﹣1,。
一元一次不等式组 能力培优训练(含答案)

一元一次不等式组能力提升专题一 求一元一次不等式组中未知系数 1.若关于x 的一元一次不等式组-01-2-2x a x x >⎧⎨>⎩无解,则a 的取值范围是( )A. a ≥1B. a >1C. a ≤—1D. a <-13.若关于x 的不等式⎪⎪⎩⎪⎪⎨⎧<++>+022234a x x x 的解集为x <2,则a 的取值范围是 .4.若关于x 的不等式组有实数解,则a 的取值范围是 .专题二 一元一次不等式组的特殊解 5.已知关于x 的不等式组221x a b x a b -≥⎧⎨-<+⎩的解集是35x ≤<,则ba 的值是( )A .-2B .12-C .-4D .14-6. 按如下程序进行运算:并规定:程序运行到“结果是否大于65”为一次运算,且运算进行4次才停止,则可输入的整数x 的个数是 . 7. 已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩的整数解3个,则a 的取值范围是 .8. 对于整数a 、b 、c 、d ,对于符号a b d c表示运算ac bd -,已知1134b d <<,则b d +的值是 .9. 已知a a -=-33,当a 为何整数时,方程组⎩⎨⎧=-=-a y x y x 115163的解都是负数?3x -a >5 2x >3x -3专题三 一元一次不等式组的应用10.某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.不同的组建方案有( ) A .4种 B .3种 C .2种 D .1种11. 一辆公共汽车上有(5a -4)名乘客,到某一车站有(9-2a )名乘客下车,车上原来有 _________名乘客.12.已知0x >,符号[]x 表示大于或者等于......x 的最小正整数......,如[]0.31=;[]3.24=;[]55=⋅⋅⋅.(1)填空:1711⎡⎤⎢⎥⎣⎦=_____________,若[]6x =,则x 的取值范围是____________; (2)某市出租车收费标准规定如下:3千米以内(包括3千米)收费6元;超过3千米的,每超过1千米,加收1.2元(不足1千米按1千米计算).用x 表示所行的千米数,y 表示应付车费,则乘车费可按如下公式计算:当03x <≤(单位:千米)时,6y =(元);当3x >(单位:千米)时,[]6 1.23y x =+-(元).某乘客乘车付费18元,则该乘客所行的路程x (千米)的取值范围为__________. 13. 在我市开展城乡综合治理的活动中,需要将A 、B 、C 三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D 、E 两地进行处理.已知运往D 地的数量比运往E 地的数量的2倍少10立方米.(1)求运往两地的数量各是多少立方米?(2)若A 地运往D 地a 立方米(a 为整数),B 地运往D 地30立方米,C 地运往D 地的数量小于A 地运往D 地的2倍.其余全部运往E 地,且C 地运往E 地不超过12立方米,则A 、C 两地运往D 、E 两地有哪几种方案?(3)已知从A 、B 、C 三地把垃圾运往D 、E 两地处理所需费用如下表:在(2)的条件下,请说明哪种方案的总费用最少?【知识要点】1.一元一次不等式组的解集:几个一元一次不等式的解集的公共部分叫做它们的解集. 2.一元一次不等式组的解集规律:①同大取大,同小取小;②大小小大取中间,大大小小是空集.3.解一元一次不等式组的应用题的步骤:①审清题意;②设未知数;③找不等关系组;④列不等式组;⑤解不等式组;⑥检验解的合理性;⑦作答.【温馨提示】1.解集的规律要记准确,异号不等式要特别注意.2.求不等式组中未知系数的值时要注意是否带上“=”号.3. 注意求整数解时不要漏解和多解.4.在数轴上表示不等式组的解集同样要注意有等号用实心圆点,无等号用空心圆圈.5. 解应用题时要注意解要符合实际.【方法技巧】1.求不等式组中某个字母的值时:①一般是先分别求出每个不等式的解集,再借助数轴找出它们的公共部分,再根据题意求出式子中某一系数的取值;②不等式组无解即没有公共部分,常采用逆向思维,写出有解的取值范围,然后进行思考;③不等式组有几个整数解,常借助数轴对照进行解决.2.根据题中最关键的语句(“超过”、“不大于”、“不小于”、“最多”、“不足”等字眼),写出不等关系组是解不等式组应用题的关键.3.方案问题通常设一元不等式(组),先将其转化为数学问题,即求一种的数量和另一种的数量,然后设一种的数量为x,则另一种数量用关于x的代数式表示,再根据题意构建不等式组模型,求整数解,有多少个整数解,就能求出多少种方案.1. A 解析:若不等式组有解集,则解集为a <x <1,则a <1.所以不等式组无解时,a ≥1.2. D 解析:A 选项,所给不等式组的解集为﹣2<x <2,那么a ,b 为一正一负,设a >0,则b <0,解得x >,x <,∴原不等式组无解,同理得到把2个数的符号全部改变后也无解,故错误,不符合题意;B 选项,所给不等式组的解集为﹣2<x <2,那么a ,b 同号,设a >0,则b >0,解得x >,x <,解集都是正数;若同为负数可得到解集都是负数;故错误,不符合题意;C 选项,理由同上,故错误,不符合题意;D 选项,所给不等式组的解集为-2<x <2,那么a ,b 为一正一负,设a >0,则b <0,解得x <,x >,∴原不等式组有解,可能为-2<x <2,把2个数的符号全部改变后也如此,故正确,符合题意;故选D .3. a ≤-2 解析:先解不等式组得,,因为解集为x <2,根据同小取小的原则可知,2≤-a ,则a ≤-2.4. a <4 解析:解不等式2x >3x -3,得x <3.解不等式3x -a >5,得x >5+a 3.这两个不等式解集的公共部分是5+a3<x <3.即a <4.故答案为a <4.5. A 解析:由题意得:212a b a b x +++≤<,所以32152a b a b +=⎧⎪⎨++=⎪⎩,解得36a b =-⎧⎨=⎩,所以2ba=-. 6. 3 解析:根据题意得:()[]{}()[]⎩⎨⎧<--->----651112226511112222x x 解得:5<x <9.则x 的整数值是: 6,7,8.共有3个.故答案是: 3. 7. 10<≤a 解析:解不等式组,得⎩⎨⎧>≤ax x 3,因为不等式组的整数解有3个,所以10<≤a .8. ±3 解析:由1134b d <<得143bd <-<,所以13bd <<,所以2bd =,所以b d +=±3.9. 解:解方程组⎩⎨⎧=-=-a y x y x 115163,得1163533a x ay -⎧=⎪⎪⎨-⎪=⎪⎩,因为方程组⎩⎨⎧=-=-a y x y x 115163的解都是负数,所以00x y <⎧⎨<⎩,即:116035303a a -⎧<⎪⎪⎨-⎪<⎪⎩,解得116a >.又因为a a -=-33,所以30a -≥,所以3a ≤. 所以1136a <≤,所以整数2a =或3. 10. B 解析:设组建中型图书角x 个,则组建小型图书角为(30-x )个.由题意,得⎩⎨⎧≤-+≤-+,1620)30(6050,1900)30(3080x x x x 解这个不等式组,得18≤x ≤20.∴x 的取值是18,19,20.所以12. 解:(1) 8 56x <≤(2)因为[]186 1.23x =+⨯-, 所以[]310x -=, 即9310x <-≤, 所以1213x <≤.13. 解:(1)设运往E 地x 立方米,由题意得,x +2x ﹣10=140, 解得:x =50, ∴2x ﹣10=90,答:共运往D 地90立方米,运往E 地50立方米. (2)由题意可得,[]⎩⎨⎧≤+--<+-12)30(90502)30(90a aa , 解得:20<a ≤22, ∵a 是整数, ∴a =21或22, ∴有如下两种方案:第一种:A 地运往D 地21立方米,运往E 地29立方米; C 地运往D 地39立方米,运往E 地11立方米; 第二种:A 地运往D 地22立方米,运往E 地28立方米; C 地运往D 地38立方米,运往E 地12立方米. (3)第一种方案共需费用:22×21+20×29+39×20+11×21+30×20+10×22=2873(元), 第二种方案共需费用:22×22+28×20+38×20+12×21+30×20+10×22=2876(元), 所以,第一种方案的总费用最少.。
完整版人教版七年级数学下册一元一次不等式应用题培优练习含答案

2018年七年级数学下册一元一次不等式应用题培优练习1.为了参加2011年西安世界园艺博览会,某公司用几辆载重为8吨的汽车运送一批参展货物.若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不空也不满.请问:共有多少辆汽车运货?2.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零价,其中西红柿与西兰花的批发价格与零售价格如表.(1)第一天该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元.这两种蔬菜当天全部售完后,一共能赚多少钱?(请列方程组求解)(2)第二天该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发多少千克的西红柿?3.六一”儿童节将至,益智玩具店准备购进甲、乙两种玩具,若购进甲种玩具80个,乙种玩具40个,需要800元,若购进甲种玩具50个,乙种玩具30个,需要550元.(1)求益智玩具店购进甲、乙两种玩具每个需要多少元?(2)若益智玩具店准备1000元全部用来购进甲,乙两种玩具,计划销售每个甲种玩具可获利润4元,销售每个乙种玩具可获利润5元,且销售这两种玩具的总利润不低于600元,那么这个玩具店需要最多购进乙种玩具多少个?4.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?5.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?6.公司为了运输的方便,将生产的产品打包成件,运往同一目的地.其中A产品和B产品共320件,A产品比B产品多80件.(1)求打包成件的A产品和B产品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批产品全部运往同一目的地.已知甲种货车最多可装A产品40件和B产品10件,乙种货车最多可装A产品和B产品各20件.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.则公司安排甲、乙两种货车时有几种方案?并说明公司选择哪种方案可使运输费最少?7.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)a200 x≤0<b ≤400 200<x0.92400x>(1)已知李叔家四月份用电286度,缴纳电费178.76元;五月份用电316度,缴纳电费198.56元,请你根据以上数据,求出表格中a,b的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?8.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表.已知购进60双甲种运动鞋与50双乙种运动鞋共用10000元运动鞋价格甲乙mm ﹣进价(元/双) 20160双) 240/售价(元(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)超过21000元,且不超过22000元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?9.某物流公司承接A.B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?10.少儿部组织学生进行“英语风采大赛”,需购买甲、乙两种奖品.购买甲奖品3个和乙奖品4个,需花64元;购买甲奖品4个和乙奖品5个,需花82元.(1)求甲、乙两种奖品的单价各是多少元?(2)由于临时有变,只买甲、乙一种奖品即可,且甲奖品按原价9折销售,乙奖品购买6个以上超出的部分按原价的6折销售,设购买x个甲奖品需要y元,购买x个乙奖品需要y元,请用x 分别表示出y和y;2211(3)在(2)的条件下,问买哪一种产品更省钱?11.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售2000每吨获利(元) 1000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?12.商场某柜台销售每台进价分别为160元、120元的A.B两种型号的电风扇,下表是近两周的销售情况:销售数量销售收入销售时段种型号 B种型号 A 1200元第一周 3台 4台元 6台台 1900 第二周 5 销售收入﹣进货成本)(进价、售价均保持不变,利润= .B两种型号的电风扇的销售单价;)求(1A种型号的电风扇最多能台,求)若商场准备用不多于27500元的金额再采购这两种型号的电风扇共50A (采购多少台?元的目标?若能,请给出相应1850台电风扇能否实现利润超过50)的条件下,商场销售完这2)在(3(.的采购方案;若不能,请说明理由.13.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.A型 B型b /台)a 价格(万元180240处理污水量(吨/月)(1)求a,b的值;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.14.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?15. “五?一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元.(1)若学校单独租用这两种车辆各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助该学校选择一种最节省的租车方案.参考答案1.解:设有x辆汽车,则有(4x+20)吨货物.由题意,可知当每辆汽车装满8吨时,则有(x﹣1)辆是装满的,所以有方程,解得5<x<7.由实际意义知x为整数.所以x=6.. 6答:共有辆汽车运货2.3. 元,y元,乙种玩具每个x)设甲种玩具每个1(【解答】解:根据题意,得:,解得:,答:甲种玩具每个元.5元,乙种玩具每个10 ,(个)2a﹣=200个,则甲种玩具a)设购进乙种玩具2(.根据题意,得:4+5a≥600,解得:a≤66,∵a是正整数,∴a的最大值为66,答:这个玩具店需要最多购进乙种玩具66个.4.解:(1)设单价为8.0元的课外书为x本,得:8x+12=1500﹣418,解得:x=44.5(不符合题意).∵在此题中x不能是小数,∴王老师说他肯定搞错了;(2)设单价为8.0元的课外书为y本,设笔记本的单价为b元,依题意得:0<1500﹣[8y+12+418]<10,解之得:0<4y﹣178<10,即:44.5<y<47,∴y应为45本或46本.当y=45本时,b=1500﹣[8×45+12+418]=2,当y=46本时,b=1500﹣[8×46+12+418]=6,即:笔记本的单价可能2元或6元.5.6.解:(1)设打包成件的A产品有x件,B产品有y件,根据题意得x+y=320,x-y=80,解得x=200,y=120,答:打包成件的A产品有200件,B产品有120件;(2)设租用甲种货车x辆,根据题意得40x+20(8-x)≥200,10x+20(8-x)≥120,解得2≤x≤4,而x为整数,所以x=2、3、4,所以设计方案有3种,分别为:所以方案①运费最少,最少运费是29600元.7.,解得:)根据题意得:1(解:.(2)设李叔家六月份最多可用电x度,根据题意得:200×0.61+200×0.66+0.92(x﹣400)≤300,解得:x≤450.答:李叔家六月份最多可用电450度.8.解:(1)依题意得:60m+50(m﹣20)=10000,解得m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,,根据题意得,解不等式①得,x>,解不等式②得,x≤100,所以,不等式组的解集是<x≤100,∵x是正整数,100﹣84+1=17,∴共有17种方案;(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)x+16000)a﹣60(= ),100≤x≤(.①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=100时,W有最大值,即此时应购进甲种运动鞋100双,购进乙种运动鞋100双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=84时,W有最大值,即此时应购进甲种运动鞋84双,购进乙种运动鞋116双.9.解:(1)设A种货物运输了x吨,设B种货物运输了y吨,,解之得:.依题意得:答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.10.解:(1)设甲种奖品的单价为x元/个,乙种奖品的单价为y元/个,:.:根据题意得,解得答:甲种奖品的单价为8元/个,乙种奖品的单价为10元/个.(2)根据题意得:y=8×0.9x=7.2x;1当0≤x≤6时,y=10x,当x>6时,y=10×6+10×0.6(x﹣6)=6x+24,22=.∴y2(3)当0≤x≤6时,∵7.2<10,∴此时买甲种产品省钱;当x>6时,令y<y,则7.2x<6x+24,解得:x<20;21令y=y,则7.2x=6x+24,解得:x=20;21令y>y,则7.2x>6x+24,解得:x>20.:当x<20时,选择甲种产品更省钱;21综上所述当x=20时,选择甲、乙两种产品总价相同;当x>20时,选择乙种产品更省钱.11.12.(1)设A型电风扇单价为x元,B型单价y元,则,解得:, 150型单价元;A型电风扇单价为200元,B答:(≤a:得解,7500≤)a﹣50160a+120则,台a购采扇风电型A设)2(.,则最多能采购37台;(3)依题意,得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,则35<a≤,∵a是正整数,∴a=36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.13.解:(1)购买A型的价格是a万元,购买B型的设备b万元,A=b+2,2a+6=3b,解得:a=12,b=10.故a的值为12,b的值为10;(2)设购买A型号设备m台,12m+10(10﹣m)≤105,解得:m≤2.5,故所有购买方案为:当A型号为0,B型号为10台;当A型号为1台,B型号为9台;当A型号为2台,B型号为8台;有3种购买方案;(3)由题意可得出:240m+180(10﹣m)≥2040,解得:m≥4,由(1)得A型买的越少越省钱,所以买A型设备4台,B型的6台最省钱.14. 件,根据题意得:y件,乙种商品x)设商场购进甲种商品1解:(.,解得:.答:该商场购进甲种商品200件,乙种商品120件.(2)设乙种商品每件售价z元,根据题意,得120(z﹣100)+2×200×(138﹣120)≥8160,解得:z≥108.答:乙种商品最低售价为每件108元.15.。
浙教版2022-2023学年八上数学第3章 一元一次不等式专题一次不等式的实际应用培优测试卷解析版

浙教版2022-2023学年八上数学第3章 一元一次不等式专题一次不等式的实际应用 培优测试卷(解析版)解答题1.学校为美化环境,计划购进菊花和绿萝共30盆,菊花每盆16元,绿萝每盆8元,若购买菊花和绿萝的总费用不超过 400 元,则最多可以购买菊花多少盆?【答案】解:设需要购买菊花 x 盆,则需要购买绿萝 (30−x) 盆,则 16x +8(30−x)≤400 ,解之得: x ≤20 .答:最多可以购买菊花 20 盆.2.一医疗用品厂用于生产的全部劳力为450个工时,原料为400个单位,生产一盒试纸要使用15个工时、20个单位的原料,售价为80元;生产一盒口罩要使用10个工时、5个单位的原料,售价为45元.在劳力和原料的限制下合理安排生产试纸、口罩的盒数,可以使试纸和口罩总售价尽可能高.请你用你所学过的数学知识分析,总售价是否可能达到2200元?【答案】解:设试纸x 个,口罩y 个,总售价为z ,∴z=80x +45y =5(16x +9y )①根据劳力和原材料的限制,x 和y 应满足15x +10y≤450,20x +5y≤400整理得3x +2y≤90②4x +y≤80③当总售价z =2200时,由①得16x +9y =440④③×9得36x +9y≤720⑤⑤−④得20x≤720−440解之:x≤14;②×92得272x +9y≤405⑥ ④−⑥得52x≥440−405, 解之:x≥14∴x=14,解之:y =24当x =14,y =24时,有3x +2y =90,4x +y =80满足工时和原料的约束条件,此时恰有总售价z =80×14+45×24=2200(元)答:只需安排生产试纸14个、口罩24个,就可达到总售价为2200元.3.为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A 、B 两种型号家用净水器160台,A 型号家用净水器进价是1500元/台,售价是2100元/台;B 型号家用净水器进价是3500元/台,售价是4300元/台.为保证售完这160台家用净水器的利润不低于116000元,求A 型号家用净水器最多能购进多少台?(注:利润=售价-进价)【答案】解:设能购进A 型号家用净水器x 台.600x + 800(160 - x)≥116000解得 x ≤ 60 .答:A 型号家用净水器最多能购进 60 台.4.在“扶贫攻坚”活动中,城南中学计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5020元,通过计算得出共有几种选购方案?【答案】解:①设乙种物品单价为x 元, 则甲种物品单价为(x+10)元,由题意得:500x+10=450x,解得x=90.经检验,x=90是方程的解,∴甲种物品的单价为100元,乙种物品的单价为90元。
中学初一数学一元一次不等式培优.doc

初一数学一元一次不等式培优(最新)一、选择题x≥3 0,1.不等式组 x3 的所有整数解之和是()2A 、9B 、12C 、 13D 、 152.如果不等式组2x1 3(x1)x m的解集是 x < 2,那么 m 的取值范围是()A 、 m=2B 、 m >2C 、 m < 2D 、 m ≥23.如果 ba 0,那么()1 1 B 、1 11 1 D 、baA 、babC 、baa4.如果 m <n < 0,那么下列结论中错误的是( )A 、1 1B 、- m >- nC 、 m - 9< n - 9D 、m> 1nmn5.方程组x y a,0, y 0 ,则 a 的取值(x y的解 x 、 y 适合 x)2a 1A 、 a1 B 、 a1C 、 1 a1 D 、 a1336.如果 0 x 1 ,则下列不等式成立的()A 、 x x21 B 、 x2x1 C 、1x x 2D 、1x 2 xxx x x7.某射击运动员在一次比赛中前 6 次射击共中 52 环 ,如果他要打破 89 环 (10 次射击 )的记录,第七次射击不能少于()环(每次射击最多是 10环)A 、 5B 、 6C 、 7D 、 8x 15x 3, 28.关于 x 的不等式组2x 2x a3只有 4 个整数解,则 a 的取值范围是( )14 14 14 14 A 、- 5≤ a <-B 、- 5≤ a ≤-C 、- 5<a ≤-D 、- 5<a<-33339.已知关于 x 的不等式组x a b5,则 b的值为 ( 2x a的解集为 3 x)2b 1a A . -21 C .-41B .D .2410.某城市的一种出租车起步价是 7 元(即在 3km 以内的都付 7 元车费),超过 3km 后,每增加 1km 加价 1.2 元(不足 1km 按 1km 计算),现某人付了 14.2 元车费,求这人乘的最大 路程是( ) A .10kmB . 9 kmC . 8kmD . 7 km二、填空题ax 2y 1,x 3, 则不等式 bx 2a 0 的解集是 ________.已知关于 x1.方程组3y的解是y b, 2x 0的不等式 x - 2a <3 的最大整数解- 5,则 a 的取值范围 __________.2( x 1) 3(x 2)6, ①2.关于 x 的不等式组x a恰好有两个整数解,那么a 的取值范围是1,②2_________.3.若不等式xa x a 1 的解集与 x < 6 的解集相同,则 a 的取值为 ___12_______3 24.若关于 x ,y 的二元一次方程组 3xy1 a的解满足 x+y < 2,则 a 的取值范围为 a < 4 .x3y35.某中学有若干名学生住宿,若每间宿舍住 4 人,则有 20 人没有宿舍住;若每间住 8 人,则有一间宿舍住不满,求住宿舍的学生人数为_____人 .6.已知: 3(5x 2) 5 4x 6( x1) ,化简: 3x 1 1 3x 的结果是 _______________.已知不等式 6x2 3x 4 和2x11 x 1同时成立,则 x 的整数解为 _________.323x y 2k,1,且 y 1,则整数 k 的个数是 _______.能使不等式 1( 3x7.方程组x的解满足 x2 y 32 - 1)-( 5x -2)> 1成立的 x 的最大整数值是 _______.45x2 3x 4x 3(x 2)48.不等式组 x8x ,的解集是 ___________.已知不等式组 a 2x的解集3x13是 1 ≤x < 2,则 a = ______.9.已知方程组3x y k 1x 3 y 的解为 x 、 y ,且 2< k < 4,则 x - y 的取值范围是 _________. 若32x a 1的解集是1 x 1,则 (a 1)(b 1) 的值等于 _______.不等式组2b 3x10.某种药品的价格第一年上升了 10%,第二年下降了 (m -5)%(m > 5)后,仍不低于原价,则m 的值应为 ________.1 x 1 2m11.已知 2x -y = 0,且 x - 5> y ,则 x 的取值范围是 ________.不等式组 3的解集2x m6是 x 6m 3 ,则 m 的取值范围是 __________.12.若不等式组x ax a 1x a 无解,那么不等式组x a的解集是 ________________.113.某厂生产一种零件,固定成本为 2 万元,每个零件成本 3 元,售价 5 元,应缴纳税金为总 销售额的 10%,若要使利润超过固定成本,至少销售 个 . 14.若不等式组x mn 3 x5 ,求不等式 mx n 的解集为 _______________.x m的解是n15.. x.yx y a3 0,化简已知关于的方程组2x y的 解 满 足 x y5a| a | | 3 a | =.a b bd ,已知 11 b ,则 b +d 的值为 _________16.对于整数 a ,b ,c ,d ,定义ac d 3d c4117.若不等式组x > 2( x 3)的整数解是关于 x 的方程 2x4 ax 的根,则 a=;已2x 3<1知 3x 4≤ 6 2( x 2) ,则 x 1 的最小值等于.三、解答题1.某体育用品商场采购员要到厂家批发购进篮球和排球共 100 只,付款总额不得超过 11 815 元.已知两种球厂家的批发价和商场的零售价如右表,试解答下列问题: (1)该采购员最多可购进篮球多少只?(2)若该商场把这 100 只球全部以零售价售出,为使商场获得的利润不低于 2580 元,则采购员至少要购篮球多少只,该商场最多可盈利多少元?品名 厂家批发价(元 / 只)商场零售价(元 / 只)篮球 130 160排球1001202.某校为了奖励在数学竞赛中获奖的学生 ,买了若干本课外读物准备送给他们.如果每人送 3 本 ,则还余 8 本 ; 如果前面每人送5 本 ,最后一人得到的课外读物不足3 本 .设该校买了m 本课外读物 ,有 x 名学生获奖 ,请解答下列问题:(1) 用含 x 的代数式表示 m;(2) 求出该校的获奖人数及所买课外读物的本数.3.某厂有甲、 乙两种原料配制成某种饮料, 已知这两种原料的维生素 C 含量及购买这两种原料的价格如下表:原料甲种原料乙种原料维生素 C 及价格维生素 C/(单位 / 千克)600 100原料价格 / (元 / 千克)8 4现配制这种饮料10 千克,要求至少含有4200 单位的维生素C,并要求购买甲、乙两种原料的费用不超过72 元,(1)设需用x千克甲种原料,写出x应满足的不等式组。
一元一次不等式培优带答案

初一数学培优讲义—不等式(答案)一、例题选讲例1、已知关于x的方程:17834-=-xmx,当m为某些负整数时,方程的解为负整数,试求负整数m的最大值。
解:原方程化简整理得:12141214+=-=xmmx,可得由于m为负整数,所以x214必为小于-1的负整数所以4154211214-<-<∴-<xxx,即,而要使x214为负整数,x必是21的倍数,所以x的最大值为-21由于当x取最大值时,m也取得最大值,所以m的最大值为-3例2、已知m、n为实数,若不等式(2m-n) x+3m-4n<0的解集为94 >x,求不等式 (m-4n) x+2m-3n>0 的解。
解:由(2m-n) x+3m-4n<0得:(2m-n) x<4n-3m,由于它的解集为94>x,所以有⎪⎩⎪⎨⎧=--<-(2)94234(1)2nmmnnm由(2)得mn87=代入(1)得 m<0把mn87=代入(m-4n) x+2m-3n>0得8525mxm>-∵m<0 ∴41->x所以,不等式(m-4n) x+2m-3n>0 的解集为41->x例3、解不等式:(1) (2x+1)2-7<(x+m)2+3x (x-1)(2)1324≤---xx解:(1) 原不等式可化为:(7-2m) x<m2+6∴当m<27即7-2m>0时,解为x<mm2762-+当m>27即7-2m<0时,解为x>mm2762-+当m=27即7-2m=0,m2+6=4118时,解为一切实数。
(2)4;423;23234324>≤<≤--xxxxxx分为三段:的取值范围零点分段法,可把,由和的零点分别是与当x23≤时,原不等式可化为 -x+4+2x-3≤1,解得x≤0当423≤<x时,原不等式可化为-x+4-2x+3≤1,解得x≥2所以,原不等式的解为2≤x≤4当x>4时,原不等式可化为x-4-2x+3≤1,解得x≥-2 所以,原不等式的解为x>4综上所述,原不等式的解集为x≤0 或x≥2例4、先阅读下面的例题,再解答问题:解不等式(3x-2)(2x+1)>0.解:由有理数的乘法法则“两数相乘,同号得正”可得①或②解不等式组①,得x>; 解不等式组②,得x<-, 所以(3x-2)(2x+1)>0的解集是x>或x<-.依据上面的方法,解不等式<0.解:依据题意可列出不等式组①或②解不等式组①,得不等式组无解; 解不等式组②,得-<x<-.所以不等式<0的解集是-<x<-.例5、一玩具工厂用于生产的全部劳力为450个工时,原料为400个单位。
(完整word)一元一次不等式(组)与二元一次方程(组)结合培优资料

一元一次不等式(组)与方程(组)的结合培优资料考点·方法·破译1.进一步熟悉二元一次方程组的解法,以及一元二次不等式组的解法.2.综合运用一元一次不等式组和二元一次方程组解决一些典型的实际问题.经典·考题·赏析【例1】求方程3x +27=17的正整数解.【解法指导】一般地,一个二元一次方程有无数个解,但它的特殊解是有限个,如一个二元一次方程的正整数解,非负整数解都是有限个.求不定方程的正(非负)整数解时,往往借助不等式,整数的奇偶性等相关知识来帮助求解.解:将方程变形为2y =17-3x 即2317x y -= ∵y >0 ∴2317x ->0 ∴x <317即x <325 又∵y 为正整数(即2317x -为整数) ∴17-3x 为偶数∴x 必为奇数∴x =1,3,5当x =1时,7213172317=⨯-=-=x y 当x =3时,4233172317=⨯-=-=x y 当x =5时,1253172317=⨯-=-=x y故原方程的正整数解为错误! 或错误! 或错误!【变式题组】01.求下列各方程的正整数解:⑴2x +y =10(2) 3x +4y =2102.有10个苹果,要分给两个女孩和一个男孩,要求苹果不得切开,且两个女孩所得的苹果数相等,每个孩子都有苹果吃,问有哪几种分法?【例2】足球联赛得分规定如下:胜1场得3分,平1场得1分,负1场得0分•某队在足球联赛的4场比赛中得6分,这个队胜了几场,平了几场,负了几场?【解法指导】本题中,所有的等量关系只有两个,而未知量有三个•因而所列方程的个数少于未知数的个数,即为不定方程组,但每个未知数量的数目必为非负整数•因此,此题的实质就是滶不定方程的非负整数解的问题.此方程组有两个方和,三个未知数,解法仍然是消元,即消去某一个未知数后,变为二元一次方程,再仿照例1的解法施行.解:设该队胜了x场,平了y场 ,负了z场,依题意可得:错误!②-①得:2x-z=2 ③变形得:z=2x-2∵0≤z≤2∴0≤2x-2≤2即1≤x≤2又x为正整数∴x=1,2相应地,y=3,0 z=0,2答:这个队胜了1场,平了3场,或胜了2,负了2场.【变式题组】01.(佳木斯)为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么可能购买甲种笔().A.11支B.9支C.7支D.5支02.一旅游团50人到一旅舍住宿,旅舍的客户有三人间、二人间、单人间三种•其中三人间的客房每人每晚20元,二人间的客房每人每晚30元,单人间的客房每人每晚50元.(1)若旅游团共住满了20间客房,问三种客房各住了几间?怎样住消费最低?(2)若该旅游团中,夫妻住二人间,单身住三人间,小孩随父母住在一起,现已知有小孩4人(每对夫妻最多只带1个小孩),单身30人,其中男性17人,有两名单身心脏病患者要求住单人间,问这一行人共需多少间客房?【例3】已知:关于x、y的方程组错误!若x>y,求a的取值范围.【解法指导】解本题的指导思想就是构建以a为未知数的不等式•解之即得a的取值范围,构建不等式的依据就是x>y,而解方程组即可用a的代数式分别表示x和y,进而可得不等式.解:解方程组错误!得错误!∵x>y∴2a+1>a-2 解得a>-3故a的取值范围是a>-3.【变式题组】01.已知:关于x的方程3x-(2a-3) =5x+(3a+6)的解是负数,则a的取值范围是_____.02.已知:关于x、y的方程组错误!的解为非负数.(1)求a的取值范围;(2)化简|4a+5|-|a-4|.03.当m 为何值时,关于x 的方程2153166--=--m x m x 的解大于1?4.已知方程组错误! 的解x 、y 都是正数,且x 的值小于y 的值,求m 的取值范围.【例4】(凉州)若不等式{x -a >2,b -2x >0 的解集是-1<x <1,求(a +b )2009的值. 【解法指导】解此不等式组得a +2<x <2b ,而依题意,该不等式的解集又是-1<x <1,而解集是唯一的,因此两解集的边界点分别“吻合”,从而得两等式即得方程组,解之可得a 、b 之值.解:解不等式组错误! 得a +2<x <2b 又∵此不等式组的解集是-1<x <1∴ 错误! 解设错误!∴(a +b )2009=(-1)2009=-1【变式题组】 01.若错误! 的解集为-1<x <2,则a =___________,b =_____________.02.已知:关于x 的不等式组错误!的解集为3≤x <5,则a b 的值为( ) A .-2 B .21- C .-4 D . 41- 03.若关于x 的不等式组错误! 的解集为x <2,则a 的取值范围是___________.04.已知:不等式组错误! 的解庥为-1<x <2,求(a +b )2008的值.【例5】(永春)商场正在销售“福娃"玩具和徽章两种奥运商品,已知购买1盒“福娃”玩具和2盒徽章共需145元;购买2盒“福娃”玩具和3盒徽章共需280元•(1)一盒“福娃"玩具和一盒徽章的价格各是多少元?(2)某公司准备购买这两种奥运商品共20盒送给幼儿园(要求每种商品都要购买),且购买金额不能超过450元,请你帮该公司设计购买方案•【解法指导】本题属材料选择类的方程与不等式结合的实际应用题,但方程组与不等式组是分开的•分析可知:第(1)问只需依照题目主干所提供的两个等量关系即可列出二元一次方程组•第(2)问由题目所给不等关系“购买金额不能超过450元”及第(1)问所求出的数据列出不等式,从而求解•解:(1)设一盒“福娃"玩具和一盒徽章的价格分别为x元和y元.依题意,得错误!解得错误!答:一盒“福娃”玩具和一盒徽章的价格分别是125元和10元.(2)设购买“福娃”玩具m盒,则购买徽章(20-m)盒.由题意,得125m+10(20-m)≤450,解得m≤2。
第3章 一元一次不等式 浙教版数学八年级上册培优试卷(含答案)

浙教版八年级上册第三章一元一次不等式培优一、选择题1.若a>b,则下列各式一定成立的是( )A.a+1<b+1B.―a>―b C.a―2<b―2D.a3>b32.如图,天平右盘中每个砝码的质量都是1g,物体A的质量为m(g),则m的取值范围在数轴上可表示为( )A.B.C.D.3.不等式组x+1>02x≤2的解集在数轴上用阴影表示正确的是( )A.B.C.D.4.实数a,b,c在数轴上的对应点的位置如图所示,下列结论正确的是( )A.a>c>b B.c―a>b―a C.a c2<b c2D.a+b>05.在数学活动课中,小俞同学将某商场促销活动的信息列出不等式为0.7×(2x―100)<1000(其中x为某一商品的定价,单位:元),那么该商场促销活动的信息是( )A.买两件该商品可减100元,再打3折,最后不到1000元B.买两件该商品可打3折,再减100元,最后不到1000元C.买两件该商品可减100元,再打7折,最后不到1000元D.买两件该商品可打7折,再减100元,最后不到1000元6.如图所示,运行程序规定:从“输入一个值x”到“结果是否>79”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是( )A.x>9B.x≤19C.9<x≤19D.9≤x≤197.若关于x 的不等式组4―(x ―2)≥33x ―a >2x有且只有4个整数解,则a 的取值范围是( )A .―1≤a <0B .―1<a ≤0C .0<a ≤1D .0≤a <18.若x 为实数,则[x ]表示不大于x 的最大整数,例如[1,6]=1,[π]=3,[―2,82]=―3等.[x ]+1是大于x 的最小整数,则方程6x ―3[x ]+9=0的解是( )A .x =―83B .x =―196C .x =―72或x =―3D .x =―83或x =―1969.已知三个实数a ,b ,c 满足a ―2b ―c =0,a +2b ―c <0,则( )A .b <0,b 2+ac ≤0B .b <0,b 2+ac ≥0C .b >0,b 2+ac ≤0D .b >0,b 2+ac ≥010. 已知关于x 的分式方程mx(x ―2)(x ―6)+2x ―2=3x ―6无解,且关于y 的不等式组m ―y >4y ―4≤3(y +4)有且只有三个偶数解,则所有符合条件的整数m 的乘积为( )A .1B .2C .4D .8二、填空题11.若(m ―1)x >(m ―1)的解集是x <1,则m 的取值范围是 ;12.一罐饮料净重300g ,罐上标注有“蛋白质含量≥0.5%”,其中蛋白质的含量至少为 g .13.若关于x 的不等式组x <1x ≤a 的解集是x <1,则a 的值可以是 (写出一个即可).14.关于x 的方程k ―2x =3(k ―2)的解为非负数,且关于x 的不等式x ―2(x ―1)≤32k +x 3≥x 有解,求符合条件的所有整数k 的值的积为 .15.若关于x 的不等式组―6<x <2x ―m <m无解,那么m 的取值范围是 16.对非负实数x“四舍五入”到个位的值记为<x >,即:当n 为非负整数时,如n ﹣12≤x <n+12,则<x >=n .如:<0.48>=0,<3.5>=4.如果<x >=97x ,则x = .三、解答题17.课堂上,老师设计了“接力游戏”,规则:一列同学每人只完成解不等式的一步变形,即前一个同学完成一步,后一个同学接着前一个同学的步骤进行下一步变形,直至解出不等式的解集.请根据下面的“接力游戏”回答问题.接力游戏老师:3x +12―1>5x ―43甲同学:3(3x +1)―6>2(5x ―4)乙同学:9x+3―6>10x―8丙同学:9x―10x>―8―3+6丁同学:―x>―5戊同学:x>5任务一:①在“接力游戏”中,乙同学是根据______进行变形的.A.等式的基本性质B.不等式的基本性质C.乘法对加法的分配律②在“接力游戏”中,出现错误的是______同学,这一步错误的原因是______.任务二:在“接力游戏”中该不等式的正确解集是______.任务三:除纠正上述错误外,请你根据平时的学习经验,针对解不等式时还需要注意的事项给同学们提一条建议.18.解不等式1―x3―x<3―x+24.并把解集表示在数轴上.19.解不等式组:5x―6≤2(x+2) x4―1<x―3320.如图,点A,B均在数轴上,点B在点A的右侧,点A对应的数字是―4,点B对应的数字是m.(1)若AB=2,求m的值;(2)将AB线段三等分,这两个等分点所对应数字从左到右依次是a1,a2,若a2>0,求m的取值范围.21.如图所示的是某大院窗格的一部分,其中“O”代表窗格上所贴的剪纸,设第x个窗格上所贴“O”的个数为y.(1)填写下表.x12345xy581117(用含x的式子表示)(2)若第x个窗格上所贴的“O”的个数大于50,求x的取值范围.22.如图,在平面直角坐标系xOy中,已知A(1,a),B(b,3),E(3―a,0),其中a,b满足|a―5|+b―4=0.平移线AB段得到线段CD,使得C,D两点分别落在y轴和x轴上.(1)①点A的坐标是____________;点B的坐标是____________;②求三角形OCD的面积.(2)将点E向下移动1个单位长度得到点F,连接FC,FD,Q(m,0)是x轴负半轴上一点.若三角形QCD 的面积不小于三角形FCD的面积,求m的取值范围.23.如图,在平面直角坐标系中,三角形ABC的三个顶点的坐标分别为A(a,0),B(0,b),C(2,4),且2a+b+10+|3a―2b+8|=0.(1)求a,b的值;,求t的取值范围;(2)点D(t,0)为x轴上一点,且S三角形ABD≤13S三角形ABC(3)平移三角形ABC到三角形EFG(其中点A,B,C的对应点分别为点E,F,G),设E(m,n),F (p,q),且满足5m―n=43p―q=4,请直接写出点G的坐标.答案解析部分1.【答案】D 2.【答案】A 3.【答案】C 4.【答案】C 5.【答案】C 6.【答案】C 7.【答案】A 8.【答案】C 9.【答案】B 10.【答案】B 11.【答案】m <112.【答案】1.513.【答案】2(答案不唯一)14.【答案】015.【答案】m ≤―316.【答案】0或79或149.17.【答案】任务一:①C ;②戊;不等式的两边同时乘以―1,不等号的方向没有改变任务二:x <5任务三:去括号时,括号前面是“―”,去括号后,括号的每一项都要变号,或移项要变号18.【答案】x >―219.【答案】0<x ≤10320.【答案】(1)―2(2)m >221.【答案】(1)14,3x +2(2)x >16.22.【答案】(1)①A (1,5),B (4,3),②3(2)m ≤―7223.【答案】(1)a 的值为―4,b 的值为―2(2)―10≤t ≤2(3)G(8,10)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学培优讲义—不等式(答案)
一、例题选讲
4
x m8 x 1
例 1、已知关于x 的方程:37,当m为某些负整数时,方程的解为负整数,试求负整数m的最大值。
4
x m 1,可得 m 4 x 1
解:原方程化简整理得:2121
4 x
因为 m为负整数,所以21必为小于-1的负整数
4
x1, x
21,即x 5 1
所以214 4
4
x
而要使 21为负整数,x必是21的倍数,所以x 的最大值为 -21
因为当 x 取最大值时, m也取得最大值,所以m的最大值为 -3
4
x
例 2、已知 m、n 为实数,若不等式 (2m-n) x+3m-4n<0 的解集为9 ,
求不等式 (m-4n) x+2m-3n>0 的解。
解:由 (2m-n) x+3m-4n<0 得: (2m-n) x<4n-3m ,
2m n 0 (1)
x 4 4n 3m 4
(2) 9 ,所以有2m n 9
因为它的解集为
n 7 m
由(2) 得8 代入(1) 得 m<0
n 7 m 5m x 5m
把8 代入(m-4n) x+2m-3n>0 得 2 8
1 1
x x ∵ m<0 ∴ 4 所以,不等式 (m-4n) x+2m-3n>0 的解集为 4
例 3、解不等式: (1) (2x+1)2-7<(x+m)2+3x (x-1)
(2) x 4 2x 3 1
解: (1) 原不等式可化为: (7-2m) x<m 2 +6
7 m 2 6
∴当 m<2 即 7-2m>0 时,解为 x< 7 2m
7 m 2 6
当 m>2 即 7-2m<0 时,解为 x> 7 2m
7 18
1
当 m=2 即 7-2m=0, m2+6=4 时,解为一切实数。
( 2)
x 4 与 2x 3的零点分别是 4和
3
,由零点分段法,可把
x的取值范
围
2
分为三段: x 3 ; 3 x 4; x 4
2 2
3
当 x 2 时,原不等式可化为-x+4+2x-3 ≤ 1,解得 x ≤0
3 4 根据劳力和原材料的限制,x 和 y 应满足
x
当 2 时,原不等式可化为 -x+4-2x+3 ≤ 1,解得 x≥2
所以,原不等式的解为2≤ x≤ 4 化简为
当 x>4 时,原不等式可化为 x-4-2x+3 ≤ 1,解得 x≥ -2 所以,原不等式的解为x>4
综上所述,原不等式的解集为x ≤ 0 或 x ≥2 及
例 4、先阅读下面的例题, 再解答问题 : 当总售价时,由( *)得
解不等式 (3x-2)(2x+1)>0.
解: 由有理数的乘法法则“两数相乘, 同号得正”
得
可得①或②
得,即
解不等式组① , 得 x> ; 解不等式组② , 得 x<- , 所以 (3x-2)(2x+1)>0 的解集是 x> 或 x<- .
根据上面的方法 , 解不等式<0.
得
解: 根据题意可列出不等式组①或②
解不等式组① , 得不等式组无解 ; 解不等式组② , 得 - <x<- .
得,即所以不等式<0 的解集是 - <x<- .
综合( A)、( B)可得,代入 (3) 求得
例 5、一玩具工厂用于生产的全部劳力为450 个工时,原料为 400 个单位。
生产一个小熊要使用15 个工时、 20
个单位的原料,售价为 80 元;生产一个小猫要使用 10 个工时、 5 个单位的原料,售价为45 元。
在劳力和
当时,有满足工时和原料的约束条件,此时恰有原料的限制下合理安排生产小熊、小猫的个数,可以使小熊和小猫的总售价尽可能高。
请用你所学过的数
2200 元总售价(元)
学知识分析,总售价是否可能达到
答:只需安排生产小熊14 个、小猫24 个,就可达到总售价为2200 元。
解:设小熊和小猫的个数分别为x 和 y,总售价为 z,则( * )
例 6、(选讲)某中学原有教室若干个,每个教室有相等数量的课桌,总课桌数为
539 个。
今年学校新盖教学楼
增加教室 9 个,全校课桌数增至 1080 个,此时每个教室的课桌数仍然相等, 且每个教室的课桌数都比以
前增多,问现在有教室多少个
解: 设现有教室 x 个,则原有教室( x-9 )个,则
1080
与
539
均为自然数,且
1080 ﹥ 539
,由此得 x
x
x 9
x
x 9
为不被 3 整除的大于 9 的偶数因 1080= 23
3
3
5 ,故 x=10, 20, 40. 检验只有 x=20 满足条件。
二、 练习
1、如果 2 、 、1-
m 这三个数在数轴上所对应的点从左到右依次排列,那么
的取值范围 (
)c
m m
m
A .m > 0
B .m > 1
C
.m < 0
D
. 0<m < 1
2
2
2、关于 x 的不等式 3x-a ≤0, 只有两个正整数解 , 则 a 的取值范围是 6≤a<9 .
解: 解不等式 3x-a ≤ 0 得 x ≤ . ∵只有两个正整数解 ,
∴ 2≤ <3. ∴ 6≤ a<9.
3、已知关于 x 的不等式 x - 2a < 3 的最大整数解- 5,则 a 的取值范围 _________.
解: x-2a<3
x<3+2a
由题意可得
在 x<3+2a 这个范围中, x 的最大整数解为 -5
-
5≤3+2a< -4 ∴ - 8≤2a< -7
-
4≤a< -7/2 注意两个 临界点 ,一含一不含。
x a 0
1
4、若不等式组 {3
2x
5 个,则
a 的取值范围是
(
)D
的整数解有
A. a3
B.
a 4
C.
a 3
D.
4 a 3
5 、不等式组 a
1 x a 2
x a 2 ,则 a 的取值范围是(
) D
3
x
5 的解集是 3
A、 a
1 B、 a 3 C、 a
1或 a
3 D、 1 a 3
6. 光源灯具厂工人的工作时间是:每月
25 天,每天 8 小时。
待遇是:按件计酬,多劳多得,每月另加福利工
资 100 元,按月结算。
该厂生产
A 、
B 两种产品,工人每生产一件 A 产品,可得报酬元,每生产一件 B 产品,可
得报酬元,下表记录了工人小明的工作情况:
生产 A 种产品件数
生产 B 种产品件数
总时间(分钟)
1 1 35 3
2
85
根据上表提供的信息,请回答下列问题:
( 1)小明每生产一件 A 种产品,每生产一件 B 种产品,分别需要多少分钟
( 2)如果生产各种产品的数目没有限制,那么小明每月的工资数目在什么范围之内
解 . ( 1)设小明每生产 1 件 A 种产品,每生产 1 件 B 种产品分别需要 a 分钟和 b 分钟,则
a+b=35
3a+2b=85
a=15
解得:
b=20
( 2)设小明每月生产
x 件 A 种产品, y 件 B 种产品( x 、 y 均为非负整数),月工资数目为 S 元,则 15x+20y=25 ×8× 60
S=++100
X
≥ 0, y ≥ 0
y=
即S=+940
≤ x ≤ 800
在 S=+940 中
∵< 0,且 0≤ x ≤800
∴当 x=0 时, S 最大值 =940(元)
当 x=800 时, S 最小值 =×800+940=700(元)
∵生产各种产品的数目没有限制。
∴700≤ S≤940
∴小明每月的工资数目不低于 700 元,而不高于940 元。
7、某“希望小学”为加强信息技术课教学, 拟投资建一个初级计算机房和一个高级计算机房, 每个机房只配置
台教师用机 , 若干台学生用机. 现有厂方提供的产品介绍单一份, 如表 :
型号CZXM CZXN
初级单价 ( 元)100004375
高级单价 ( 元)143758750
1 已知教师配置CZXM系列机型 , 学生配置 CZXN系列机型 , 所有机型均按八折优惠购买. 两个机房购买计算机的钱数
相等 , 并且每个机房购买计算机的钱数不少于20 万元也不超过机
解: 设初、高级机房各能配置学生用机x 台、 y 台 , 则根据题意
21 万元 . 拟建的两个机房各能配置多少台学生用, 得
即
因为 x、y 均为正整数 , 所以 x=55,y=27 或 x=57,y=28.
所以拟建的两个机房( 初级、高级 ) 分别能配置55 台、 27 台学生用机或57 台、 28 台学生用机 .。