第三章 电路的过渡过程
电路的过渡过程

uC (0 ) uC (0 ) 10V
-
R1
+
iC t=0
i2
uC C
R2
-
由此可画出开关S闭合后瞬间即时的等
效电路,如图所示。由图得:
i1(0+)
i1(0 )
US
uC (0 ) R1
10 10 10
0A
i2 (0 )
uC (0 ) R2
10 5
2A
+
R1
+
iC(0+)
R3
R1 R2
+
U
-
iC
+
C -uC
R0
iC +
+
C -uC
US
-
iC
IS
R0
+ C -uC
因此,对一阶电路的分析, 实际上可归结为对简单的RC 电路和RL电路的求解。一阶 动态电路的分析方法有经典 法和三要素法两种。
2.1 经典分析法
1.RC电路分析
图示电路,t=0时开关S闭合。根据KVL,得回路电压方程为:
因为:
uL
L
diL dt
uR RiL
从而得微分方程:
S
+ US
-
L R
diL dt
iL
US R
解之得:
iL
US R
(I0
U
S
)e
t
R
iL
+
R -uR
+
L -uL
稳态分量 暂态分量
式中τ=L/R为时 间常数
第3章 电路的过渡过程

第3章电路的过渡过程及换路定律本书此前所讨论的电路,不论是直流还是交流,电路的联接方式和参数值是不变的,电源的输出是恒定的或周期性变化的,电路中的各部分电压也是恒定的或周期性变化的。
电路的这种状态称之为稳定状态,简称稳态。
当电路接通、断开或电路各元件的参数变化时,电路中的电压、电流等都在发生改变,从原来的稳定状态变化到另一个新的稳定状态,这个过程称过渡过程。
它不能瞬间完成,需要一定的时间(尽管往往是极短暂的),又称暂态过程。
电路在过渡过程中的工作状态称暂态。
3.1 过渡过程的产生与换路定律3.1.1.电路中产生过渡过程的原因电路中之所以出现过渡过程,是因为电路中有电感、电容这类储能元件的存在。
图3-1(a)中,当接通电源的瞬间,电容C两端的电压并不能即刻达到稳定值U,而是有一个从合闸前的u C=0逐渐增大到u C=U(见图3-1(b))的过渡过程。
否则,合闸后的电压将有跃变,电容电流i C=Cdu/dt将为无穷大,这是不可能的。
图3-1 RC串联电路同样,对于电感电路,图3-2( a)中,当电源接通后,电路的电流也不可能立即跃变到U/R,而是从i L=0逐渐增大到i L=U/R(见图3-2(b))这样一个过渡过程。
否则,电感内产生的感生电动势e L=-Ldi/dt将为无穷大,也是不可能的。
图3-2 RL串联电路过渡过程产生的实质是由于电感、电容元件是储能元件,能量的变化是逐渐的,不能发生突变,需要一个过程。
而电容元件储有的电场能W C =C 2/2C u ,电感元件储有的磁场能W L =L 2/2Li ,所以电容两端电压u C 和通过电感的电流i L 只能是连续变化的。
因为能量的存储和释放需要一个过程,所以有电容或电感的电路存在过渡过程。
产生过渡过程的内因:电路中存在储能元件 ,C L u i ;外因:电路出现换路时,储能元件能量发生变化。
3.1.2.换路定律电路工作状态的改变如电路的接通、断开、短路、改路及电路元件参数值发生变化等,称换路。
电路第3章 电路的过渡过程

-
2Ω
-
-
跳转到第一页
在开关S闭合后瞬间,根据换路定理有:
iL (0 ) iL (0 ) 1.2A uC (0 ) uC (0 ) 7.2V
由此可画出开关S闭合后瞬间即时的等0 ) R3 7 .2 1 .2 A U s 6 iC (0 ) iL (0 ) i1 (0 ) 1 .2 1 . 2 0 A
第3章 动态电路的时域 分析
要点:过渡过程与换路定律 RC电路的充放电过程分析 微分电路与积分电路
跳转到第一页
3.1 过渡过程与换路定理
3.1.1 电路过渡过程的概念
过渡过程 定义:一个事件或物理过程,在一定条件下,可以从一个 稳定的状态——稳态,转到另一个稳定状态,而这个转变 需要一个过程,即需要一定的转化时间,这一物理过程就 称为“过渡过程”。 在研究脉冲电路时,或常常遇到带有开关的电子器件、门 电路、电容充放电等,比如最常见的RC电路
跳转到第一页
1. 经典分析法
图示电路,t=0时开关S闭合。根据KVL,得回路电压方程为:
uR uC E
du C 而: iC C dt du C u R RiC RC dt
从而得微分方程:
+ E
S
iC R + uR
-
C
-
+ uC
-
duC RC uC E dt
跳转到第一页
解微分方程,得:
iC R + uR
duC U S U S iC C e e dt R R 电阻上的电压为:
t
+ US
t RC
-
C
uR RiC USe
线性电路过渡过程

1.3 一阶电路的零状态响应
零状态响应 一阶电路换路前储能元件没有储能,仅
由外施电源作用于电路引起的响应称零状态响应。
1.3.1 RC串联电路的零状态响应
图8.8所示的R、C串联电路,uC (0 ) 0
i
S
根据KVL,有
RC duC dt
uC
uS
电路中的电流为: i C duC uS et /
例1.2 图1.2所示电路中,已知uS=10v,R1=6Ω,
R2=4Ω。开关闭合前电路已处于稳态,求换路后瞬
间各支路电流。
图1.2 例1.2图
解题过程
1.1 换路定律与初始值的计算
解:(1) t=0-时,电路处于稳态
i2 (0
)
i1 (0)
10 64
1A
根据换路定律:i2(0+)=i2(0-)=1A
电阻、电感上的电压为
图8.6 RL串联电路的零输入响应
Rt
uR Ri RI0e L
uL
L
di dt
Rt
RI0e L
1.2 一阶电路的零输入响应
各量随时间变化的曲线如图8.7所示
iL
uR
uL
I0
I0R
0
t
0
t
0
-I0R t
(a)
(b)
(c)
图8.7 R、L电路的零输入响应曲线
综上可知: (1)一阶电路的零输入响应都是按指数规律衰减的,反映了动态元件的 初始储能逐渐被电阻耗掉的物理过程。 (2)零输入响应取决于电路的初始状态和电路的时间参数。
(2) 作出t =0+等效电路,如图1.1 (b)
由于
uC
(0
第三章 动态电路分析

1. 动态电路
动态电路分析
3.1 动态电路的基本概念
含有动态元件电容和电感的电路称动态电路。 含有动态元件电容和电感的电路称动态电路。 动态元件电容 的电路称动态电路 当动态电路状态发生改变时(换路)需要 当动态电路状态发生改变时(换路) 特点 经历一个变化过程才能达到新的稳定状态。这 经历一个变化过程才能达到新的稳定状态。 过渡过程。 个变化过程称为电路的过渡过程 个变化过程称为电路的过渡过程。 电路结构、 换路 电路结构、状态发生变化 过渡过程产生的原因 电路内部含有储能元件L 电路内部含有储能元件 、C,电路在换路时能量发生 , 变化,而能量的储存和释放都需要一定的时间来完成。 变化,而能量的储存和释放都需要一定的时间来完成。 支路接入或断开 电路参数变化
③电感的初始条件
iL(0+)= iL(0-) ψL (0+)= ψL (0-)
换路瞬间,若电感电压保持为有限值, 则电感电流 换路瞬间,若电感电压保持为有限值, 磁链)换路前后保持不变。 (磁链)换路前后保持不变。
4. 换路定律
qc (0+) = qc (0-) uC (0+) = uC (0-)
表明
τ大
t
τ 大→过渡时间长; τ 小→过渡时间短 过渡时间长 过渡时间短 t 0 τ 2τ 3τ 5τ
uc =U0e
−
0
τ小
τ
t
U0 U0 e -1
U0 e -2
U0 e -3
U0 e -5
U0 0.368U0 0.135U0 0.05U0 0.007U0
电容电压衰减到原来电压36.8%所需的时间。工程上认 所需的时间。 电容电压衰减到原来电压 所需的时间 过渡过程结束。 为, 经过 3τ-5τ , 过渡过程结束。
电路的过渡过程时间常数τ

第三章 电路的过渡过程
3.2.1 RC电路的零输入响应 RC电路的零输入响应,实际上就是分 析已经充电的电容通过电阻的放电过程。 在如图所示的电路中,开关S在位置1时, 电源对电容C充电且已达到稳态,若在 t=0时刻 把开关从位置1扳到位置2,使电路脱离电源, 输入信号为零,电路进入 过渡过程。
RC电路的零输入响应
第三章 电路的过渡过程
(1)电感支路的灯泡亮度逐渐增强,最后到达稳 定状态。 在开关S合上经过一段时间后,灯泡维持 某一亮度不变,我们就说电路达到了稳定状态, 简称稳态。而从开关合上的这一瞬间开始到进 入另一稳态的这段时间里,电流是从零逐渐上 升到稳定值的 ,这种电路由一种稳定状态 (iL 0)
(3)电阻支路的灯泡,开关合上后,灯泡亮度不变,支 路电流由零立即跃变到稳定值,不存在过渡过程。 其电流变化规律如所示。
第三章 电路的过渡过程
换路
引起电路工作状态变化的各种因素。如电路接通、断开或结构 和参数发生变化等。 过渡过程产生原因:
内因是电路中存在动态元件L或C;
外因是电路发生换路 。
第三章 电路的过渡过程
根据换路定律,此时电容元件已储有能量, u C (0 ) uC (0 ) U 0 , 电容元件通过电阻R开始放电。
第三章 电路的过渡过程
电路中各电压、电流参考方向如图所示。根据基尔霍夫电压定律可得
u R uC 0
将 u R RiC , iC C
(t 0 )
duC dt 代入上式得
duC RC uC 0 dt
(t 0 )
经过数学分析和推导可得,当电路的初始值 u C (0 ) U 0 时,电容上 的零输入响应电压为:
u C U 0e来自t RC(t 0 )
电路的过渡过程

电容
表示电路存储电荷的能力,与电压变 化率成正比,与电容电流成正比。
电阻与电导
电阻
表示电路对电流的阻碍作用,与电压和电流的比值成正比。
电导
表示电路导电能力的大小,与电阻倒数成正比。
电压与电流
电压
电场中电势差,是电路中电荷移动的动力。
电路的过渡过程
目录
• 电路过渡过程概述 • 电路过渡过程的理论基础 • 电路过渡过程的分析方法 • 电路过渡过程的仿真与实验 • 电路过渡过程的应用实例 • 电路过渡过程的优化与改进
01
电路过渡过程概述
定义与特性
定义
电路的过渡过程是指电路从一个 稳定状态变化到另一个稳定状态 的过程。
特性
过渡过程中,电路的电流和电压 不再保持稳态值,而是随时间变 化。
电磁继电器的过渡过程是指继 电器从吸合状态到释放状态, 或从释放状态到吸合状态的过
程。
在过渡过程中,电路中的电 流和电压会产生瞬态变化, 需要采取适当的控制策略来 保证继电器的正常工作。
常见的控制策略包括电压控制、 电流控制等,通过调节输入的 电压或电流来控制继电器的吸
合和释放。
06
电路过渡过程的优化与改进
实验设备与器材
01 电源:提供稳定的电压和电流,如直流电 源、交流电源等。
02 电阻、电容、电感等电子元件:构成各种 电路的基本元件。
03
示波器:用于观测电路中的电压、电流波 形。
04
信号发生器:用于产生各种频率和幅值的 信号源。
实验步骤与操作
搭建电路
根据电路图选择适当的电子元 件和设备搭建实际电路。
开关电源的过渡过程
第3章过渡过程(1)换路定则

+ _ E
i i2 i1 R 2k
1
i1 (0 ) = iL (0 ) = iL (0 ) = 1.5 mA
+
+
−
+ +
R2 1k 3V
1.5mA
uL
E − uC (0 ) i2 ( 0 ) = R2
+
+
iL (0 )
+
u( ) C 0
+
= 3 mA + + + i (0 ) = i1 (0 ) + i2 (0 ) = 4.5 mA
t
因为能量的存储和释放需要一个过程,所以有电 因为能量的存储和释放需要一个过程,所以有电 容的电路存在过渡过程。 容的电路存在过渡过程。
6-12
电感电路
K
R iL
储能元件
+ t=0 E _
iL
t
电感为储能元件,它储存的能量为磁场能量, 电感为储能元件,它储存的能量为磁场能量, 其大小为: 其大小为:
I
电阻是耗能元件,其上电流随电压比例变化, 电阻是耗能元件,其上电流随电压比例变化, 不存在过渡过程。 不存在过渡过程。
6-11
电容电路
K + _E R uC
储能元件
uC
E C
t
电容为储能元件,它储存的能量为电场能量 ,其 电容为储能元件, 大小为: 大小为:
1 2 W C = ∫ ui d t = Cu 0 2
换路时电压方程 :
已知: 已知 R=1k , L=1H , U=20 V、 、 开关闭合前 iL =0 A 设 t = 0 时开关闭合 求:
U = i (0 ) R + u L (0 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 电路的过渡过程
uC U 0 e 时间常数: τ 即: (t 0 ) t U0 τ iC e τ =RC,单位为秒(s) R 时间常数的大小直接影响 uC 及 i C 的衰减快慢。
t τ
故改变R或C的数值,也就是改变τ值,就可以改 变电容器放电的快慢 。 理论上,电路经过无穷大的时间才能进入 稳态。由于当 t = 3τ 时,uC 已衰减到 0.05 U0, 所以工程上通常在 t > 3τ以后认为暂态过程已 经结束,即电路已进入新的稳态。τ愈小,曲 线增长或衰减就愈快。
t = 0+ 时的等效电路为
u2(0+) =0
iL(0+) = iL(0) = 0
uL(0+) = U
第三章 电路的过渡过程
3.2 一阶RC、RL电路的过渡过程分析
一阶电路 只含有一个储能元件或可等效为一个储能元件的动态电路。 一阶电路的零输入响应 在一阶电路中,若输入激励信号为零,仅由储能元件的初始储能 所激发的响应。
过渡到另一种稳定状态 (iL U / R) 的过程就是过渡过 程。电感支路电流变化规律如图所示。
第三章 电路的过渡过程
(2)电容支路的灯泡在开关合上后,由最亮到逐渐变暗直至最后熄灭。
即开关合上的瞬间,电容开始充电,电容 两端电压 u C 逐渐增大,经过一段时间后, u C 等于电源端电压,电容相当于断路,此时电路 进入稳态。这种u C由零状态过渡到等于电源端 电压的过程,也是过渡过程。其电压变化曲线 如图所示。
100e1 36.8 V
5e1 18.4V
uR (t ) 5
e5104 2105
第三章 电路的过渡过程
3.2.2 RL电路的零输入响应 RL电路的零输入响应,是指电感中储存的 磁场能量通过电阻 R 进行释放的物理过程。在 如图所示电路中,开关 S 在位置 1时,电路已 处于稳态,此时电感中的电流 I 0 ,若在 RL电路的零输入响应 t =0时,把开关由位置1扳到位置2,电路脱离电源,输入信号为零,电路 进入过渡过程,电路的初始值 iL (0 ) I 0 。电路中各电压、电流方向如图 所示,由基尔霍夫定律得:
(3)电阻支路的灯泡,开关合上后,灯泡亮度不变,支 路电流由零立即跃变到稳定值,不存在过渡过程。 其电流变化规律如所示。
第三章 电路的过渡过程
换路
引起电路工作状态变化的各种因素。如电路接通、断开或结构 和参数发生变化等。 过渡过程产生原因:
内因是电路中存在动态元件L或C;
外因是电路发生换路 。
第三章 电路的过渡过程
在应用换路定律时,要注意的是电容电压u C和电感电流i L 不能跃起变,而电容电流 i C和电感电压u L以及电阻上的电压u R 、电流 i R等 是可以跃变的,因为它们的跃变不会导致能量的跃变。
注 意
iL(0+)= iL(0–)
uC(0+)= uC(0–)
第三章 电路的过渡过程
初始值的计算
步骤: (1)由换路前的稳态电路,即t=0-时的等效电路求出电容电压uC(0–)
(2)确定稳态值,由换路后f(∞)时的稳态等效电路求得; (3)确定时间常数τ,τ只与电路的结构和参数有关,在RC电路中, τ =RC;在RL电路中, τ =R/L。其中电阻R是换路后,在动态元 件两端的戴维宁等效电阻。
第三章 电路的过渡过程
(1)电感支路的灯泡亮度逐渐增强,最后到达稳 定状态。 在开关S合上经过一段时间后,灯泡维持 某一亮度不变,我们就说电路达到了稳定状态, 简称稳态。而从开关合上的这一瞬间开始到进 入另一稳态的这段时间里,电流是从零逐渐上 升到稳定值的 ,这种电路由一种稳定状态 (iL 0)
4
u R (t ) RiC (t ) 10 3 (0.005 e 510 t ) 5e 510 t V
(t 0 )
6 5 将 t 20 µ s= 2010 2 10 s 分别代入 uC (t ),u R (t ) 得
uC (t ) 100e
5104 2105
电路中含有储能元件(电感或电容),在换路瞬间储能元件的能 量不能跃变,即
电感元件的储能
电容元件的储能
1 2 WL LiC 2 2 WC CuC 2
不能跃变 不能跃变
否则将使功率达到无穷大
第三章 电路的过渡过程
3.1.2 换路定律及电压、电流初始值的确定 设 t = 0 为换路瞬间,而以 t = 0– 表示换路前的终了瞬间,t = 0+ 表示 换路后的初始瞬间。 换路定律用公式表示为
τ=
L ,单位为秒(s) R
电感上的零输入响应电流、电压曲 线左图所示 。
第三章 电路的过渡过程
时间常数 τ 的大小同样反映了RL电路响应衰减的快慢程度。在同样大 的初始电流I0下, L愈大,电感储存磁场能量越多,通过电阻释放电量所需 的时间就愈长,暂态过程也就愈长。而当电阻愈小时,在同样大的初始电 流I0下,电阻消耗的功率也就越小,暂态过程也就越长。因此,改变L或R 的数值,也就是改变τ 值,即可以改变RL电路暂态过程的时间。
根据换路定律,此时电容元件已储有能量, u C (0 ) uC (0 ) U 0 , 电容元件通过电阻R开始放电。
第三章 电路的过渡过程
电路中各电压、电流参考方向如图所示。根据基尔霍夫电压定律可得
u R uC 0
将 u R RiC , iC C
(t 0 )
duC dt 代入上式得
电容上的零输入响应电流、电压曲线
例 如图所示,已知 U S 100 V, R 10 kΩ, R 10 kΩ, C 1000 pF,当开关S 0 在1时,电路已达到稳态,试求开关S由1扳到2经过20µs时的 uC , u R 各为多少?
第三章 电路的过渡过程
解:
uC (0 ) uC (0 ) U S 100V
RC ( R0 R)C
(10 10) 103 10001012
2 106 s
uC (t ) U0e
iC (t )
t
100e
t 2105
100e
5104 t
V (t 0 )
(t 0 )
4
4 uC (t ) 0.005e510 t A R0 R
duC RC uC 0 dt
(t 0 )
经过数学分析和推导可得,当电路的初始值 u C (0 ) U 0 时,电容上 的零输入响应电压为:
u C U 0e
t RC
(t 0 )
电容上的零输入响应电流为:
duC U 0 RC iC C e dt R
t
(t 0 )
电感上的零输入响应电压为 :
t / t / US diL R uL L I 0 Re Re R dt R1 L L
(t 0 )
(t 0 ) 时间常数: τ
即:
t US uL Re τ R1 t U i S e τ R1
(t 0 )
第三章 电路的过渡过程
3.2.1 RC电路的零输入响应 RC电路的零输入响应,实际上就是分 析已经充电的电容通过电阻的放电过程。 在如图所示的电路中,开关S在位置1时, 电源对电容C充电且已达到稳态,若在 t=0时刻 把开关从位置1扳到位置2,使电路脱离电源, 输入信号为零,电路进入 过渡过程。
RC电路的零输入响应
US R1
uR uL 0
将
(t 0 )
diL u R RiL , u L L 代入上式可得 dt
L diL iL 0 R dt
(t 0 )
同样,根据数学分析推导,当电路的初始值 iL (0 ) I 0 时,
第三章 电路的过渡过程
电感上的零输入响应电流为: L L t / t / U iL I 0 e R S e R R1
第三章 电路的过渡过程
例 已知 iL (0 ) = 0,uC (0 ) = 0,试求 S 闭合瞬间,电路中各电压、电流的初始值。
解
根据换路定则及已知条件可知, iL(0+) = iL(0–) = 0 uC(0+) = uC(0) = 0
电路中各电压电流的初始值为 U i1(0+) = iC(0+) = u1(0+) = i1(0+) R1 = U R1
第三章 电路的过渡过程
3.2.3 一阶电路的三要素法
一阶电路的暂态过程通常是:电路的响应是由初始值向新的稳态值过 渡,并且按指数规律逐渐趋向新的稳态值,趋向新稳态值的速率与时间常 数τ有关。 一阶电路的三要素法
只要知道换路后的初始值、稳态值和时间常数τ这三个要素,就能直 接求出一阶电路暂态过程的解。
第三章 电路的过渡过程
3.1 换路定律与初始值
3.1.1 电路的过渡过程 稳态: 过渡过程: 是指电路的结构和参数一定时,电路中电压、电流不变。 凡是事物的运动和变化,从一种稳定状态变化到另一 种新的稳定状态,往往不能发生跃变,而是需要一定的过 程(时间),这个物理过程就称为过渡过程或瞬态过程。
如图所示电路中,将R、L、C三个元件 分别串接一只同样的灯泡,然后并接在直流 电源上,当开关S闭合后就会看到如下现象:
一阶电路响应的一般公式为:
t τ
f ( t ) f ( ) f ( 0 ) f ( )e
(t 0 )
f(t)表示电路的响应, f(0+)表示电路的初始值, f(∞)表示电路的稳态值
第三章 电路的过渡过程
求解方法如下: (1)确定初始值,利用换路定律和 t =0+时的等效电路求得;