第4章 电路的过渡过程

合集下载

电路的过渡过程

电路的过渡过程

uC (0 ) uC (0 ) 10V

R1
+
iC t=0
i2
uC C
R2

由此可画出开关S闭合后瞬间即时的等
效电路,如图所示。由图得:
i1(0+)
i1(0 )

US
uC (0 ) R1

10 10 10

0A
i2 (0 )

uC (0 ) R2

10 5

2A
+
R1
+
iC(0+)
R3
R1 R2
+
U

iC
+
C -uC
R0
iC +
+
C -uC
US

iC
IS
R0
+ C -uC
因此,对一阶电路的分析, 实际上可归结为对简单的RC 电路和RL电路的求解。一阶 动态电路的分析方法有经典 法和三要素法两种。
2.1 经典分析法
1.RC电路分析
图示电路,t=0时开关S闭合。根据KVL,得回路电压方程为:
因为:
uL

L
diL dt
uR RiL
从而得微分方程:
S
+ US

L R
diL dt
iL
US R
解之得:
iL
US R
(I0

U
S
)e

t
R
iL
+
R -uR
+
L -uL
稳态分量 暂态分量
式中τ=L/R为时 间常数

电工电子学第四章魏红,张畅

电工电子学第四章魏红,张畅



11
12

4.2.3 RC电路的全响应 所谓全响应是指既有初始储能又有外界激励产生的响应。RC电路的 全响应是指电源激励和电容元件的初始电压均丌为零时的响应。对应 着电容从一种储能状态转换到另一种储能状态的过程,如图4.2.4所 示。
13

4.2.4 RC微分电路和积分电路 在电子电路中,经常会用到矩形脉冲电压,如图4.2.5所示。tp为脉 冲宽度,U为脉冲幅度,T为脉冲周期。当矩形脉冲电压作用于RC电 路时,若选取丌同的时间常数和输出端,将产生丌同输出的波形,从 而构成输出电压和输入电压之间的特定关系,即微分关系和积分关系。
第四章 电路的暂态分析
电工电子学
1

在直流电路中,电压和电流等物理量都是不随时间变化 的,在正弦交流电路中,电压、电流都是时间的正弦函数,它 们都周期性地重复所发生的过程。电路的这种工作状态称为稳 定状态,简称稳态。
2
如果电路的工作条件发生改变时,电路将从一种稳 定状态变化到另一种稳定状态。这种变化的过程是一个暂 时的,不稳定的状态,称为暂态。这种变化不是瞬间完成, 需要一定的时间,所以也称为过渡过程。 对电路的暂态过程进行分析,就是要研究在暂态过 程中,电路各部分电压、电流随时间变化的规律,以及与 电路参数的关系。本章主要分析RC和RL一阶线性电路的暂 态过程。

21

在开关的触头之间产生很高的电压(过电压),开关之间的穸 气将发生电离而形成电弧,致使开关被烧坏。同时,过电压也可能将 电感线圈的绝缘层击穹。为避免过电压造成的损害,可在线圈两端并 接一个低值电阻(称泄放电阻),加速线圈放电的过程。如图4.3.3 (a)所示。也可用二极管代替电阻提供放电回路,如图4.3.3(b) 所示。或在线圈两端并联电容,以吸收一部分电感释放的能量,如图 4.3.3(c)所示。

动态电路

动态电路

an
d ni dt n
an1
d n1i dt n1
a1
di dt
a0i
u
t0
四. 动态电路的分析方法
激励 u(t)
响应 i(t)
an
d ni dt n
an1
d n1i dt n1
a1
di dt
a0i
u
t0
经典法
拉普拉斯变换法 状态变量法 数值法
时域分析法
复频域分析法 时域分析法
2、换路定则与初始值的确定
uL(0+)、iR(0+)和
0.1H iL
duC dt
、diL 0 dt
的值。
0
+
u

–C

+ 6Ω 12V

iL
iR +
uC 3Ω iC –
解:作t = 0–的等效电路如图(b)
(b)
所示,有
iL (0 )
12 6 // 6 3
2
A
uC (0 ) 3iL (0 ) 6 V
由换路定则得 uC(0+) = uC(0–)=6V, iL(0+)= iL(0–)=2A
uC(0+) = uC(0-) = RIS
uL(0+)= - RIS
iC (0 )
Is
RI S R
0
3.确定 duC
dt
与 diL
0
dt
的值
0
对于n阶电路的初值确定
还要把其(n-1)阶导数的初值也确定出来。 本书仅涉及到分析二阶电路,因此只需了解diL 和 duC 的初值
dt 0 dt 0

线性电路过渡过程

线性电路过渡过程

1.3 一阶电路的零状态响应
零状态响应 一阶电路换路前储能元件没有储能,仅
由外施电源作用于电路引起的响应称零状态响应。
1.3.1 RC串联电路的零状态响应
图8.8所示的R、C串联电路,uC (0 ) 0
i
S
根据KVL,有
RC duC dt
uC
uS
电路中的电流为: i C duC uS et /
例1.2 图1.2所示电路中,已知uS=10v,R1=6Ω,
R2=4Ω。开关闭合前电路已处于稳态,求换路后瞬
间各支路电流。
图1.2 例1.2图
解题过程
1.1 换路定律与初始值的计算
解:(1) t=0-时,电路处于稳态
i2 (0
)
i1 (0)
10 64
1A
根据换路定律:i2(0+)=i2(0-)=1A
电阻、电感上的电压为
图8.6 RL串联电路的零输入响应
Rt
uR Ri RI0e L
uL
L
di dt
Rt
RI0e L
1.2 一阶电路的零输入响应
各量随时间变化的曲线如图8.7所示
iL
uR
uL
I0
I0R
0
t
0
t
0
-I0R t
(a)
(b)
(c)
图8.7 R、L电路的零输入响应曲线
综上可知: (1)一阶电路的零输入响应都是按指数规律衰减的,反映了动态元件的 初始储能逐渐被电阻耗掉的物理过程。 (2)零输入响应取决于电路的初始状态和电路的时间参数。
(2) 作出t =0+等效电路,如图1.1 (b)
由于
uC
(0

电路的过渡过程

电路的过渡过程
表示电路对电流的阻碍作用,与电流 变化率成正比,与自感电动势成正比。
电容
表示电路存储电荷的能力,与电压变 化率成正比,与电容电流成正比。
电阻与电导
电阻
表示电路对电流的阻碍作用,与电压和电流的比值成正比。
电导
表示电路导电能力的大小,与电阻倒数成正比。
电压与电流
电压
电场中电势差,是电路中电荷移动的动力。
电路的过渡过程
目录
• 电路过渡过程概述 • 电路过渡过程的理论基础 • 电路过渡过程的分析方法 • 电路过渡过程的仿真与实验 • 电路过渡过程的应用实例 • 电路过渡过程的优化与改进
01
电路过渡过程概述
定义与特性
定义
电路的过渡过程是指电路从一个 稳定状态变化到另一个稳定状态 的过程。
特性
过渡过程中,电路的电流和电压 不再保持稳态值,而是随时间变 化。
电磁继电器的过渡过程是指继 电器从吸合状态到释放状态, 或从释放状态到吸合状态的过
程。
在过渡过程中,电路中的电 流和电压会产生瞬态变化, 需要采取适当的控制策略来 保证继电器的正常工作。
常见的控制策略包括电压控制、 电流控制等,通过调节输入的 电压或电流来控制继电器的吸
合和释放。
06
电路过渡过程的优化与改进
实验设备与器材
01 电源:提供稳定的电压和电流,如直流电 源、交流电源等。
02 电阻、电容、电感等电子元件:构成各种 电路的基本元件。
03
示波器:用于观测电路中的电压、电流波 形。
04
信号发生器:用于产生各种频率和幅值的 信号源。
实验步骤与操作
搭建电路
根据电路图选择适当的电子元 件和设备搭建实际电路。
开关电源的过渡过程

RC电路的过渡过程

RC电路的过渡过程

第四章
电容器
换路定律的内容:因为从t=0-到t=0+瞬间,
电容元件两端的电压uC和电感元件中的电流iL不能
突变,所以,电容两端的电压uC和通过电感的电流
iL在换路前瞬间和换路后瞬间的值相等,其数学表
达式为:
uC(0+)=uC(0-) iL(0+)=iL(0-)
第四章
电容器
换路定律仅仅适用于换路瞬间,可以用
第四章
电容器
课堂小结
1.换路定律仅仅适用于换路瞬间,可以用它 来确定t=0+时刻电路中的电压和电流值,即过渡
过程的初始值。
2.电容器的充放电有以下特点:(1)电容 器两端电压不能突变。(2)电容器在刚充电瞬间
相当于“短路”。(3)电容器在充电 电过程基本结束。
第四章
§4-5
学习目标
电容器
RC电路的过渡过程
1.掌握换路定律。 2.了解RC电路充电时的过渡过程。
3.了解RC电路放电时的过渡过程。
4.掌握微分电路和积分电路的应用。
第四章
电容器
充电、放电均包括两个阶段: 充电——充电时的过渡过程和充满电以后 的“隔直”阶段。 放电——放电时的过渡过程和放完电以后
uC(0-)=0,根据换路定律可得开关S合上瞬 间: uC(0+)=uC(0-)=0 uR(0+)=E-uC(0+)=10 V
(0 ) i =
+
u R (0 ) R


10 2 .5
= 4A
第四章
电容器
三、RC电路充电时的过渡过程
第四章
电容器
[例4-6]
如图所示电路中,设uC(0-)=0,电源电压 E=10V,R1=2kΩ,R2=3kΩ,C=5μF。试求开关 S闭合后,t=100ms时,电容两端的电压uC,并作 出uC随时间变化的曲线图。

电路中的过渡过程及其分析方法

电路中的过渡过程及其分析方法
J ,
,
_
d“
一了
-
(
t
)

〔 :
变 这 两 种情 况 换路 时刻 的电容 电流 和 电感 电压 都 不 是 有 限值 因此 换 路 定律 不 适用 于 换 路 时刻 电 容 电流 和 电感 电压 为非有 限值 的情 况
、 。
d t
口 二
I产


.
李 (,

( J )
.
(”
,
“`
(, ) 中
(u 0
:
断 开 元件参 攀突 然 改变 等 等电珍工
.

个问 题分述如下 供 同学们学 习 参考
作 状态的 突 然 改变 统称为换路
( 四 ) 电路 中的 过 渡过 程
L


一 动态电峥及过 盆过租 的概念
( 一 ) 动态 电璐
1
,
动 态 电路 是 指含有储能 元 件电感

:
动 态 电路 由于 换 路 从 一 种 珍 定 抉 态 转变 到 另 一

2
今 总绍
2
.

N0
.
VO L
S

Co N T E M


省 代电大 苦 攀学 , 丫 Tv U 《T 尽 八 零H 妞
1 9 5 年第 8 期 & s
刊DY )
N0
.
8
.
1 99 5

电 路 中 岭 过 渡 城 程 瓜 其 令析 方 孩
中央 电 大
奇享 群
在《 电路 及 盛 垮 》的
电绮中过 碑 过 裸终 分析的 攀拼 内容 分析 是 电 终

电子电工技术第四章 电路的暂态过程分析

电子电工技术第四章 电路的暂态过程分析

设一阶线性电路中所求变量为 f (t) ,变量的初始值为 f (0 ) ,变量在过渡过程结束后的稳态值为 f () ,时间常
数为 ,则我们可直接写出全响应的表达式为
f (t)
f ' (t)
f "(t)
f () [ f (0 )
t
f ()]e
式中,f '(t) 和 f "(t) 分别表示全响应中对应齐次方程的解和对 应非齐次方程的特解。
uC
t
E(1 e
)
3(1
t
e 2106
)
3(1
e5105 t
)
三、RC电路的全响应
由电容元件的初始储能和外接激励共同作用所产生的电路
响应,称为RC电路的全响应。
在图示电路中,电容元件
已具有初始储能 uC (0 ) U0 <U S
当开关S在 t 0 时刻合向电路 ,根据KVL,列出t ≥ 0 的电路
0
从理论上讲电容二端的电压经过无限长时间才能衰减至零
,但在工程上一般认为换路后,经过4 ~ 5 时间过渡过程即结
束。如图所示曲线分别为 uC 、i 、uR 随时间变化的曲线。
uC,uR
i
U
uC
t
t
uR
-U
US R
例 4-3 在图中,开关S长期合在位置1上,当t 0 时把它
合在位置2上,求换路后电容元件上电压uC和放电电流 i 。
第一节 储能元件和换路定则
由于电路结构(例如电路的接通、断开、短路等)或参
数的变化而引起电路从一种状态转变到另一种状态称之为换路

当初始时刻无储能,电容、电感中储存的能量与任一时刻
电压与电流的关系为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章电路的过渡过程及换路定律本书此前所讨论的电路,不论是直流还是交流,电路的联接方式和参数值是不变的,
电源的输出是恒定的或周期性变化的,电路中的各部分电压也是恒定的或周期性变化的。

电路的这种状态称之为稳定状态,简称稳态。

当电路接通、断开或电路各元件的参数变化时,电路中的电压、电流等都在发生改变,从原来的稳定状态变化到另一个新的稳定状态,这个过程称过渡过程。

它不能瞬间完成,需要一定的时间(尽管往往是极短暂的),又称暂态过程。

电路在过渡过程中的工作状态称暂态。

3.1 过渡过程的产生与换路定律
3.1.1.电路中产生过渡过程的原因
电路中之所以出现过渡过程,是因为电路中有电感、电容这类储能元件的存在。

图3-1(a)中,当接通电源的瞬间,电容C两端的电压并不能即刻达到稳定值U,而是有一个从合闸前的u C=0逐渐增大到u C=U(见图3-1(b))的过渡过程。

否则,合闸后的电压将有跃变,电容电流i C=Cdu/dt将为无穷大,这是不可能的。

图3-1 RC串联电路
同样,对于电感电路,图3-2( a)中,当电源接通后,电路的电流也不可能立即跃变到U/R,而是从i L=0逐渐增大到i L=U/R(见图3-2(b))这样一个过渡过程。

否则,电感内产生的感生电动势e L=-Ldi/dt将为无穷大,也是不可能的。

图3-2 RL串联电路
过渡过程产生的实质是由于电感、电容元件是储能元件,能量的变化是逐渐的,不
能发生突变,需要一个过程。

而电容元件储有的电场能W C =C 2/2
C u ,电感元件储有的磁场能W L =L 2/2L i ,所以电容两端电压u C 和通过电感的电流i L 只能是连续变化的。

因为能量的存储和释放需要一个过程,所以有电容或电感的电路存在过渡过程。

产生过渡过程的内因:电路中存在储能元件 ,C L u i ;
外因:电路出现换路时,储能元件能量发生变化。

3.1.2.换路定律
电路工作状态的改变如电路的接通、断开、短路、改路及电路元件参数值发生变化等,称换路。

由以上分析可知,换路瞬间,电容两端的电压u C 不能跃变,流过电感的电流i L 不能跃变,这即为换路定律。

用t=0-表示换路前的终了瞬间,t=0+表示换路后的初始瞬间,则换路定律表示为
C C L L (0)(0)(0)0u u i i +-+-=⎫
⎬=⎭
() (2-86)
注意,换路定律只说明电容上电压和电感中的电流不能发生跃变,而流过电容的电
流、电感上的电压以及电阻元件的电流和电压均可以发生跃变。

换路定律的解释如下:
自然界物体所具有的能量不能突变,能量的积累或释放需要一定的时间。

所以
电容C 存储的电场能量21
2
Wc Cu =不能突变使得C u 不能突变;同样,电感 L 储
存的磁场能量21
2
L L W Li =不能突变使得L i 不能突变。

从电路关系分析(以图3-1为例):
C
C C du E iR u RC u dt
=+=+
若c u 发生突变,c
du i dt
=∞⇒=∞,这是不可能的。

根据换路定律可以确定换路后过渡过程的初始值,其步骤如下:
1)分析换路前 (t=0-)电路,求出电容电压、电感电流,即u C (0-)、i L (0-)。

2)由换路定律确定u C (0+)及i L (0+)。

3)进而计算出换路后(t=0+)电路的各参数即过渡过程的初始值。

例 图3-2(a )中,已知: R =1k Ω, L =1H , E =20 V ,开关闭合前i L =0A ,设t=0时开关闭合,求(0),(0)L L i u ++。

解:根据换路定律 (0)(0)0 A L L i i +-==
换路时电压方程 (0)(0)L E i R u ++=+ 所以 (0)20020V L u +=-= 小结:
1. 换路瞬间,C L u i 、不能突变。

其它电量均可能突变,变不变由计算结果决定;
2. 换路瞬间,0(0)0C u U -=≠,电容相当于恒压源,其值等于0U ;(0)0C u -=,电容相当于短路。

3. 换路瞬间,0(0)0L i I -=≠,电感相当于恒流源,其值等于0I ;(0)0L i -=,电感相当于断路。

3.2.一阶RC 、RL 电路的过渡过程分析
根据电路规律列写电压、电流的微分方程,若微分方程是一阶的,则该电路为一阶电路(一阶电路中一般仅含一个储能元件)。

电子电路中广泛应用由电阻R 、电容C 构成的电路,掌握RC 电路过渡过程的规律,
对分析这些电子电路很有帮助。

3.2.1.RC 电路的过渡过程分析
1.RC 电路的零输入响应
零输入是指无电源激励,输入信号为零。

在零输入时,由电容的初始状态C (0)u +所产生的电路响应,称为零输入响应。

分析RC 电路的零输入响应实际上就是分析它的放电过程。

以图3-3为例,换路前开关K 在位置1,电源对电容充电。

在t =0时将
开关转到位置2,使电容脱离电源,电容器 图3-3 RC 放电电路 通过R 放电。

由于电容电压不能跃变,
u C (0+)=u C (0-)=E ,此时充电电流i C (0+)=E/R 。

随着放电过程的进行,电容储存的电荷越来越少,电容两R 端的电压u C 越来越小,电路电流i=u C /R 越来越小。

电容两端的电压u C 随时间的变化见图3-4。

2.RC 电路的零状态响应
零状态是指换路前电容元件没有储能,(0)0C u -=。

在此条件下,由电源激励所产生的电路响应,称为零状态响应。

RC 电路的零状态响应实际上就是它的充电过
程。

图3-5为RC 充电电路。

设开关K 合上前,电路处于稳态,电容两端电压u C (0-)=0,电容元件的两极板上无电荷。

在t =0时刻合上开关K ,电源经电阻R 对电容充电,由于电容两端电压不能突变,u C (0+)=0,此时电路中的充电电流i C (0+)=E/R 。

随着电容积累的电荷逐渐增多,电容两端的电
压u C 也随之升高。

电阻分压u R 减少,电路充电电 图3-5 RC 充电电路 流i C =u R /R =(E-u C )/R 也不断下降,充电速度越来
越慢。

经过一段时间后,电容两端电压u C =E ,电路中电流i C =0,充电的过渡过程结束,电路处于新的稳态。

电容两端的电压u C 随时间的变化见图3-6。

3.RC 电路的全响应
图3-7 RC 电路的全响应 图3-8 RC 电路的全响应曲线 RC 电路的全响应是指电源激励E 、电容元件的初始状态C (0)u +均不为零时电路的响应,也就是零输入响应和零状态响应的叠加。

图3-7所示电路中,在t =0时刻,开关K 由位置1扳向位置2。

此过渡过程中,电容初始电压u C (0+)不为0,输入信号也不为0,此时的电路响应,称全响应。

在t ≥0时,电路方程为:2C C C du
E Ri u RC u dt =+=+
它的解为:12()(1)t t C u t E e E e τ
τ
--=+-
我们可以看出:全响应=零输入响应+零状态响应,这也是叠加定理在电路过渡过程中的体现和运用。

RC 电路的全响应过程,电容两端的电压u C 随时间的变化见图3-8。

3.2.1.RL 串联电路的过渡过程
对于RL 串联电路,其过渡过程分析与RC 串联电路类似,只不过电感元件中电流
不能跃变,一阶电路的分析方法同样适用于RL 串联电路。

1.RL 零状态响应
图3-9中,换路前,电感中无电流通过,(0)0L i -=,没有储能,为零状态;换路后,
(0)(0)0l L i i +-==,但此时,电流相对时
间变化率最大,电感中产生感生电动势
最大。

随时间的推移,电流越来越大,电感储存的磁场能越来越大,但电流变化越来越慢,电感分压逐渐减小。

L 越大,电感储有磁场能越多,产生阻碍电流变化的感生电动势越来越大,阻碍作用越强;R 越小,在同样电压下电感所得电流U/R 越大,储能越多,所以过渡过程时间越长.变化越缓慢。

2.RL 零输入响应
图3-10中,换路前,电感中有电流通过,
0(0)L i I E R
-==;换路后,
0(0)(0)l L i i I +-==,此时,电流相对时间变化率最大,电感中产生感生电动势最大。

随时间的推移,电流越来越小,电
感储存的磁场能越来越少。

根据基尔霍夫定律,列出t ≥0时的电路方程 图3-10 RL 零输入响应电路
3.RL 电路的全响应
与电容电路相似,电感电路的全响应为零输入响应和零状态响应的叠加:
0()(1)t t
E i t e I e R
ττ--=
-+
图3-10 RL 全响应电路。

相关文档
最新文档