一元一次不等式培优训练题
中学初一数学一元一次不等式培优.doc

初一数学一元一次不等式培优(最新)一、选择题x≥3 0,1.不等式组 x3 的所有整数解之和是()2A 、9B 、12C 、 13D 、 152.如果不等式组2x1 3(x1)x m的解集是 x < 2,那么 m 的取值范围是()A 、 m=2B 、 m >2C 、 m < 2D 、 m ≥23.如果 ba 0,那么()1 1 B 、1 11 1 D 、baA 、babC 、baa4.如果 m <n < 0,那么下列结论中错误的是( )A 、1 1B 、- m >- nC 、 m - 9< n - 9D 、m> 1nmn5.方程组x y a,0, y 0 ,则 a 的取值(x y的解 x 、 y 适合 x)2a 1A 、 a1 B 、 a1C 、 1 a1 D 、 a1336.如果 0 x 1 ,则下列不等式成立的()A 、 x x21 B 、 x2x1 C 、1x x 2D 、1x 2 xxx x x7.某射击运动员在一次比赛中前 6 次射击共中 52 环 ,如果他要打破 89 环 (10 次射击 )的记录,第七次射击不能少于()环(每次射击最多是 10环)A 、 5B 、 6C 、 7D 、 8x 15x 3, 28.关于 x 的不等式组2x 2x a3只有 4 个整数解,则 a 的取值范围是( )14 14 14 14 A 、- 5≤ a <-B 、- 5≤ a ≤-C 、- 5<a ≤-D 、- 5<a<-33339.已知关于 x 的不等式组x a b5,则 b的值为 ( 2x a的解集为 3 x)2b 1a A . -21 C .-41B .D .2410.某城市的一种出租车起步价是 7 元(即在 3km 以内的都付 7 元车费),超过 3km 后,每增加 1km 加价 1.2 元(不足 1km 按 1km 计算),现某人付了 14.2 元车费,求这人乘的最大 路程是( ) A .10kmB . 9 kmC . 8kmD . 7 km二、填空题ax 2y 1,x 3, 则不等式 bx 2a 0 的解集是 ________.已知关于 x1.方程组3y的解是y b, 2x 0的不等式 x - 2a <3 的最大整数解- 5,则 a 的取值范围 __________.2( x 1) 3(x 2)6, ①2.关于 x 的不等式组x a恰好有两个整数解,那么a 的取值范围是1,②2_________.3.若不等式xa x a 1 的解集与 x < 6 的解集相同,则 a 的取值为 ___12_______3 24.若关于 x ,y 的二元一次方程组 3xy1 a的解满足 x+y < 2,则 a 的取值范围为 a < 4 .x3y35.某中学有若干名学生住宿,若每间宿舍住 4 人,则有 20 人没有宿舍住;若每间住 8 人,则有一间宿舍住不满,求住宿舍的学生人数为_____人 .6.已知: 3(5x 2) 5 4x 6( x1) ,化简: 3x 1 1 3x 的结果是 _______________.已知不等式 6x2 3x 4 和2x11 x 1同时成立,则 x 的整数解为 _________.323x y 2k,1,且 y 1,则整数 k 的个数是 _______.能使不等式 1( 3x7.方程组x的解满足 x2 y 32 - 1)-( 5x -2)> 1成立的 x 的最大整数值是 _______.45x2 3x 4x 3(x 2)48.不等式组 x8x ,的解集是 ___________.已知不等式组 a 2x的解集3x13是 1 ≤x < 2,则 a = ______.9.已知方程组3x y k 1x 3 y 的解为 x 、 y ,且 2< k < 4,则 x - y 的取值范围是 _________. 若32x a 1的解集是1 x 1,则 (a 1)(b 1) 的值等于 _______.不等式组2b 3x10.某种药品的价格第一年上升了 10%,第二年下降了 (m -5)%(m > 5)后,仍不低于原价,则m 的值应为 ________.1 x 1 2m11.已知 2x -y = 0,且 x - 5> y ,则 x 的取值范围是 ________.不等式组 3的解集2x m6是 x 6m 3 ,则 m 的取值范围是 __________.12.若不等式组x ax a 1x a 无解,那么不等式组x a的解集是 ________________.113.某厂生产一种零件,固定成本为 2 万元,每个零件成本 3 元,售价 5 元,应缴纳税金为总 销售额的 10%,若要使利润超过固定成本,至少销售 个 . 14.若不等式组x mn 3 x5 ,求不等式 mx n 的解集为 _______________.x m的解是n15.. x.yx y a3 0,化简已知关于的方程组2x y的 解 满 足 x y5a| a | | 3 a | =.a b bd ,已知 11 b ,则 b +d 的值为 _________16.对于整数 a ,b ,c ,d ,定义ac d 3d c4117.若不等式组x > 2( x 3)的整数解是关于 x 的方程 2x4 ax 的根,则 a=;已2x 3<1知 3x 4≤ 6 2( x 2) ,则 x 1 的最小值等于.三、解答题1.某体育用品商场采购员要到厂家批发购进篮球和排球共 100 只,付款总额不得超过 11 815 元.已知两种球厂家的批发价和商场的零售价如右表,试解答下列问题: (1)该采购员最多可购进篮球多少只?(2)若该商场把这 100 只球全部以零售价售出,为使商场获得的利润不低于 2580 元,则采购员至少要购篮球多少只,该商场最多可盈利多少元?品名 厂家批发价(元 / 只)商场零售价(元 / 只)篮球 130 160排球1001202.某校为了奖励在数学竞赛中获奖的学生 ,买了若干本课外读物准备送给他们.如果每人送 3 本 ,则还余 8 本 ; 如果前面每人送5 本 ,最后一人得到的课外读物不足3 本 .设该校买了m 本课外读物 ,有 x 名学生获奖 ,请解答下列问题:(1) 用含 x 的代数式表示 m;(2) 求出该校的获奖人数及所买课外读物的本数.3.某厂有甲、 乙两种原料配制成某种饮料, 已知这两种原料的维生素 C 含量及购买这两种原料的价格如下表:原料甲种原料乙种原料维生素 C 及价格维生素 C/(单位 / 千克)600 100原料价格 / (元 / 千克)8 4现配制这种饮料10 千克,要求至少含有4200 单位的维生素C,并要求购买甲、乙两种原料的费用不超过72 元,(1)设需用x千克甲种原料,写出x应满足的不等式组。
第3章 一元一次不等式 浙教版数学八年级上册培优试卷(含答案)

浙教版八年级上册第三章一元一次不等式培优一、选择题1.若a>b,则下列各式一定成立的是( )A.a+1<b+1B.―a>―b C.a―2<b―2D.a3>b32.如图,天平右盘中每个砝码的质量都是1g,物体A的质量为m(g),则m的取值范围在数轴上可表示为( )A.B.C.D.3.不等式组x+1>02x≤2的解集在数轴上用阴影表示正确的是( )A.B.C.D.4.实数a,b,c在数轴上的对应点的位置如图所示,下列结论正确的是( )A.a>c>b B.c―a>b―a C.a c2<b c2D.a+b>05.在数学活动课中,小俞同学将某商场促销活动的信息列出不等式为0.7×(2x―100)<1000(其中x为某一商品的定价,单位:元),那么该商场促销活动的信息是( )A.买两件该商品可减100元,再打3折,最后不到1000元B.买两件该商品可打3折,再减100元,最后不到1000元C.买两件该商品可减100元,再打7折,最后不到1000元D.买两件该商品可打7折,再减100元,最后不到1000元6.如图所示,运行程序规定:从“输入一个值x”到“结果是否>79”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是( )A.x>9B.x≤19C.9<x≤19D.9≤x≤197.若关于x 的不等式组4―(x ―2)≥33x ―a >2x有且只有4个整数解,则a 的取值范围是( )A .―1≤a <0B .―1<a ≤0C .0<a ≤1D .0≤a <18.若x 为实数,则[x ]表示不大于x 的最大整数,例如[1,6]=1,[π]=3,[―2,82]=―3等.[x ]+1是大于x 的最小整数,则方程6x ―3[x ]+9=0的解是( )A .x =―83B .x =―196C .x =―72或x =―3D .x =―83或x =―1969.已知三个实数a ,b ,c 满足a ―2b ―c =0,a +2b ―c <0,则( )A .b <0,b 2+ac ≤0B .b <0,b 2+ac ≥0C .b >0,b 2+ac ≤0D .b >0,b 2+ac ≥010. 已知关于x 的分式方程mx(x ―2)(x ―6)+2x ―2=3x ―6无解,且关于y 的不等式组m ―y >4y ―4≤3(y +4)有且只有三个偶数解,则所有符合条件的整数m 的乘积为( )A .1B .2C .4D .8二、填空题11.若(m ―1)x >(m ―1)的解集是x <1,则m 的取值范围是 ;12.一罐饮料净重300g ,罐上标注有“蛋白质含量≥0.5%”,其中蛋白质的含量至少为 g .13.若关于x 的不等式组x <1x ≤a 的解集是x <1,则a 的值可以是 (写出一个即可).14.关于x 的方程k ―2x =3(k ―2)的解为非负数,且关于x 的不等式x ―2(x ―1)≤32k +x 3≥x 有解,求符合条件的所有整数k 的值的积为 .15.若关于x 的不等式组―6<x <2x ―m <m无解,那么m 的取值范围是 16.对非负实数x“四舍五入”到个位的值记为<x >,即:当n 为非负整数时,如n ﹣12≤x <n+12,则<x >=n .如:<0.48>=0,<3.5>=4.如果<x >=97x ,则x = .三、解答题17.课堂上,老师设计了“接力游戏”,规则:一列同学每人只完成解不等式的一步变形,即前一个同学完成一步,后一个同学接着前一个同学的步骤进行下一步变形,直至解出不等式的解集.请根据下面的“接力游戏”回答问题.接力游戏老师:3x +12―1>5x ―43甲同学:3(3x +1)―6>2(5x ―4)乙同学:9x+3―6>10x―8丙同学:9x―10x>―8―3+6丁同学:―x>―5戊同学:x>5任务一:①在“接力游戏”中,乙同学是根据______进行变形的.A.等式的基本性质B.不等式的基本性质C.乘法对加法的分配律②在“接力游戏”中,出现错误的是______同学,这一步错误的原因是______.任务二:在“接力游戏”中该不等式的正确解集是______.任务三:除纠正上述错误外,请你根据平时的学习经验,针对解不等式时还需要注意的事项给同学们提一条建议.18.解不等式1―x3―x<3―x+24.并把解集表示在数轴上.19.解不等式组:5x―6≤2(x+2) x4―1<x―3320.如图,点A,B均在数轴上,点B在点A的右侧,点A对应的数字是―4,点B对应的数字是m.(1)若AB=2,求m的值;(2)将AB线段三等分,这两个等分点所对应数字从左到右依次是a1,a2,若a2>0,求m的取值范围.21.如图所示的是某大院窗格的一部分,其中“O”代表窗格上所贴的剪纸,设第x个窗格上所贴“O”的个数为y.(1)填写下表.x12345xy581117(用含x的式子表示)(2)若第x个窗格上所贴的“O”的个数大于50,求x的取值范围.22.如图,在平面直角坐标系xOy中,已知A(1,a),B(b,3),E(3―a,0),其中a,b满足|a―5|+b―4=0.平移线AB段得到线段CD,使得C,D两点分别落在y轴和x轴上.(1)①点A的坐标是____________;点B的坐标是____________;②求三角形OCD的面积.(2)将点E向下移动1个单位长度得到点F,连接FC,FD,Q(m,0)是x轴负半轴上一点.若三角形QCD 的面积不小于三角形FCD的面积,求m的取值范围.23.如图,在平面直角坐标系中,三角形ABC的三个顶点的坐标分别为A(a,0),B(0,b),C(2,4),且2a+b+10+|3a―2b+8|=0.(1)求a,b的值;,求t的取值范围;(2)点D(t,0)为x轴上一点,且S三角形ABD≤13S三角形ABC(3)平移三角形ABC到三角形EFG(其中点A,B,C的对应点分别为点E,F,G),设E(m,n),F (p,q),且满足5m―n=43p―q=4,请直接写出点G的坐标.答案解析部分1.【答案】D 2.【答案】A 3.【答案】C 4.【答案】C 5.【答案】C 6.【答案】C 7.【答案】A 8.【答案】C 9.【答案】B 10.【答案】B 11.【答案】m <112.【答案】1.513.【答案】2(答案不唯一)14.【答案】015.【答案】m ≤―316.【答案】0或79或149.17.【答案】任务一:①C ;②戊;不等式的两边同时乘以―1,不等号的方向没有改变任务二:x <5任务三:去括号时,括号前面是“―”,去括号后,括号的每一项都要变号,或移项要变号18.【答案】x >―219.【答案】0<x ≤10320.【答案】(1)―2(2)m >221.【答案】(1)14,3x +2(2)x >16.22.【答案】(1)①A (1,5),B (4,3),②3(2)m ≤―7223.【答案】(1)a 的值为―4,b 的值为―2(2)―10≤t ≤2(3)G(8,10)。
解一元一次不等式专项练习 (80题,附答案)

解一元一次不等式专项练习(80 题、附答案)(1)3(x+2)﹣8≥1﹣2(x﹣1);(2)x ﹣≤2﹣.(3)2(x﹣1)+2<5﹣3(x+1)(4).(5)﹣<1;(6)3﹣(3y﹣1)≥(3+y)(7)x ﹣≥﹣1(8)﹣>﹣1 (9)﹣1≤.(10)﹣3x+2≤8.(11)﹣3x﹣4≥6x+2.(12)﹣8x﹣6≥4(2﹣x)+3.(13)(14)(15).(16)2(x﹣1)<﹣3(1﹣x)(17)≤﹣1 (18)10﹣3(x﹣2)≤2(x+1)(19)﹣2≤.(20)﹣3x>2(21)x >﹣x﹣2(22)3(x+1)<4(x﹣2)﹣3 (23)≤1.(24)≥;(25)﹣>﹣2.(26)5x﹣4>3x+2(27)4(2x﹣1)>3(4x+2)(28)≤(29)﹣2≥.(30)4(x﹣1)+3≥3x;(31)2x﹣3<;(32)≤1.(33)3[x﹣2(x﹣2)]>6+3 (34)(35)(36).(37)3(x+2)﹣8≥1﹣2(x﹣1);(38)>;(39)≤;(40)<.(41)3(2x﹣3)≥2(x﹣4)(42)≥0(43)7(1﹣2x)>10﹣5(4x﹣3)(44).(45)﹣<0;(46)1﹣≤﹣x.(47)5x﹣12≤2(4x﹣3);(48)≥x﹣2.(49)4x﹣2(3+x)<0 (50)﹣≥0.(51)3x﹣2<﹣4(x﹣5);(52)﹣1<<2.(53);(54).(55)5x+15>4x﹣13(56)≤.(57)7(4﹣x)﹣2(4﹣3x)<4x;(58)10﹣4(x﹣3)≥2(x﹣1);(59)3[x﹣2(x﹣2)]>x﹣3(x﹣3);(60)(2x﹣1)+x﹣1+(1﹣2x)≤0;(61)﹣y ﹣;(62).(63)x(x+1)>(x﹣2)2;(64).(65)3(y﹣3)<7y﹣4(66)﹣21<6﹣3x≤9.(67);(68);(69)0.5x+3(1﹣0.2x)≥0.4x﹣0.6;(70)x ﹣<1﹣;(71)2[x﹣(x﹣1)+2]<1﹣x;(72).(73)3x﹣7<5x﹣3;(74).(75)(76)(77)≤.(78)3x﹣9≤0;(79)2x﹣5<5x﹣2;(80)2(﹣3+x)>3(x+2);参考答案:(1)3(x+2)﹣8≥1﹣2(x﹣1),3x+6﹣8≥1﹣2x+2,3x+2x≥1+2﹣6+8,5x≥5,x≥1;(2)x ﹣≤2﹣,6x﹣3(x﹣1)≤12﹣2(x+2),6x﹣3x+3≤12﹣2x﹣4,3x+2x≤8﹣3,5x≤5,x≤1(3)2(x﹣1)+2<5﹣3(x+1)2x﹣2+2<5﹣3x﹣3,2x+3x<5﹣3+2﹣2,5x<2,x,(4),3(1+x)≤2(2x﹣1)+6,3+3x≤4x﹣2+6,3x﹣4x≤﹣2+6﹣3,﹣x≤1,x≥﹣1(5)去分母得,2x﹣3(x﹣1)<6,去括号得,2x﹣3x+3<6,移项、合并同类项得,﹣x<3,把x的系数化为1得,x>﹣3.(6)去分母得,24﹣2(3y﹣1)≥5(3+y),去括号得,24﹣6y+2≥15+5y,移项、合并同类项,﹣11y≥﹣11,把x的系数化为1得,y≤1(7)去分母得,6x﹣2(2x﹣1)≥3(2+x)﹣6去括号得,6x﹣4x+2>6+3x﹣6,移项得,6x﹣8x﹣3x>6﹣6﹣2,合并同类项得,﹣5x>﹣2,把x的系数化为1得,x <﹣,(8)去分母得,6(2x﹣1)﹣4(2x+5)>3(6x﹣1),去括号得,12x﹣6﹣8x﹣20>18x﹣3,移项得,12x﹣8x﹣18x>﹣3+6+20,合并同类项得,﹣14x>23,把x的系数化为1得,x <﹣,(9)分子与分母同时乘以10得,﹣1≤,去分母得,2(2x﹣1)﹣6≤3(5x+2),去括号得,4x﹣2﹣6≤15x+6,移项得,4x﹣15x≤6+2+6,合并同类项得,﹣11x≤14,把x的系数化为1得,x ≥﹣(10)移项合并得:﹣3x≤6,解得:x≥﹣2,(11)移项合并得:9x≤﹣6,解得:x ≤﹣,(12)去括号得:﹣8x﹣6≥8﹣4x+3,移项合并得:﹣4x≥17,解得:x ≤﹣(13)去分母得:4x﹣8>6x+2,移项合并得:﹣2x>10,解得:x<﹣5;(14)去分母得:2x﹣4x+1<3,移项合并得:﹣2x<2,解得:x>﹣1;(15)去分母得:12+3x﹣6≥8x+8,移项合并得:5x≥﹣2,解得:x ≤﹣(16)去括号得,2x﹣2≤﹣3+3x,移项得,2x﹣3x≤﹣3+2,合并同类项得,﹣x≤﹣1把x的系数化为1得,x≥1,(17)去分母得,3(2﹣3x)≤2x﹣1﹣6,去括号得,6﹣9x≤3x﹣7,移项得,﹣9x﹣3x≤﹣7﹣6,合并同类项得,﹣12x≤13,x的系数化为1得,x ≥﹣,(18)去括号得,10﹣3x+6≤2x+2,移项得,﹣3x﹣2x≤2﹣10﹣6,合并同类项得,﹣5x≤﹣24把x的系数化为1得,x ≥﹣,(19)去分母得,2(1﹣5x)﹣24≤3(3﹣x)去括号得,2﹣10x﹣24≤9﹣3x,移项得,﹣10x+3x≤9﹣2+24,合并同类项得,﹣7x≤31,x的系数化为1得,x ≥﹣(20)﹣3x>2,解得:x <﹣;(21)去分母得:x>﹣2x﹣6,解得:x>﹣2;(22)去括号得:3x+3<4x﹣8﹣3,解得:x>14;(23)去分母得:2(2x﹣1)﹣3(5x+1)≤6,去括号得: 4x﹣2﹣15x﹣3≤6,解得: x≥﹣1(24)去分母得,3(x+4)≥﹣2(2x+1),去括号得,3x+12≥﹣4x﹣2,移项、合并同类项得,7x≥﹣14,把x的系数化为1得,x ≥﹣.(25)去分母得,4(x﹣1)﹣3(2x+5)>﹣24,去括号得,4x﹣4﹣6x﹣15>﹣24,移项、合并同类项得,﹣2x>﹣5,把x的系数化为1得,x <(26)移项得,5x﹣3x>2+4,合并同类项得,2x>6,把x的系数化为1得,x>3.(27)去括号得,8x﹣4>12x+6,移项得,8x﹣12x>6+4,合并同类项得,﹣4x>10,把x的系数化为1得,x<﹣.(28)去分母得,3(4x﹣1)≤1﹣5x,去括号得,12x﹣3≤1﹣5x,移项得,12x+5x≤1+3,合并同类项得,17x≤4,把x的系数化为1得,x ≤.(29)去分母得,2(5x+1)﹣24≥3(x﹣5),去括号得,10x+2﹣24≥3x﹣15,移项得,10x﹣3x≥﹣15﹣2+24,合并同类项得,7x≥7,把x的系数化为1得,x≥1(30)去括号得,4x﹣4+3≥3x,移项得,4x﹣3x≤4﹣3,合并同类项得,x≤1,(31)去分母得,3(2x﹣3)<x+1,去括号得,6x﹣9<x+1,移项得,6x﹣x<1+9,合并同类项得,5x<10,x的系数化为1得,x<2,(32)去分母得,2(2x﹣1)﹣(9x+2)≤6,去括号得,4x﹣2﹣9x﹣2≤6,移项得,4x﹣9x≤6+2+2,合并同类项得,﹣5x≤10,x的系数化为1得,x≥﹣2(33)3[x﹣2(x﹣2)]>6+3x解:去小括号,3[x﹣3x+4]>6+3x合并,3[﹣x+4]>6+3x去中括号,﹣3x+12>6+3x移项,合并,﹣6x>﹣6化系数为1,x<1.(34)解:去分母,2(2x﹣5)≤3(3x+1)﹣8x去括号,4x﹣10≤9x+3﹣8x移项合并,3x≤13化系数为1,x ≤.(35)解:去分母,3(2﹣x)﹣3(x﹣5)>2(﹣4x+1)+8 去括号,6﹣9x﹣3x+15>﹣8x+2+8移项合并,﹣4x>﹣11化系数为1,x <.(36)解:利用分数基本性质化小数分母为整数去括号,4x﹣1﹣10x+7>2﹣4x移项合并,﹣2x>﹣4化系数为1,x<2(37)去括号,得:3x+6﹣8≥1﹣2x+2,移项、合并同类项,得:5x≥5,系数化成1得:x≥1;(38)去分母,得:3(x﹣3)﹣6>2(x﹣5),去括号,得:3x﹣9﹣6>2x﹣10,移项、合并同类项得:x>5;(39)去分母,得:6x﹣3(x﹣1)≤12﹣2(x+2),去括号,得:6x﹣3x+3≤12﹣2x﹣4,移项、合并同类项得:5x≤5系数化成1得:x≤1;(40)去分母,得:6x﹣3x<6+x+8﹣2(x+1),去括号,得:6x﹣3x<6+x+8﹣2x﹣2,移项得:6x﹣3x﹣x+2x<6﹣2+8合并同类项得:4x<12系数化成1得:x<3(41)去括号,得6x﹣9≥2x﹣8,移项,得6x﹣2x≥﹣8+9,合并同类项,得4x≥1,两边同除以4,得x ≥,(42)去分母,得4﹣8x≥0,移项得﹣8x≥﹣4,两边同除以﹣8,得x ≤,(43)去括号,得7﹣14x>10﹣20x+15,移项,得﹣14x+20x>10+15﹣7,合并同类项得6x>18,两边同除以6得x>3,(44)去分母,得2x+6<﹣6x﹣3(x+10),去括号,得2x+6<﹣6x﹣3x﹣30,移项,得2x+6x+3x<﹣30﹣6,合并同类项,得11x<﹣36,两边同除以11得x <﹣(45)去分母得:2(2x+1)﹣(5﹣2x)<0,去括号得:4x+2﹣5+2x<0,移项合并得:6x<3,解得:x <,表示在数轴上,如图所示:;(46)去分母得:6﹣2(x﹣1)≤3(2x+3)﹣6x,去括号得:6﹣2x+2≤6x+9﹣6x,移项合并得:﹣2x≤1,解得:x ≥﹣(47)去括号得,5x﹣12≤8x﹣6,移项得,5x﹣8x≤﹣6+12,合并同类项得,﹣3x≤6,x的系数化为1得,x≥﹣2;(48)去分母得,x﹣3≥2(x﹣2),去括号得,x﹣3≥2x﹣4,移项得,x﹣2x≥﹣4+3,合并同类项得,﹣x≥﹣1,x的系数化为1得,x≤1(49)去括号得4x﹣6﹣2x<0,移项、合并同类项得2x<6,系数化为1得x<3;这个不等式的解集在数轴上表示如图1:(50)去分母得3(2x﹣3)﹣4(x﹣2)≥0,去括号得6x﹣9﹣4x+8≥0,移项、合并同类项得2x≥1,系数化为1得x≥0.5(51)3x﹣2<﹣4(x﹣5);去括号得3x﹣2<﹣4x+20,移项得3x+4x<20+2合并同类项得7x<22未知项的系数化为1得x <,(52)﹣1<<2,去分母得﹣3<2﹣x<6,移项得﹣3﹣2<﹣x<6﹣2,合并同类项得﹣5<﹣x<4未知项的系数化为1得﹣4<x<5(53)去分母得,2(x﹣1)﹣3(x+4)>﹣12,去括号得,2x﹣2﹣3x﹣12>﹣12,移项、合并同类项得﹣x<2,化系数为1得x<﹣2.(54)去分母得,(x﹣2)﹣3(x﹣1)<3,去括号得,x﹣2﹣3x+3<3,移项、合并同类项得﹣2x<2,化系数为1得x>﹣120.解:(55)移项,得:5x﹣4x>﹣13﹣15,合并同类项,得:x>﹣28;(56)去分母,得:2(2x﹣1)≤3x﹣4,去括号,得:4x﹣2≤3x﹣4,移项,得:4x﹣3x≤﹣4+2,合并同类项,得:x≤﹣2(57)去括号得,28﹣7x﹣8+6x<4x,移项得,﹣7x+6x﹣4x<8﹣28,合并同类项得,﹣5x<﹣20,系数化为1得,x>4.(58)去括号得,10﹣4x+12≥2x﹣2,移项得,﹣4x﹣2x≥﹣2﹣10﹣12,合并同类项得,﹣6x≥﹣24,系数化为1得,x≤4.(59)去括号得,3x﹣6x+12>x﹣3x+9,移项得,x﹣6x﹣x+4x>9﹣12,合并同类项得,﹣3x>﹣3,系数化为1得,x<1.(60)去分母得,(2x﹣1)+3x﹣3+(1﹣2x)≤0,去括号得,2x﹣1+3x﹣3+1﹣2x≤0,移项得,2x+3x﹣2x≤3+1﹣1,合并同类项得,3x≤3,系数化为1得,x>1.(61)去分母得,﹣10y﹣5(y﹣1)≥20﹣2(y+2),去括号得,﹣10y﹣5y+5≥20﹣2y﹣4,移项得,﹣10y﹣5y+2y≥20﹣4﹣5,合并同类项得,﹣13y≥11,系数化为1得,y ≤﹣.(62)去分母得,2(3x+2)﹣(7x﹣3)>16,去括号得,6x+4﹣7x+3>16,移项得,6x﹣7x>16﹣4﹣3,合并同类项得,﹣x>9,系数化为1得,x<﹣9(63)由原不等式,得x2+x>x2﹣4x+4,移项、合并同类项,得5x>4,不等式两边同时除以5,得x >,即原不等式的解集是x >;(64)由原不等式,得﹣17x+1<12﹣10x,移项、合并同类项,得﹣7x<11,不等式两边同时除以﹣7(不等号的方向发生改变),得x >﹣,即原不等式的解集是x >﹣(65)去括号,得:3y﹣9<7y﹣4,移项,得:3y﹣7y<9﹣4,即﹣4y<5,;(66)﹣21<6﹣3x≤9两边同时减去6再除以﹣3,不等号的方向改变,得:﹣1≤x<9(67)去分母得,2(1﹣2x)≥4﹣3x,去括号得,2﹣4x≥4﹣3x,移项得,﹣4x+3x≥4﹣2,合并同类项得,﹣x≥2,化系数为1得,x≤﹣2;(68)去分母得,2(x+4)﹣3(3x﹣1)<6,去括号得,2x+8﹣9x+3<6,移项得,2x﹣9x<6﹣8﹣3,合并同类项得,﹣7x<﹣5,化系数为1得,x >;(69)去括号得,0.5x+3﹣0.6x≥0.4x﹣0.6,移项得,0.5x﹣0.6x﹣0.4x≥﹣0.6﹣3,合并同类项得,﹣0.5x≥﹣3.6,化系数为1得,x≤7.2.(70)去分母得,6x﹣3x﹣(x+8)<6﹣2(x+1),去括号得,6x﹣3x﹣x﹣8<6﹣2x﹣2,移项得,6x﹣3x﹣x+2x<6﹣2+8,合并同类项得,4x<12,化系数为1得,x<3;(71)去括号得,2x﹣2x+2+4<1﹣x,移项得,2x﹣2x+x<1﹣2﹣4,合并同类项得,x<﹣5;(72)去分母得,2(2x﹣1)﹣3(5x+1)≤6,去括号得,4x﹣2﹣15x﹣3≤6,移项得,4x﹣15x≤6+2+3,合并同类项得,﹣11x≤11,化系数为1得,x≥﹣1(73)移项合并得:﹣2x<4,解得:x>﹣2;(74)去分母得:3(x+5)﹣2(2x+3)≥12,去括号得:3x+15﹣4x﹣6≥12,移项合并得:﹣x≥3,解得:x≤﹣3(75)原不等式的两边同时乘以6,得2x+6>21﹣3x,移项,合并同类项,得5x>15,不等式的两边同时除以5,得x>3,∴原不等式的解集是x>3.(76)原不等式的两边同时乘以6,得8x+2≤14﹣x,移项,合并同类项,得9x≤16,不等式的两边同时除以9,得x≤;所以,原不等式的解集是x≤;(77)原不等式的两边同时乘以6,得8﹣2x≤9,移项,合并同类项,得﹣2x≤1,不等式的两边同时除以﹣2,得x≥﹣,所以,原不等式的解集是x≥﹣(78)移项得,3x≤9,x的系数化为1得,x≤3.(79)移项得,2x﹣5x<﹣2+5,合并同类项得,﹣3x<3,把x的系数化为1得,x>﹣1.。
人教版七年级数学下册-一元一次不等式应用题-培优练习(含答案)

人教版七年级数学下册-一元一次不等式应用题-培优练习(含答案)1.某公司要运送一批参展货物去参加2011年西安世界园艺博览会,使用几辆载重为8吨的汽车。
如果每辆汽车只装4吨,则剩下20吨货物;如果每辆汽车装满8吨,则最后一辆汽车不空也不满。
求共有多少辆汽车运货?2.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,其中西红柿和西兰花的批发价和零售价如下表所示:蔬菜品种 | 批发价(元/kg) | 零售价(元/kg) |西红柿。
| 3.6.| 5.4.|西兰花。
| 8.| 14.|1)第一天该经营户批发了西红柿和西兰花两种蔬菜共300kg,用去了1520元。
这两种蔬菜当天全部售完后,一共能赚多少钱?请列方程组求解。
2)第二天该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发多少千克的西红柿?3.“六一”儿童节将至,益智玩具店准备购进甲、乙两种玩具。
若购进甲种玩具80个,乙种玩具40个,需要800元;若购进甲种玩具50个,乙种玩具30个,需要550元。
1)求益智玩具店购进甲、乙两种玩具每个需要多少元?2)若益智玩具店准备1000元全部用来购进甲、乙两种玩具,计划销售每个甲种玩具可获利润4元,销售每个乙种玩具可获利润5元,且销售这两种玩具的总利润不低于600元,那么这个玩具店需要最多购进乙种玩具多少个?4.XXX为学校购买运动会的奖品后,回学校向后勤XXX 老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元。
”XXX算了一下,说:“你肯定搞错了。
”1)XXX为什么说他搞错了?试用方程的知识给予解释。
2)XXX连忙拿出购物,发现的确弄错了,因为他还买了一个笔记本。
但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?5.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元。
初中数学一元一次不等式(组)单元综合课后能力提升培优训练题2(附答案) (1)

初中数学一元一次不等式(组)单元综合课后能力提升培优训练题21(附答案) 1.如图,数轴上表示某不等式组的解集,则这个不等式组可能是( )A .2010x x +>⎧⎨->⎩B .2010x x +>⎧⎨-<⎩C .2010x x +<⎧⎨->⎩D .2010x x +<⎧⎨-<⎩2.已知关于x 的不等式组 12x x m +≥⎧⎨-<⎩有3个整数解,则m 的取值范围是( )A .34m <≤B .4m ≤C .34m ≤<D .3m ≥3.不等式组31x x >⎧⎨≤⎩的解集在数轴上表示为( ) A .B .C .D .4.已知不等式2x−a<0的正整数解恰是1,2,3,则a 的取值范围是() A .6<a<8B .6⩽a ⩽8C .6⩽a<8D .6<a ⩽85.已知点()3,2P a a --关于原点对称的点在第四象限,则a 的取值范围在数轴上表示正确的是( ). A . B . C .D .6.实数的平方根分别是和,且,则不等式的解集为( ) A .B .C .D .7.不等式组解集为 -1 ≤ x < 1 ,下列在数轴上表示正确的是( ) A .B .C .D .8.在一次“交通安全法规”如识竞赛中,竞赛题共25道题,每道题都给出4个答案,其中只有一个答案正确,选对得3分,不选或错选倒扣1分,得分不低于45分得奖,那么得奖者至少应选对的题数为( ) A .17B .18C .19D .209.甲种蔬菜保鲜适宜的温度是o o 2C~6C ,乙种蔬菜保鲜适宜的温度是o o 3C~8C ,将这两种蔬菜放在一起同时保鲜,适宜 的温度是( ) A .o o 2C~3CB .o o 2C~8CC .o o 3C~6CD .o o 6C~8C10.若a>b,则下列不等式中正确的是:( ) A .a -b<0B .-5a <-5bC .a+8<b -8D .ac 2≤bc 211.若a b >,则下列不等式成立的是( ) A .22a b -<-B .22a b >C .22a b ->-D .22a b< 12.已知关于的不等式组的解集中任意一个的值均不在...的范围内,则的取值范围是( ) A .或B .C .D .或13.已知对||3x =,||2y =,且20x y ++>,则2x y -=______.14.在平面直角坐标系中,点(-7+m,2m+1) 在第三象限,则m 的取值范围是_________. 15.12(x-m)>3-32m 的解集为x>3,则m 的值为____. 16.已知关于x 的不等式(2)50m n x m n -+->的解集1x <,则关于x 的不等式mx n >的解集是__________.17.不等式2552n n --<的所有正整数解是______.18.如图,已知抛物线y=x 2+bx+c 经过点(0,﹣3),请你确定一个b 的值,使该抛物线与x 轴的一个交点在(1,0)和(3,0)之间.你确定的b 的值是________.19.已知关于x 的方程 2x+4 = m+x 的解为负数,则m 的取值范围是____. 20.不等式2x+5≤12的正整数解是___________21.已知0, 0a b <<,且a b <,那么ab ________b 2(填“>”“<”“=”).22.不等式2(x ﹣3)≤2a +1的自然数解只有0、1、2三个,则a 的取值范围是_____. 23.如果关于x 的不等式20.53x ->2a与关于x 的不等式5(1-x )<a -20的解集完全相同,则它们的解集为x________.24.一只纸箱质最为1kg,当放入一些苹果(每个苹果的质量为0.3kg),箱子和苹果的总质量不超过10kg,求这只纸箱内最多能装()个苹果A.30 B.31 C.32 D.3325.某单位计划组织员工到地旅游,人数估计在1025之间,甲乙两旅行社的服务质量相同,组织到H地旅游的价格都是每人200元,在洽谈时,甲旅行社表示可给予每位旅客七五折(即原价格的75%)优惠;乙旅行社表示可先免去一位旅客的旅游费用,其余旅客八折优惠,该单位怎样选择,才能使其支付的旅游总费用较少?26.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲乙两种型号设备的价格;(2)该公司决定购买甲型设备不少于3台,预算购买节省能源的新设备的资金不超过110万元,你认为该公司有那几种购买方案?27.(1)解不等式113xx+<-,并将解集表示在数轴上;(2)解不等式组351,134.3xxx-≤⎧⎪⎨-<⎪⎩①②28.现计划把1240吨甲种货物和880吨乙种货物用一列火车运往某地,已知这列火车挂有A、B两种不同规格的货车车厢共40节,使用A型车厢每节费用为6000元,B型车厢每节费用8000元.如果每节A型车厢最多可装35吨甲种货物和15吨乙种货物,每节B型车厢最多可装25吨甲种货物和35吨乙种货物;(1)那么共有哪几种安排车厢的方案?(2)在上述方案中,哪种方案运费最省、最少运费为多少元?(3)在(1)问下,若两种货物全部售出,且每吨货物售出获利200元,除去运费获利154000元,问:在这种情况下是按哪种方案安排车厢的.29.已知方程组3951x y ax y a+=+⎧⎨-=+⎩的解x,y满足x>0,y>0.请化简:|4a+5|-2|a-4|.30.解方程组或不等式组(1)21321 3223x xx x++⎧->⎪⎨⎪-<⎩(2) 159317x y z x y z x y z ++=⎧⎪-+=⎨⎪-+=⎩31.解不等式:5-()()411x x ---<()223x - 32.解不等式组131722523(1)x x x x ⎧-≤-⎪⎨⎪+>-⎩,并把其解集表示在数轴上.33.某商场决定从厂家购进甲、乙两种不同款型的名牌衬衫共150件,且购进衬衫的总金额不超过9080元,已知甲、乙两种款型的衬衫进价分别为40元/件、80元/件. (1)问该商场至少购买甲种款型的衬衫多少件?(2)若要求甲种款型的件数不超过乙种款型的件数,问有哪些购买方案?请分别写出来.34.解不等式组2+1)5733x x x x <+⎧⎪+⎨≤+⎪⎩(,并写出它的非负整数解.35.(1)计算:201(5)3tan 30|13π︒-++-.(2)解不等式组:3(2)42113x x x x -->⎧⎪+⎨>-⎪⎩.参考答案1.B 【解析】 【分析】由数轴得出不等式组解集,据此可判断各选项是否符合此解集,从而得出答案. 【详解】解:由数轴知不等式组的解集为﹣2<x <1, 而2010x x +>⎧⎨-<⎩的解集为﹣2<x <1,故选:B . 【点睛】本题主要考查解一元一次不等式组,解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分. 2.A 【解析】 【分析】首先计算出不等式组的解集1≤x <m ,再根据不等式组的整数解确定m 的范围即可. 【详解】120x x m +≥⎧⎨-<⎩①②, 由①得:x≥1, 由②得:x <m ,不等式组的解集为:1≤x <m , ∵整数解共有3个, ∴整数解为:1,2,3, ∴34m <≤. 故选A. 【点睛】本题主要考查解不等式组及不等组的整数解,正确解出不等式组的解集,确定m 的范围,是解决本题的关键.3.D【解析】【分析】同大取大;同小取小;大小小大中间找;大大小小找不到;依此可求不等式组的解集,再在数轴上表示出来即可求解.【详解】解:不等式组31xx>⎧⎨≤⎩的解集在数轴上表示为.故选:D.【点睛】考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.D【解析】【分析】根据题目中的不等式可以求得x的取值范围,再根据不等式2x-a<0的正整数解恰是1,2,3,从而可以求得a的取值范围.【详解】由2x−a<0得,x<0.5a,∴不等式2x−a<0的正整数解恰是1,2,3,∴0.5a>3且0.5a⩽4,解得,6<a⩽8,故选D.【点睛】此题考查一元一次不等式的整数解,解题关键在于掌握运算法则.5.C【解析】 【分析】根据点()3,2P a a --关于原点对称的点在第四象限,可得点P 在第二象限,因此就可列出不等式,解不等式可得a 的取值范围. 【详解】解:∵点()3,2P a a --关于原点对称的点在第四象限, ∴点()3,2P a a --在第二象限,∴3020a a -<⎧⎨->⎩,解得:2a <.则a 的取值范围在数轴上表示正确的是:.故选:C . 【点睛】本题主要考查不等式的解法,根据不等式的解集,在数轴上表示即可,关键在于点P 的坐标所在的象限. 6.A 【解析】 【分析】先根据平方根求出a 的值,再求出m ,求出t ,再把t 的值代入不等式,求出不等式的解集即可. 【详解】∵3a−22和2a−3是实数m 的平方根, ∴3a−22+2a−3=0, 解得:a=5, 3a−22=−7, 所以m=49,=7,∵,∴,解得:,故选:A【点睛】此题考查平方根,不等式的解集,解题关键在于掌握运算法则7.C【解析】【分析】根据已知解集确定出数轴上表示的解集即可.【详解】不等式组解集为-1≤x<1,表示在数轴上为:,故选C.【点睛】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.B【解析】【分析】首先设得奖者选对的题数为x,则未选或选错的题数为25-x,由题意可得出不等式,解得即可.【详解】解:设得奖者选对的题数为x,则未选或选错的题数为25-x,由题意可得,3x-(25-x)≥45解得x ≥352又题数为整数,则至少应为18. 故答案为B. 【点睛】此题主要考查不等式的实际应用,关键是找出关系式,需要注意的是取整数. 9.C 【解析】 【分析】根据“2℃~6℃”,“3℃~8℃”组成不等式组,解不等式组即可求解. 【详解】设温度为x ℃,根据题意可知2x 63x 8≤≤⎧⎨≤≤⎩解得3≤x≤6.适宜的温度是3°C ~6°C . 故选:C 【点睛】此题主要考查了一元一次不等式组的应用,关键是弄懂题意,列出不等式,根据不等式组解集的确定规律:大小小大中间找确定出x 的解集. 10.B 【解析】 【分析】运用不等式的性质进行判断. 【详解】A 、当a >b 时,不等式两边都减b ,不等号的方向不变得a-b >0,故A 错误;B 、当a >b 时,不等式两边都乘以-5,不等号的方向改变得-5a <-5b ,故B 正确;C 、因为a>b,则a+8>b+8>b-8,故C 错误;D 、因为c 2≥0,所以ac 2≥bc 2,故D 错误. 故选B .【点睛】考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变. 11.B 【解析】 【分析】直接利用不等式的基本性质分别判断得出答案. 【详解】 解:A 、∵a >b ,∴a -2>b -2,故此选项错误; B 、∵a >b ,∴2a >2b ,故此选项正确; C 、∵a >b ,∴-2a <-2b ,故此选项错误; D 、∵a >b , ∴2a >2b,故此选项错误. 故选:B . 【点睛】此题主要考查了不等式的性质,正确应用不等式基本性质是解题关键. 12.D 【解析】 【分析】解不等式组,可得不等式组的解集,根据不等式组的解集与0≤x≤4的关系,可得答案. 【详解】 解:解,得a−1<x≤a +2,由不等式组的解集中任意一个x 的值均不在0≤x≤4的范围内,得a +2<0或a−1≥4, 解得:a≥5或a <−2,故选:D .【点睛】本题考查了不等式的解集,利用解集中任意一个x 的值均不在0≤x≤4的范围内得出不等式是解题关键.13.-1或7或-7.【解析】【分析】 由3x =,2y =得到3,2x y =±=±,再结合20x y ++>求出x 、y 的值,代入计算即可.【详解】 解:∵3x =,2y =,∴3,2x y =±=±,∵20x y ++>,∴2x y +>-,∴32x y =⎧⎨=⎩,32x y =⎧⎨=-⎩,32x y =-⎧⎨=⎩, 2x y ∴-=-1或7或-7.故答案是:-1或7或-7.【点睛】本题考查了绝对值的计算和不等式的知识,掌握绝对值的性质是关键.14.-0.5<m<7.【解析】【分析】点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得-7+m <0,2m+1<0,求不等式组的解集即可.【详解】解:∵点在第三象限,∴点的横坐标是负数,纵坐标也是负数,即70 210mm-+⎧⎨+⎩<<,解得-0.5<m<7.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).15.3 2【解析】【分析】先根据不等式的基本性质把不等式去分母、去括号、再移项、合并同类项求出x的取值范围,再与已知解集相比较即可求出m的取值范围.【详解】去括号得:12x−12m>3−32m,移项得:12x>3−32m+12m,合并同类项得;12x>3−m,系数化为1得;x>6-2m,∵不等式的解集为x>3,∴6-2m=3,解得:m=32,故答案为:32.【点睛】考查了解一元一次不等式,和解一元一次方程组,根据不等式的解集为x>3列出关于m的方程是解题的关键.16.12 x<【解析】【分析】根据不等式和解集间的关系可知1x =时,(2)50m n x m n -+-=,化简可得m,n 的关系,由此可解不等式mx n >.【详解】解:由题意得1x =时,(2)50m n x m n -+-=,即250m n m n -+-=,化简得2m n =, 且不等式的解集变号了,说明20m n -<,等量代换可得 40,30,0n n n n -<<<,不等式mx n >即为2nx n >,由不等式基本性质可得12x <. 故答案为:12x <【点睛】 本题考查了不等式,熟练掌握不等式的性质及不等式与解集间的关系是解题的关键. 17.1,2【解析】【分析】先解得不等式2n-5<5-2n 的解集为n <2.5,则不等式2n-5<5-2n 的正整数解为1,2.【详解】2552n n --<移项、合并同类项得4n <10,系数化为1得n <2.5,所以不等式2n-5<5-2n 的正整数解为1,2.【点睛】本题考查一元一次不等式和正整数,解题的关键是掌握解一元一次不等式和正整数的定义. 18.1(在﹣2<b <2范围内的任何一个数)【解析】【分析】把(0,-3)代入抛物线的解析式求出c 的值,在(1,0)和(3,0)之间取一个点,分别把x=1和x=3它的坐标代入解析式即可得出不等式组,求出答案即可.【详解】把(0,-3)代入抛物线的解析式得:c=-3,∴y=x2+bx-3,∵使该抛物线与x轴的一个交点在(1,0)和(3,0)之间,∴把x=1代入y=x2+bx-3得:y=1+b-3<0把x=3代入y=x2+bx-3得:y=9+3b-3>0,∴-2<b<2,即在-2<b<2范围内的任何一个数都符合,故答案为1(在-2<b<2范围内的任何一个数).【点睛】本题考查了对抛物线与x轴的交点的理解和掌握,能理解抛物线与x轴的交点的坐标特点是解题的关键.19.m<4【解析】试题分析:3x=m-4,解得:x=43m-,根据题意可得:43m-<0,解得:m<4.考点:一元一次方程.20.1,2,3【解析】【分析】先求出不等式的解集,再求出整数解即可.【详解】解:2x+5≤12,2x≤12-5,2x≤7,x≤3.5,所以不等式2x+5≤12的正整数解是1,2,3,故答案为1,2,3.【点睛】本题考查了解一元一次不等式和不等式的整数解,能根据不等式的性质求出不等式的解集是解此题的关键.21.>【解析】【分析】在a b <的基础上两边同时乘以b ,根据不等式的性质解题即可【详解】∵0,0a b <<,且a b <∴不等式两边同时乘以b 得:2ab b >故答案为>【点睛】本题考查不等式的性质,注意不等式两边同时乘以一个负数不等式要变号是解题的关键. 22.﹣1.5≤a <﹣0.5【解析】【分析】首先求得不等式的解集,然后根据不等式的自然数解只有0、1、2三个,即可得到一个关于a 的不等式,从而求得a 的范围.【详解】解:解不等式得:x≤a+3.5.不等式的自然数解只有0、1、2三个,则自然数解是:0,1,2.根据题意得:2≤a+3.5<3,解得:﹣1.5≤a <﹣0.5.故答案为﹣1.5≤a <﹣0.5.【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.23.>4【解析】【分析】根据不等式的解集相同,可得关于a 的方程,根据解方程,可得答案.【详解】由不等式20.532x a -> 解得x >314a +, 由5(1-x )<a-20解得x >25a 5-. 关于x 的不等式20.532x a ->与关于x 的不等式5(1-x )<a -20的解集完全相同,得 3125a 45a +-=. 解得a=5,关于x 的不等式20.532x a ->与关于x 的不等式5(1-x )<a-20解集为x >4, 故答案为:>4.【点睛】本题考查了不等式的解集,利用不等式的解集相同得出关于a 的方程式解题关键. 24.A【解析】【分析】根据“箱子和苹果的总质量不超过10 Kg”列出不等式进行求解即可.【详解】解:设这只纸箱内装了x 个苹果,根据题意得0.3x+1≤10解得x≤30所以的最大值是30.【点睛】本题主要考查不等式的应用,找出题中的等量关系列出不等式即可.25.当x <16时,选择乙总费用最少;当x >16时,选择甲总费用最少;当x=16时,甲乙两家费用相等.【解析】【分析】去的人数是变量可设为x ,在两个旅行社提出的不同优惠条件下根据公式:旅游费用=优惠前总费用-优惠费,分别列出解析式y 1 和y 2 ,然后根据两解析式大小比较来解题.【详解】设人数为x 人,该单位选择甲乙两旅行社分别支付的旅游费用为y 1 和y 2.则y 1=200×0.75x=150xy 2=200×0.8(x-1)=160x-160由y 1=y 2得:150x=160x-160解得x=16由y 1>y 2得:150x >160x-160解得x <16由y 1<y 2得:150<160x-160解得x >16答:当x <16时,选择乙总费用最少;当x >16时,选择甲总费用最少;当x=16时,甲乙两家费用相等.【点睛】此题考查一次函数的应用,一元一次不等式的应用,解题关键在于分情况对费用进行讨论从而得出人数.26.(1)甲设备每台12万元,乙设备每台10万元.(2)有三种购买方案:①甲买3台,乙买7台;②甲买4台,乙买6台;③甲买5台,乙买5台.【解析】【分析】(1)设设甲设备每台x 万元,乙设备每台y 万元,根据“购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元”列出二元一次方程组可以求解;(2)设购买甲设备a 台,根据购买甲型设备不少于3台,和购买甲、乙两种新设备的资金不超过110万元,列出不等式组,根据不等式组的整数解得出购买方案.【详解】(1)设甲设备每台x 万元,乙设备每台y 万元,由题意得:3216326x y y x -=⎧⎨-=⎩解得:1210x y =⎧⎨=⎩, 答:甲设备每台12万元,乙设备每台10万元.(2)设购买甲设备a 台,则购买乙设备()10a -台,由题意得:()3121010110a a a ≥⎧⎪⎨+-≤⎪⎩解得:35a ≤≤, 又∵a 为整数,∴3a =,或4a =,或5a =,因此有三种购买方案:①甲买3台,乙买7台;②甲买4台,乙买6台;③甲买5台,乙买5台.【点睛】考查一元一次不等式组和二元一次方程组的应用,分析题目中数量关系是列不等式组和方程组的关键,通过方程组确定价格,通过不等式组的整数解确定购买方案.27.(1)2x >,这个不等式的解集在数轴上的表示如图所示见解析;(2)12x <≤.【解析】【分析】(1)根据不等式性质进行解不等式;(2)分别解不等式,再求不等式组的解集.【详解】(1)去分母,得133x x +<-,移项,合并同类项,得24x -<-,系数化为1,解得2x >.这个不等式的解集在数轴上的表示如图所示:(2)解不等式①,得2x ≤.解不等式②,得1x >.∴不等式组的解集为12x <≤.【点睛】考核知识点:解不等式和不等式组.掌握一般步骤是关键.28.(1)共有3种方案:方案一:A 车厢24节,B 车厢16节,方案二:A 车厢25节,B 车厢15节,方案三:A 车厢26节,B 车厢14节;(2)当A 车厢用26节时,总运费最少,最少为268000元;(3)按A 车厢25节,B 车厢15节安排的车厢.【解析】【分析】(1)关系式为:35×A 车厢节数+25×B 车厢节数≥1240;15×A 车厢节数+35×B 车厢节数≥880;(2)运费=6000×A 车厢节数+8000×B 车厢节数,结合(1)中的自变量的取值求解;(3)算出毛利润,减去154000,得到运费,把运费代入(2)即可得到方案.【详解】(1)设A 车厢用x 节,由题意,得3525401240? 153540880x x x x +⨯-≥⎧⎨+⨯-≥⎩()() 解得24≤x≤26,∴共有3种方案:方案一:A 车厢24节,B 车厢16节,方案二:A 车厢25节,B 车厢15节,方案三:A 车厢26节,B 车厢14节;(2)总运费为:6000x+8000×(40-x )=-2000x+320000,当x 值越大时费用越小,故当A 车厢用26节时,总运费最少,最少为268000元,答:当A 车厢用26节时,总运费最少,最少为268000元;(3)200×(1240+880)-154000=-2000x-320000,解得x=25,所以是按A 车厢25节,B 车厢15节安排的车厢.【点睛】此题考查了一元一次不等式组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式,及所求量的等量关系.29.6a -3.【解析】【分析】先解方程组,得出x 和y 的值后,满足x >0,y >0,再化简|4a +5|-2|a -4|.【详解】3951x y a x y a +=+⎧⎨-=+⎩①② ①+②,得x =4a +5.③将③代入①,得y =-a +4.∵x >0,y >0,∴4a +5>0,-a +4>0,∴a -4<0.∴|4a +5|-2|a -4|=4a +5+2(a -4)=4a +5+2a -8=6a -3.【点睛】此题重点考察学生对二元一次方程组解的应用和整式化简的应用,熟练二元一次方程组的解法是解题的关键.30.(1)原不等式组的解集是 2.x <- (2) 122.x y z =⎧⎪=-⎨⎪=⎩【解析】【分析】(1)先求出两个不等式的解集,再求其公共解;(2)先消掉z ,得到关于x 、y 的二元一次方程,联立组成方程组求出x 、y 的值,然后代入方程③求解即可.【详解】 (1)213213223x x x x ++⎧->⎪⎨⎪-<⎩①②,解不等式①,()()2213326,x x +-+>42966,x x +-->510,x <-2,x <-解不等式②,23x x -<,3x ,<所以,原不等式组的解集是 2.x <-(2) 159317x y z x y z x y z ①②③,++=⎧⎪-+=⎨⎪-+=⎩①−②得,24y =-④,③−①得,8x −4y =16,即2x −y =4⑤,联立2424,y x y =-⎧⎨-=⎩④⑤ 解得12x y =⎧⎨=-⎩, 把x =1,y =−2代入③得,9617z ++=,解得z =2,所以,原方程组的解是122.x y z =⎧⎪=-⎨⎪=⎩【点睛】考查解一元一次不等式组,解三元一次方程组,掌握解题的步骤是解题的关键.31.x <23. 【解析】【分析】先移项,再分别运用平方差公式和完全平方公式进行去括号,合并同类项,系数化为1,从而得解.【详解】5-()()411x x ---<()223x - 5-()()411x x ----()223x -<0 5+4x 2-4-4x 2+12x-9<012x <8x <23. 【点睛】此题主要考查了解一元一次不等式,运用平方差公式和完全平方公式去括号是解此题的关键.32. 2.54x-<≤【解析】【分析】分别求出不等式组中两不等式的解集,确定出不等式组的解集,表示在数轴上即可.【详解】131722523(1)x xx x⎧--⎪⎨⎪+>-⎩①②解不等式①,得4x≤解不等式②,得 2.5x>-,把不等式的解集在数轴上表示为:所以原不等式组的解集为{| 2.54}x x-<≤.【点睛】此题考查在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握运算法则33.(1)甲至少购买73件;(2)共3种方案.见详解【解析】【分析】(1)直接利用购进衬衫的总金额不超过9080元,进而得出不等式求出答案;(2)利用甲种款型的件数不超过乙种款型的件数,得出不等式结合(1)所求,进而得出答案.【详解】解:(1)设该商场购买甲种款型的衬衫x件,则购进乙种款型的衬衫(150-x)件,根据题意可得:40x+80(150-x)≤9080,解得:x≥73,答:该商场至少购买甲种款型的衬衫73件;(2)根据题意可得:x ≤150-x ,解得:x ≤75,∴73≤x ≤75,∵x 为正整数,∴x=73,74,75,∴购买方案有三种,分别是:方案一:购买甲种款型的衬衫73件,乙种款型77件;方案二:购买甲种款型的衬衫74件,乙种款型76件;方案三:购买甲种款型的衬衫75件,乙种款型75件.【点睛】本题考查了一元一次不等式的综合运用,重点掌握解应用题的步骤.难点是正确列出不等量关系.34.13x -≤<,非负整数解是0,1,2.【解析】【分析】先求出每一个不等式的解集,得到不等式组的解集,然后找到非负整数解即可.【详解】解:解不等式①得3x <,解不等式②得1x -≥,∴此不等式组的解集是13x -≤<,∴此不等式组的非负整数解是0,1,2.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.35.(1)1;(2) 1<x <4.【解析】【分析】(1)先根据零指数幂、有理数乘方的法则、绝对值的性质及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.(2)分别求出不等式的解集,即可解答【详解】解:(1)原式=﹣1+1+3×3+1=1;(2)3(2)42113x xxx-->⎧⎪⎨+>-⎪⎩①②,由①得:x>1,由②得:x<4,则不等式组的解集为1<x<4.【点睛】此题考查负整数指数幂,零指数幂,实数的运算,特殊角的三角函数值,解一元一次不等式组,掌握运算法则是解题关键。
【单元测试】第3章 一元一次不等式(夯实基础培优卷)(考试版)

【高效培优】2022—2023学年八年级数学上册必考重难点突破必刷卷(浙教版)【单元测试】第3章 一元一次不等式(夯实基础过关卷)(考试时间:90分钟 试卷满分:100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10个小题,每小题3分,共30分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.x 与5的和不大于1-,用不等式表示为( ) A .51x +≥-B .51x +<-C .51x +≠-D .51x +≤-2.下面给出了5个式子:①30>,①42x y +<,①23x =,①1x -,①23x +≤,其中不等式有( ) A .2个B .3个C .4个D .5个3.已知a b >,则下列选项不正确是( ) A .33a b ->- B .0a b -> C .a c b c +>+ D .22a c b c ⋅≥⋅4.若不等式组<012<2x a x x ---⎧⎨⎩ 有解,则a 的取值范围是( )A .a >﹣1B .a ≥﹣1C .a <1D .a ≤15.不等式5x -1≤2x +5的解集在数轴上表示正确的是( ) A . B .C .D .6.下列命题中,逆命题是假命题是( ) A .两直线平行,同位角相等 B .如果|a |=1,那么a =1 C .平行四边形的对角线互相平分D .如果 x >y ,那么 mx >my7.不等式组325521x x +>⎧⎨-≥⎩的解在数轴上表示为( )A .B .C .D .8.张老师每天从甲地到乙地煅炼身体,甲、乙两地相距1.4千米,已知他步行的平均速度为80米/分,跑步的平均速度为200米/分,若他要在不超过10分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( ) A .20080(10)1400+-≥x x B .80200(10)1400+-≤x x C .20080(10) 1.4+-≥x xD .80200(10) 1.4+-≤x x9.小英、小亮、小明和小华四名同学参加了“学用杯”竞赛选拔赛,小亮和小华两个同学的得分和等于小明和小英的得分和;小英与小亮的得分和大于小明和小华的得分和,小华的得分超过小明与小亮的得分和.则这四位同学的得分由大到小的顺序是( ) A .小明,小亮,小华,小英 B .小华,小明,小亮,小英 C .小英,小华,小亮,小明D .小亮,小英,小华,小明10.若关于x 的不等式组52(+)11231x x a ⎧>⎪⎨⎪-<⎩无解,且关于y 的分式方程34122y a y y ++=--有非负整数解,则满足条件的所有整数a 的和为( ) A .8B .10C .16D .18二、填空题(本大题共8个小题,每题2分,共16分)11.对于任意实数a ,用不等号连结|a |________ a (填“>”或“<”或“≥”或“≤”) 12.设0a b >>,用适当的符号填空:(1)b a -______0;(2)22a b -______0;(3)a b -______0.13.关于x 的不等式组的解集在数轴上的表示如图所示,则此不等式组的解集为_____.14.关于x 的方程组2221x y m x y m -=-⎧⎨+=+⎩的解满足22x y +>,则m 的取值范围是________.15.已知关于x 的不等式()11a x ->,可化为11x a <-,试化简12a a ---,正确的结果是__________. 16.一款皮大衣进价2000元,标价3000元,若商场要求以利润率不低于5%的售价打折出售,则售货员出售此商品最低可打_____折.17.若△ABC 的三边a 、b 、c 的长使不等式组03x x >⎧⎨<⎩且x 为整数成立,则△ABC 的周长为 ___.18.已知关于x 的不等式组212213x x ax a x +>+⎧⎪++⎨-≤⎪⎩(a 为整数)的所有整数解的和S 满足21.6≤S <33.6,则所有这样的a 的和为_____.三、解答题(本大题共8个小题,共54分;第19-22每小题6分,23-24每小题7分,25-26每小题8分)19.解不等式:(1)()()21312x x -<+-,并把解集在数轴上表示出来. (2)解不等式:2132134x x -+≥-,并写出其非负整数解. (3)解不等式组:()5231131722x x x x ⎧+≥-⎪⎨-≤-⎪⎩①②,并把解集在数轴上表示出来. (4)解不等式组43247123x x x -⎧>-⎪⎪⎨--⎪≤-⎪⎩,请把解集在数轴上表示,并写出它的所有整数解.20.先化简222223969aa a a a a a a -⎛⎫-÷ ⎪--++⎝⎭,然后从不等式组231,841a a a a +>-⎧⎨+-⎩的解集中选取一个你认为合适的整数作为a 的值代入求值.21.已知不等式组14522153x x x x ⎧⎛⎫-<+ ⎪⎪⎪⎝⎭⎨-⎪<⎪⎩(1)若m 是这个不等式组的最大正整数解,求m 的值; (2)在(1)的条件下,若以2m ,8,32k -为三边的三角形是等腰三角形,求k 的值.22.定义:给定两个不等式组P 和Q ,若不等式组P 的任意一个解,都是不等式组Q 的一个解,则称不等式组P 为不等式组Q 的“子集”.例如:不等式组M :21x x >⎧⎨>⎩是N :21x x >-⎧⎨>-⎩的“子集”.(1)若不等式组:A :1415x x +>⎧⎨-<⎩,B :2113x x ->⎧⎨>-⎩,则其中______不等式组是不等式组M :21x x >⎧⎨>⎩的“子集”(填A 或)B ;(2)若关于x 的不等式组1x a x >⎧⎨>-⎩是不等式组21x x >⎧⎨>⎩的“子集”,则a 的取值范围是______;(3)已知a ,b ,c ,d 为不互相等的整数,其中a b <,c d <,下列三个不等式组:A :a x b ≤≤,B :c x d ≤≤,C :16x <<满足:A 是B 的“子集”且B 是C 的“子集”,求a b c d -+-的值.23.如图,正方形ABCD 中,点G 是边CD 上一点(不与端点C ,D 重合),以CG 为边在正方形ABCD 外作正方形CEFG ,且B 、C 、E 三点在同一直线上,设正方形ABCD 和正方形CEFG 的边长分别为a 和b a b >(). (1)分别用含a ,b 的代数式表示图1和图2中阴影部分的面积12S S 、; (2)若5,3+==a b ab ,求1S 的值;(3)当12S S <时,判断2a b -值的正负.24.若任意一个代数式,在给定的范围内求得的最值恰好也在该范围内,则称这个代数式是这个范围的“友好代数式”.例如:关于x 的代数式2x ,当11x -≤≤时,代数式2x 在11-时有最大值,最大值为1;在x =0时有最小值,最小值为0,此时最值1,0均在2x (含端点)这个范围内,则称代数式2x 是11x -≤≤的“友好代数式”. (1)若关于x 的代数式1x -,当22x -≤≤时,取得的最大值为________;最小值为________;代数式1x -________(填“是”或“不是”)22x -≤≤的“友好代数式”;(2)若关于x 的代数式13x x -+-是0x m ≤≤的“友好代数式”,则m 的值是________; (3)若关于x 的代数式21ax -+是22x -≤≤的“友好代数式”,求a 的最大值和最小值.25.阅读下列材料:小丽想求代数式2613x x -+的最小值是多少,通过观察式子的特点,她发现x 2﹣6x 很接近完全平方式,如果能加上9,它就可以变成2(3)x -,而为了使式子变形前后保持相等,还必须减去9,这种凑成完全平方式的方法数学上叫做添项法.该题的具体解题过程是: 解:22261369913(3)4x x x x x -+=-+-+=-+. ①2(3)0x -≥,①2(3)44x -+≥,即2613x x -+的最小值为4. 请借鉴小丽的方法解答下列各题. (1)求代数式223x x ++的最小值是多少?(2)求证:不论x ,y 为何有理数,2210845x y x y +-++的值恒为正数;(3)代数式249x x -+-有最大值,这个最大值是____.26.为进一步提升摩托车、电动自行车骑乘人员和汽车驾乘人员安全防护水平,公安部交通管理局部署在全国开展“一盔一带”安全守护行动.某商店销售A ,B 两种头盔,批发价和零售价格如表所示,请解答下列问题.(1)该商店第一次批发A ,B 两种头盔共120个,用去5600元钱,求A ,B 两种头盔各批发了多少个;(2)该商店第二次仍然批发这两种头盔(批发价和零售价不变),用去7200元钱,要求批发A 种头盔不高于76个,要想将第二次批发的两种头盔全部售完后,所获利润不低于2160元,则该商店第二次有几种批发方案; (3)在(2)的条件下,请你通过计算判断,哪种批发方案会使商店利润最大,并求出最大利润.。
不等式专题复习培优

一元一次不等式专题复习例1.若不等式0432b <a x b a -+-)(的解集是49x >,则不等式的解集是0324b >a x b a -+-)( 。
变式练习:1.若不等式(a +1)x >a +1的解集是x <1,则a 必满足...............( ).(A)a <0(B)a >-1(C)a <1(D)a <-12.如果关于x 的不等式()13m x ->的解集为31x m <-,那么字母m 的取值范围是_____例2.关于x 的不等式组121,232,x x x a -+⎧-≤⎪⎨⎪->⎩只有3个整数解,求a 的取值范围.变式练习:1.若不等式x <a 只有4个正整数解,则a 的取值范围是 _____.2.关于x 的不等式组2135,20,x x x a -<-⎧⎨-<⎩恰好有4个整数解,求a 的取值范围.例3.如果关于x 的不等式组22,4,x a x a >-⎧⎨<-⎩有解,并且所有解都是不等式组-6<x ≤5的解,求a 的取值范围.变式练习: 1.若不等式组⎩⎨⎧>≤<k x x ,21有解,则k 的取值范围是......................( ).(A)k <1(B)k ≥2(C)k <2(D)1≤k <22.不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2 (B)m ≥2 (C)m ≤1 (D)m ≥1例4.已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.变式练习:1.某校校长暑假将带领该校市级“三好学生”去北京旅游。
甲旅行社于说:“如果校长买全票一张,则其余学生可享受半价优惠。
”乙旅行社说:“包括校长在内全部按全票价的6折优惠。
”若全票价为240元,请就学生数讨论哪家旅行社更优惠例4.如果x <7是关于x 的不等式23133xa x --+<的解.求a.变式练习:1.已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是______.2.当k 取何值时,关于x 的方程2-232kx x x --=+有负数解.一、1.若0)3)(2(>-+x x ,则x 的取值范围是________.2.若b a <,用“<”或“>”号填空:2a______b a +,33a b -_____. 3.若11|1|-=--x x ,则x 的取值范围是_______. 4.若不等式组⎩⎨⎧>-<-3212b x a x 的解集为11<<-x ,那么)3)(3(+-b a 的值等于_______.5.函数2151+-=x y ,1212+=x y ,使21y y <的最小整数是________.6.一次测验共出5道题,做对一题得一分,已知26人的平均分不少于分,最低的得3分,至少有3人得4分,则得5分的有_______人.7.不等式组⎪⎩⎪⎨⎧<-<-622131m x m x 的解集是36+<m x ,则m 的取值范围是______二、1.下列不等式一定成立的是( )>4a +2<x+3 C.-a >-2a D.aa 24> 2.若-a >a ,则a 必为( )A .正整数B .负整数C .正数D .负数 3.若a -b <0,则下列各式中一定正确的是( )A .a >bB .ab>0C .ab <0 D .-a >-b4.如果0>>a b ,那么 ( ).A .ba11->- B .b a 11< C .ba 11-<- D .ab ->-5.若果x-y>x,x+y>y ,那么( )<x<y <y<0 >0,y<0 <0,y>0 6.若a 、b 、c 是三角形的三边,则代数式2222ab c ab +--的值是( )A .正数B .负数C .等于零 D.不能确定7.若三个连续正奇数的和不大于27,则这样的奇数组有( ).A .3组B .4组C .5组D .6组8.已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,则ab 的值为 。
一元一次不等式(组)培优训练(参数问题)

一元一次不等式(组)培优训练(参数问题) 拔高级训练:1、已知关于x ,y 的二元一次方程组⎩⎨⎧-=++=-222323t y x t y x ,当A=x -2y 且-1<t ≤2,求A 的取值范围.2、若关于x ,y 的二元一次方程组⎩⎨⎧=++=+333y x a t y x 的解满足x+y<505,则a 的取值范围是( )A. a>2016B.a<2016C.a>505D.a<5053、已知关于x ,y 的方程组⎩⎨⎧-=++=+m y x m y x 12312的解x ,y 满足x+y1<1,且m 为正数,求m 的取值范围.4、已知关于x ,y 的方程组⎩⎨⎧-=-+=+34272a y x a y x . (1)若a=2,求方程组的解;(2)若方程组的解x ,y 满足x>y ,求a 的取值范围并化简110118+-+a a5、若关于x 的不等式组⎩⎨⎧≥-≥-0250x m x 有解,则m 的取值范围是?6、关于x 的不等式组⎩⎨⎧->-<-)1(2130x x m x 无解,那么m 的取值范围为( ) A. m ≤-1 B.m<-1 C.-1<m ≤0 D.-1≤m<07、(1)若不等于组⎩⎨⎧>≤<k x x 21无解,则k 的取值范围是( ) A.k ≤2 B.k<1 C.k ≥2 D.1≤k<2(2)已知关于x 的不等式组⎩⎨⎧>-≥-1250x a x 只有四个整数解,则实数a 的取值范围是________. (3)定义[]x 表示不大于x 的最大整数,即x 的整数部分,例如[]47.4=.①根据定义,[][][]______;4.1_____,2_____,=-==π②比较[][]1,,1,++x x x x 的大小关系,按照从小到大的顺序用不等号连接的结果为____________________________; ③解方程:412213+=⎥⎦⎤⎢⎣⎡-x x8、若整数使关于的x 方程x +2a=1的解为负数,且使关于x 的不等式组⎪⎩⎪⎨⎧+≥->--31210)(21x x a x 无解,则所有满足条件的整数a 的值之和是( )A.5B.7C.9D.109、关于x 、y 的方程组⎩⎨⎧+=+-=+ky x k y x 13233的解满足x+y>0,且关于x 的不等式组⎪⎩⎪⎨⎧≥+≤--x x k x x 323)1(2有解,则符合条件的整数k 的值的和为( )A.2B.3C.4D.510、已知关于x 的不等式组⎩⎨⎧<+>-13430x a x 有且只有3个整数解,则a 的取值范围是( ) A.a>-1 B.-1≤a<0 C.-1<a ≤0 D.a ≤0培优级训练:1、已知⎩⎨⎧+=+=+12242k y x k y x 且0<y -x<1,则k 的取值范围是( )A.211-<<-kB.210<<kC.10<<kD.121<<k 2、如果关于x 的不等式组⎩⎨⎧<->-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a ,b 的有序数对(a ,b )共有______个.3、阅读以下材料:对于三个数a,b,c ,用M{a ,b ,c}表示这个三个数中最小的数,例如:M{-1,2,3}=343321-=++;⎩⎨⎧->--≤=--=-)1(1)1(},2,1min{;1}3,2,1min{a a a a 解决下列问题:(1)填空:如果min{2,2x+2,4-2x}=2,则x 的取值范围为_________.(2)如果M{2,x+1,2x}=min{2,x+1,2x},求x.4、社会主义核心价值观"富强、民主、文明、和谐、自由、平等、公正、法治、爱国、敬业、诚信、友善"体现了社会主义核心价值理念.我们用"核心符号"[x]来表示不大于x 的最大整数(如[1.5]=1,[-1.5]=-2,我们把满足[x]=a (a 为常数)的x 取值范围叫做的核心范围)(如[x]=3的x 的核心范围为3≤x<4,[x]=-1的x 的核心范目-1≤ x<0).(1)请直接写出[2.6]的值和[x]=1的的核心范围;(2)己知关于x 的不等式⎩⎨⎧<->a x x ]2.1[有且只有两个整数解,写出这两个整数解并求出a 的取值范围.5、先阅读理解下面的例题,再按要求解答下列问题:例题:对于(x -2)(x -4)>0,这类不等式我们可以通过下面的解题思路来分析:由有理数的乘法法则"两数相乘,同号得正",可得①⎩⎨⎧<->-0402x x ,②⎩⎨⎧<-<-0402x x .从而将陌生的高次不等式化为学过的一元一次不等式年解不等式组,分别去解两个不等式组即可求得原不等式的解集,即:解不等式组①得x>4,解不等式组②得x<2,所以(x -2)(x -4)>0的解集为x>4或x<2.请利用上述解题思想解决下面的问题:(1)请直接写出(x -2)(x -4)<0的解集;(2)对于0>nm ,请根据除法法则化为我们学过的不等式(组); (3)求不等式013>-+x x 的解集.6、先阅读理解下面的例题,再按要求解答下列问题:例题:解一元二次不等式x ²-4>0.解:∵x ²-4=(x +2)(x -2),∴x ²-4>0可化为(x +2)(x -2)>0.由有理数的乘法法则"两数相乘,同号得正",得①⎩⎨⎧>->+0202x x ,②⎩⎨⎧<-<+0202x x 解不等式组①,得x >2,解不等式组②,得x<-2.∴x ²-4>0的解集为x >2或x<-2,即一元二次不等式x ²-4>0的解集为x >2或x<-2.(1)一元二次不等式x ²-16>0的解集为______________.(2)分式不等式031>--x x 的解集为______________.课堂检测:1、已知关于x 、y 的方程组⎩⎨⎧=++=-ay x a y x 523的解满足x>y>0,求a 的取值范围.2、已知a>1,则a x x a -=-2)2(2中x 的取值范围是多少?3、若关于x 不等式组⎩⎨⎧≥-≥-0035m x x 有实数解,则实数m 的取值范围是( )A.35≤m B.35<m C.35>m D.35≥m4、若关于x 的不等式组⎩⎨⎧+≥++≤)1(341m x m x 无解,则m 的取值范围是__________.5、已知关于x 的不等式a ≤x<b 的整数解为7,8,9,10.当a 、b 为实数时,a 、b 的取值范围分别为________、__________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式培优训练题
1、解不等式252133x -+-≤+≤- 2.求下列不等式组的整数解2(2)83373(2)82x x x x x x +<+⎧⎪-≥-⎨⎪-+>⎩
3、解不等式:(1) 0)2)(1(<+-x x (2)
0121>+-x x
4、对于1x ≥的一切有理数,不等式
()12
x a a -≥都成立,求a 的取值范围。
5、已知1x =是不等式组()()352,2
3425x x a x a x -⎧≤-⎪⎨⎪-<+-⎩
的解,求a 的取值范围.
6、如果35x a =-是不等式
()11233
x x -<-的解,求a 的取值范围。
7、若不等式组841,x x x m +<-⎧⎨
>⎩的解集为3x >,求m 的取值范围。
8、如果不等式组237,635x a b b x a -<⎧⎨
-<⎩
的解集为522x <<,求a 和b 的值。
9、不等式组⎪⎩⎪⎨⎧<-<-6
22131m x m x 的解集是36+<m x ,求m 的取值范围。
10、已知关于x 的不等式()12a x ->的解在2x <-的范围内,求a 的取值范围。
11、已知关于x 的不等式组010
x a x ->⎧⎨
->⎩,的整数解共有3个,求a 的取值范围。
12、已知关于x的不等式组
321
x a
x
-≥
⎧
⎨
-≥-
⎩
的整数解共有5个,求a的取值范围。
13、若关于x的不等式组
2145,
x x
x a
->+
⎧
⎨
>
⎩
无解,求a的取值范围。
14、设关于x的不等式组
22
321
x m
x m
->
⎧
⎨
-<-
⎩
无解,求m的取值范围
15、若不等式组⎩⎨
⎧<->a x a x 无解,那么不等式⎩⎨⎧<+>-1
1a x a x 有没有解?若有解,请求出不等式组的解集;若没有请说明理由?
16、若不等式组372,x x a a
-≤⎧⎨-≥⎩有解,求a 的取值范围。
THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考。