2020年七年级数学期中试卷(7中)

合集下载

2023—2024学年人教版七年级上学期数学期中试卷(附答案)

2023—2024学年人教版七年级上学期数学期中试卷(附答案)

2023—2024学年人教版七年级上学期数学期中试卷及参考答案考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、2022的相反数是()A.B.﹣C.2022D.﹣20222、4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×1033、一条东西走向的道路上,小明先向西走3米,记作“﹣3米”,他又向西走了4米,此时小明的位置可记作()A.﹣2米B.+7米C.﹣3米D.﹣7米4、下列去括号,正确的是()A.a﹣(b+c)=a﹣b﹣c B.a+(b﹣c)=a+b+cC.a﹣(b+c)=a﹣b+c D.a﹣(b+c)=a+b﹣c5、已知3x m y2与﹣2x4y n为同类项,则m+n=()A.2B.4C.6D.86、若|x﹣1|+x=1,则x一定满足()A.x<1B.x>1C.x≤1D.x≥17、多项式x|n|﹣(n+2)x+7是关于x的二次三项式,则n的值是()A.2B.﹣2C.2或﹣2D.38、小明同学做一道数学题时,误将求“A﹣B”看成求“A+B”,结果求出的答案是3x2﹣2x+5,已知A=4x2﹣3x﹣6,请你帮助小明同学求出A﹣B应为()A.﹣x2+x+11B.3x2﹣4x﹣17C.5x2﹣4x﹣17D.5x2﹣2x+59、若x=﹣1时,ax5+bx3+cx+1=6,则x=1时,ax5+bx3+cx+1=()A.﹣3B.12C.﹣6D.﹣410、某种产品原价为100元,现因原料提价,因而厂家决定对产品进行提价,有以下两种方案;方案一,第一次提价10%,第二次提价30%;方案二,第一、二次提价均为20%.请问:哪种方案提价多()A.方案一B.方案二C.两种方案一样D.不能确定二、填空题(每小题3分,满分18分)11、比较大小:﹣﹣.12、若a与b互为倒数,m与n互为相反数,则(ab)2013+(m+n)2014的值为.13、已知|a+1|+(b﹣3)2=0,则a b=.14、在数轴上,与表示﹣3的点相距6个单位长度的点所表示的数是.15、若代数式x﹣2y=﹣2,则代数式9+2x﹣4y=.16、用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子枚.(用含n的代数式表示)三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(1);(2)×(﹣36).18、先化简,再求值:3(x2﹣xy+y2)﹣2(y2﹣3xy+x2),其中x=﹣2,y=3.19、有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:c﹣b0,a+b0,a﹣c0.(2)化简:|c﹣b|+|a+b|﹣|a﹣c|.20、某检修小组在东西向的马路上检修线路,从A地出发,需到达B地,约定向东为正方向,当天的行驶记录如下(单位:千米):﹣11,﹣9,+18,﹣2,+13,+4,+12,﹣7.(1)通过计算说明:B地在A地的什么方向,与A地相距多远?(2)在行驶过程中,最远处离出发点A地有多远?(3)若每千米耗油0.5升,油箱容量为29升,求途中还需补充多少升油?21、已知|x|=5,|y|=3.(1)若x﹣y>0,求x+y的值;(2)若xy<0,求|x﹣y|的值;(3)求x﹣y的值.22、已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.(1)化简:2A﹣3B;(2)若,xy=1,求2A﹣3B的值;(3)若2A﹣3B的值与y的取值无关,求此时2A﹣3B的值.23、(1)如图1所示,阴影部分由两个直角三角形组成,用代数式表示图中阴影部分的面积S.(2)请你求出当a=2,b=6,h=4时,S的值.(3)在第(2)问的条件下,增加一个半圆的阴影,如图2所示,求整个阴影部分的面积S1的值.(π取3.14,结果精确到0.1)24、已知(2x﹣1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,其中a5表示的是x5的系数,a4表示的是x4,以此类推.当x=2时,35=25•a5+24•a4+23•a3+22•a2+2•a1+a0.(1)取x=0,则可知a0=.(2)利用特殊值法求﹣a5+a4﹣a3+a2﹣a1+a0的值.(3)探求a4+a2的值.25、如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是;点P表示的数是(用含t的代数式表示).(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒后与点Q相距4个单位长度?(3)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请用计算说明,并求出线段MN的长.2023—2024学年人教版七年级上学期数学期中试卷参考答案一、择题(每题只有一个正确选项,每小题3分,满分30分)1—10:DCDAC CBCDB二、填空题(每小题3分,满分18分)11、>12、1 13、-1 14、﹣9或3 15、5 16、(3n+1)三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解:(1)0 (2)﹣1118、解:﹣519、解:(1)答案为:>,<,<;(2)﹣2b20、解:(1)B地在A地的东边18千米;(2)最远处离出发点25千米;(3)需补充的油量为9升.21、解:(1)x+y的值为:8或2;(2)|x﹣y|的值为:8;(3)x﹣y=±2或±8.22、解:(1)=7x+7y﹣11xy;当x+y=﹣,xy=1时,2A﹣3B=﹣17;(3).23、解:(1)S=(b﹣a)h=bh﹣;(2)当a=2,b=6,h=4时,S=×6×4﹣×2×4=12﹣4=8;(3)S1=S+×=8+×3.14×1=8+1.57=9.57≈9.6.∴整个阴影部分的面积S1的值为9.6.24、解:故答案为:﹣1;(2)﹣243;(3)﹣120.25、解:(1)答案为:﹣5;7;12;(2)点P所对应的数为﹣1016;(3)﹣17和﹣1别是点P运动了第23次和第8次到达的位置.。

2020年湖北省武汉市汉阳区七年级(下)期中数学试卷

2020年湖北省武汉市汉阳区七年级(下)期中数学试卷
7.【答案】D
【解析】解:交换命题 A 的题设和结论,得到的新命题是内错角相等,两直线平行是真 命题,不合题意; 交换命题 B 的题设和结论,得到的新命题是若 a=b 时,则 a2=b2,是真命题,不合题意; 交换命题 C 的题设和结论,得到的新命题是对顶角相等是真命题,不合题意; 交换命题 D 的题设和结论,得到的新命题是无理数是无限小数,假命题,符合题意, 故选:D. 写出原命题的逆命题,根据相关的性质、定义判断即可. 本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命 题的真假关键是要熟悉课本中的性质定理.
8.【答案】A
【解析】解:由题意,得 ,
解得

(b-a)2017=(-1)2017=-1, 故选:A. 根据非负数的性质,可得 a,b 的值,根据 本题考查了解二元一次方程组,利用非负数的性质的出关于 a,b 的方程组是解题关键.
9.【答案】D
【解析】解:线段 MN 是由线段 EF 经过平移得到的,点 E(-1,3)的对应点 M(2,5 ),故各对应点之间的关系是横坐标加 3,纵坐标加 2, ∴点 N 的横坐标为:-3+3=0;点 N 的纵坐标为-2+2=0; 即点 N 的坐标是(0,0). 故选:D. 各对应点之间的关系是横坐标加 3,纵坐标加 2,那么让点 F 的横坐标加 3,纵坐标加 2 即为点 N 的坐标. 本题考查图形的平移变换,在平面直角坐标系中,图形的平移与图形上某点的平移相同 ,解决本题的关键是找到各对应点之间的变化规律.
3.【答案】C
【解析】【分析】在同一平面内不重合的两条直线,有两种位置关系:相交或平行,据 此解答即可. 本题考查了平行线和相交线.注意:同一平面内的两条直线,不排除重合的现象. 【解答】在同一个平面内,两条直线平行或相交. 观察选项,C 选项符合题意. 故选:C.

2020-2021学年辽宁省沈阳市沈河区七年级(下)期中数学试卷

2020-2021学年辽宁省沈阳市沈河区七年级(下)期中数学试卷

2020-2021学年辽宁省沈阳市沈河区七年级(下)期中数学试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题2分,共20分)1.(2分)计算230的结果是()A.23B.1C.0D.322.(2分)如图,下列说法正确的是()A.∠2与∠3是同旁内角B.∠1与∠2是同位角C.∠1与∠3是同位角D.∠1与∠2是内错角3.(2分)下列运算正确的是()A.a5÷a2=a3B.a2•a3=a6C.3a2﹣2a=a2D.(a+b)2=a2+b24.(2分)下列各组线段能组成一个三角形的是()A.2cm,3cm,6cm B.6cm,8cm,10cmC.5cm,5cm,10cm D.4cm,6cm,10cm5.(2分)如图,某单位要在河岸l上建一个水泵房引水到C处,他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是()A.两点之间,线段最短B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.两点确定一条直线D.直线外一点与直线上所有点的连线中,垂线段最短6.(2分)华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A.7×10﹣9B.7×10﹣8C.0.7×10﹣9D.0.7×10﹣8 7.(2分)如果将一副三角板按如图方式叠放,那么∠1的度数是()A.90°B.100°C.105°D.135°8.(2分)二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关,如图是一年中部分节气所对应的白昼时长示意图.则夏至与秋分白昼时长相差()A.2小时B.3小时C.2.5小时D.4小时9.(2分)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,添加的一组条件不正确的是()A.BC=DC,∠A=∠D B.BC=EC,AC=DCC.∠B=∠E,∠BCE=∠ACD D.BC=EC,∠B=∠E10.(2分)研究表明,当每公顷钾肥和磷肥的施用量一定时,氮肥施用量与土豆的产量有如表所示的关系:氮肥施用量/千克03467101135202259336404471土豆产量/吨15.1821.3625.7232.2934.0539.4543.1543.4640.8330.75下列说法错误的是()A.氮肥施用量是自变量,土豆产量是因变量B.当氮肥的施用量是101千克/公顷时,土豆的产量是32.29吨/公顷C.如果不施氮肥,土豆的产量是15.18吨/公顷D.氮肥施用量404千克/公顷比氮肥施用量336千克/公顷时的土豆的产量更高二、填空题(每小题3分,共18分)11.(3分)已知a m=3,a n=2,则a m+n=.12.(3分)如图,一张宽度相等的长方形纸条,如图所示折叠一下,那么∠1=°.13.(3分)将长为23cm、宽为10cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为2cm,设x张白纸粘合后的总长度为ycm,y与x的函数关系式为.14.(3分)如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC 于点E.若∠C=26°,则∠DAE的度数为.15.(3分)如图的瓶子中盛满了水,则水的体积是.(用代数式表示)16.(3分)如图,∠CAD和∠CBD的平分线相交于点P.请写出∠C、∠D、∠P的数量关系.三、解答题(第17小题16分,18小题6分,19小题6分,20小题8分,共36分)17.(16分)计算:(1)(﹣3)0﹣2×23﹣()﹣2;(2)(﹣2a)3﹣(﹣a)•(3a)2;(3)(x+1)(2x﹣3);(4)199×201+1.(利用乘法公式)18.(6分)先化简,再求值:[(2x+y)(2x﹣y)﹣(2x﹣y)2]÷2y,其中x=﹣1,y=2.19.(6分)如图,在△ABC中,D是AB边上的一点.请用尺规作图法,在△ABC内,作出∠ADE,使∠ADE=∠B,DE交AC于点E.(保留作图痕迹不写作法)20.(8分)完成推理填空如图,已知∠B=∠D,∠BAE=∠E.将证明∠AFC+∠DAE=180°的过程填写完整.证明:∵∠BAE=∠E,∴∥().∴∠B=∠().又∵∠B=∠D,∴∠D=∠(等量代换).∴AD∥BC().∴∠AFC+∠DAE=180°().四、(本题8分)21.(8分)如图,BE⊥AE,CF⊥AE,垂足分别为E、F,D是EF的中点,CF=AF.(1)请说明CD=BD;(2)若BE=6,DE=3,请直接写出△ACD的面积.五、(本题8分)22.(8分)小明家距离学校8千米.一天早晨,小明骑车上学途中自行车出现故障,他于原地修车,车修好后,立即在确保安全的前提下以更快的速度匀速骑行到达学校.如图反映的是小明上学过程中骑行的路程(千米)与他所用的时间(分钟)之间的关系,请根据图象,解答下列问题:(1)小明骑行了千米时,自行车出现故障;修车用了分钟;(2)自行车出现故障前小明骑行的平均速度为千米/分,修好车后骑行的平均速度为千米/分;(3)若自行车不发生故障,小明一直按故障前的速度匀速骑行,与他实际所用时间相比,将早到或晚到学校多少分钟?六、(本题8分)23.(8分)劳动是财富的源泉,也是幸福的源泉.沈河区某中学对劳动教育进行积极探索和实践,创建学生劳动教育基地,让学生参与农耕劳作.如图,现计划利用校园围墙的一段MN(MN最长可用25m),用40m长的篱笆,围成一个长方形菜园ABCD.设AB 的长为xm(7.2≤x>20).(1)BC的长度为m(用含x的代数式表示),长方形菜园的面积S(m2)与AB的长x(m)的关系式为S=;(2)根据(1)中的关系式完成如表:AB的长x(m)89101112131415……菜园的面积S(m2)192198182168150……(3)请根据表中数据分析,S如何随x的变化而变化?(写出一个结论即可)七、(本题10分)24.(10分)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图所示)就是一例.这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方(左右)两数之和.事实上,这个三角形给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1、2、1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1、3、3、1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数等等.(1)根据上面的规律,(a+b)4展开式的各项系数中最大的数为;(2)求出25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5的值;(3)若(x﹣1)2020=a1x2020+a2x2019+a3x2018+……+a2019x2+a2020x+a2021,求出a1+a2+a3+……+a2019+a2020的值.八、(本题12分)25.(12分)已知直线MN∥PQ,点A在直线MN上,点B、C为平面内两点,AC⊥BC于点C.(1)如图1,当点B在直线MN上,点C在直线MN上方时,延长CB交直线PQ于点D,则∠CAB和∠CDP之间的数量关系是.(2)如图2,当点C在直线MN上且在点A左侧,点B在直线MN与PQ之间时,过点B作BD⊥AB交直线PQ于点D.为探究∠ABC与∠BDP之间的数量关系,小明过点B 作BF∥MN.请根据他的思路,写出∠ABC与∠BDP的关系,并说明理由;(3)如图3,在(2)的条件下,作∠ABD的平分线交直线MN于点E,当∠AEB=2∠ABC时,直接写出∠ABC的度数.(4)如图4,当点C在直线MN上且在点A左侧,点B在直线PQ下方时,过点B作BD⊥AB交直线PQ于点D.作∠ABD的平分线交直线MN于点E,当∠BDP=2∠BEN 时,请补充图形并直接写出∠ABC的度数.2020-2021学年辽宁省沈阳市沈河区七年级(下)期中数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题2分,共20分)1.(2分)计算230的结果是()A.23B.1C.0D.32【分析】根据零指数幂的运算法则进行计算即可得出答案.【解答】解:230=1.故选:B.2.(2分)如图,下列说法正确的是()A.∠2与∠3是同旁内角B.∠1与∠2是同位角C.∠1与∠3是同位角D.∠1与∠2是内错角【分析】根据同位角,内错角,同旁内角的定义逐个判断即可.【解答】解:A、∠2和∠3是同旁内角,故本选项符合题意;B、∠1和∠2不是同位角,故本选项不符合题意;C、∠1和∠3是内错角,不是同位角,故本选项不符合题意;D、∠2和∠3是同旁内角,不是内错角,故本选项不符合题意;故选:A.3.(2分)下列运算正确的是()A.a5÷a2=a3B.a2•a3=a6C.3a2﹣2a=a2D.(a+b)2=a2+b2【分析】分别根据同底数幂的除法法则,同底数幂的乘法法则,合并同类项法则以及完全平方公式逐一判断即可.【解答】解:A、a5÷a2=a3,故本选项符合题意;B、a2•a3=a5,故本选项不合题意;C、3a2与﹣2a不是同类项,所以不能合并,故本选项不合题意;D、(a+b)2=a2+2ab+b2,故本选项不合题意;故选:A.4.(2分)下列各组线段能组成一个三角形的是()A.2cm,3cm,6cm B.6cm,8cm,10cmC.5cm,5cm,10cm D.4cm,6cm,10cm【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、2+3<6,不能组成三角形,不符合题意;B、6+8=14>10,能组成三角形,符合题意;C、5+5=10,不能组成三角形,不符合题意;D、4+6=10,不能组成三角形,不符合题意;故选:B.5.(2分)如图,某单位要在河岸l上建一个水泵房引水到C处,他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是()A.两点之间,线段最短B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.两点确定一条直线D.直线外一点与直线上所有点的连线中,垂线段最短【分析】根据垂线段最短进行判断.【解答】解:因为CD⊥l于点D,根据垂线段最短,所以CD为C点到河岸l的最短路径.故选:D.6.(2分)华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A.7×10﹣9B.7×10﹣8C.0.7×10﹣9D.0.7×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:数0.00 000 0007用科学记数法表示为7×10﹣9.故选:A.7.(2分)如果将一副三角板按如图方式叠放,那么∠1的度数是()A.90°B.100°C.105°D.135°【分析】直接利用一副三角板的内角度数,再结合三角形外角的性质得出答案.【解答】解:如图所示:由题意可得,∠2=90°﹣45°=45°,则∠1=∠2+60°=45°+60°=105°.故选:C.8.(2分)二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关,如图是一年中部分节气所对应的白昼时长示意图.则夏至与秋分白昼时长相差()A.2小时B.3小时C.2.5小时D.4小时【分析】根据图象,可以得出夏至与秋分白昼时长,然后即可解答本题.【解答】解:由图可得,夏至白昼时长15小时,秋分白昼时长12小时,15﹣12=3(小时).故选:B.9.(2分)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,添加的一组条件不正确的是()A.BC=DC,∠A=∠D B.BC=EC,AC=DCC.∠B=∠E,∠BCE=∠ACD D.BC=EC,∠B=∠E【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A.AB=DE,BC=DC,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEC,故本选项符合题意;B.AC=DC,AB=DE,BC=EC,符合全等三角形的判定定理SSS,能推出△ABC≌△DEC,故本选项不符合题意;C.∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,即∠ACB=∠DCE,∵∠B=∠E,AB=DE,∴△ABC≌△DEC(AAS),故本选项不符合题意;D.AB=DE,∠B=∠E,BC=EC,符合全等三角形的判定定理SAS,能推出△ABC≌△DEC,故本选项不符合题意;故选:A.10.(2分)研究表明,当每公顷钾肥和磷肥的施用量一定时,氮肥施用量与土豆的产量有如表所示的关系:03467101135202259336404471氮肥施用量/千克土豆产量/吨15.1821.3625.7232.2934.0539.4543.1543.4640.8330.75下列说法错误的是()A.氮肥施用量是自变量,土豆产量是因变量B.当氮肥的施用量是101千克/公顷时,土豆的产量是32.29吨/公顷C.如果不施氮肥,土豆的产量是15.18吨/公顷D.氮肥施用量404千克/公顷比氮肥施用量336千克/公顷时的土豆的产量更高【分析】根据图表数据可得,土豆产量随氮肥施用量的变化而变化,并且氮肥施用量在小于或等于336千克/公顷时,土豆的产量是逐渐增加的,而氮肥施用量在大于或等于404千克/公顷时,土豆的产量是逐渐减少的,据此解对各选项分析判断即可.【解答】解:A、氮肥施用量是自变量,土豆产量是因变量,原说法正确,故选项不符合题意;B、当氮肥的施用量是101千克/公顷时,土豆的产量是32.29吨/公顷,原说法正确,故选项不符合题意;C、如果不施氮肥,土豆的产量是15.18吨/公顷,原说法正确,故选项不符合题意;D、氮肥施用量404千克/公顷比氮肥施用量336千克/公顷时的土豆的产量更低,原说法错误,故选项符合题意.故选:D.二、填空题(每小题3分,共18分)11.(3分)已知a m=3,a n=2,则a m+n=6.【分析】根据同底数幂的乘法,可得答案.【解答】解:a m+n=a m•a n=3×2=6,故答案为:6.12.(3分)如图,一张宽度相等的长方形纸条,如图所示折叠一下,那么∠1=65°.【分析】根据两直线平行,内错角相等与翻折的性质求出∠1.【解答】解:如图所示,∵AB∥CD,∴∠BEG=130°,由折叠可得,∠1=∠GEF=∠BEG=65°.故答案为|:65.13.(3分)将长为23cm、宽为10cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为2cm,设x张白纸粘合后的总长度为ycm,y与x的函数关系式为y=21x+2.【分析】等量关系为:纸条总长度=25×白纸张数﹣(白纸张数﹣1)×2,把相关数值代入即可求解.【解答】解:每张长方形白纸的长度是23cm,x张应是23xcm,由图中可以看出4张白纸之间有3个粘合部分,那么x张白纸之间有(x﹣1)个粘合,应从总长度中减去.∴y与x的函数关系式为:y=23x﹣(x﹣1)×2=21x+2.故答案为:y=21x+2.14.(3分)如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC 于点E.若∠C=26°,则∠DAE的度数为14°.【分析】利用垂直的定义得到∠ADC=90°,再根据三角形内角和计算出∠CAD=64°,接着利用角平分线的定义得到∠CAE=50°,然后计算∠CAD﹣∠CAE即可.【解答】解:∵AD⊥BC,∴∠ADC=90°,∴∠CAD=180°﹣∠ADC﹣∠C=180°﹣90°﹣26°=64°,∵AE平分∠BAC,∴∠CAE=∠BAC=×100°=50°,∴∠DAE=∠CAD﹣∠CAE=64°﹣50°=14°.故答案为14°.15.(3分)如图的瓶子中盛满了水,则水的体积是.(用代数式表示)【分析】水的体积等于两个容器的体积之和,根据圆柱体积公式即可求解.【解答】解:瓶子的体积为:+=,故答案为:.16.(3分)如图,∠CAD和∠CBD的平分线相交于点P.请写出∠C、∠D、∠P的数量关系2∠P=∠D+∠C.【分析】根据三角形的外角性质、角平分线的定义得到∠CAD+∠P=∠CBD+∠C,∠CAD+∠D=∠CBD+∠P,两式相减得到答案.【解答】解:∵∠BF A=∠P AC+∠P,∠BF A=∠PBC+∠C,∴∠P AC+∠P=∠PBC+∠C,∵∠CAD和∠CBD的平分线相交于点P,∴∠P AC=∠CAD,∠PBC=∠CBD,∴∠CAD+∠P=∠CBD+∠C①,同理:∠CAD+∠D=∠CBD+∠P②,①﹣②,得∠P﹣∠D=∠C﹣∠P,整理得,2∠P=∠D+∠C,故答案为:2∠P=∠D+∠C.三、解答题(第17小题16分,18小题6分,19小题6分,20小题8分,共36分)17.(16分)计算:(1)(﹣3)0﹣2×23﹣()﹣2;(2)(﹣2a)3﹣(﹣a)•(3a)2;(3)(x+1)(2x﹣3);(4)199×201+1.(利用乘法公式)【分析】(1)根据零指数幂,负指数幂的公式计算即可;(2)根据积的乘方公式计算;(3)根据多项式乘以多项式的法则计算;(4)根据平方差公式计算.【解答】解:(1)原式=1﹣2×8﹣=1﹣16﹣4=﹣19;(2)原式=﹣8a3﹣(﹣a)•9a2=﹣8a3﹣(﹣9a3)=﹣8a3+9a3=a3;(3)原式=2x2﹣3x+2x﹣3=2x2﹣x﹣3;(4)原式=(200﹣1)(200+1)+1=2002﹣1+1=40000.18.(6分)先化简,再求值:[(2x+y)(2x﹣y)﹣(2x﹣y)2]÷2y,其中x=﹣1,y=2.【分析】直接利用乘法公式以及整式的混合运算法则化简,再把已知数据代入得出答案.【解答】解:原式=(4x2﹣y2﹣4x2+4xy﹣y2)÷2y=(﹣2y2+4xy)÷2y=﹣y+2x,当x=﹣1,y=2时,原式=﹣2+2×(﹣1)=﹣2﹣2=﹣4.19.(6分)如图,在△ABC中,D是AB边上的一点.请用尺规作图法,在△ABC内,作出∠ADE,使∠ADE=∠B,DE交AC于点E.(保留作图痕迹不写作法)【分析】利用基本作图(作一个角等于已知角)作出∠ADE=∠B即可.【解答】解:如图,∠ADE即为所求.20.(8分)完成推理填空如图,已知∠B=∠D,∠BAE=∠E.将证明∠AFC+∠DAE=180°的过程填写完整.证明:∵∠BAE=∠E,∴AB∥DE(内错角相等,两直线平行).∴∠B=∠BCE(两直线平行,内错角相等).又∵∠B=∠D,∴∠D=∠BCE(等量代换).∴AD∥BC(同位角相等,两直线平行).∴∠AFC+∠DAE=180°(两直线平行,同旁内角互补).【分析】根据平行线的判定与性质即可完成证明.【解答】证明:∵∠BAE=∠E,∴AB∥DE(内错角相等,两直线平行).∴∠B=∠BCE(两直线平行,内错角相等).又∵∠B=∠D,∴∠D=∠BCE(等量代换).∴AD∥BC(同位角相等,两直线平行).∴∠AFC+∠DAE=180°(两直线平行,同旁内角互补).故答案为:AB,DE,内错角相等,两直线平行;BCE,两直线平行,内错角相等;BCE,同位角相等,两直线平行;两直线平行,同旁内角互补.四、(本题8分)21.(8分)如图,BE⊥AE,CF⊥AE,垂足分别为E、F,D是EF的中点,CF=AF.(1)请说明CD=BD;(2)若BE=6,DE=3,请直接写出△ACD的面积.【分析】(1)由BE⊥AE,CF⊥AE,得∠BED=∠CFD,再由D是EF的中点,得ED =FD,根据角边角公里可得出△BED与△CFD全等,进而可得结论;(2)由全等可得CF=EB=6,然后可得DF=3,再计算出AD的长,利用三角形面积公式可得答案.【解答】解:(1)∵BE⊥AE,CF⊥AE,∴∠BED=∠CFD,∵D是EF的中点,∴ED=FD,在△BED与△CFD中,,∴△BED≌△CFD(ASA),∴CD=BD;(2)由(1)得:CF=EB=6,∵AF=CF,∴AF=6,∵D是EF的中点,∴DF=DE=3,∴AD=9,∴△ACD的面积:AD•CF=×9×6=27.五、(本题8分)22.(8分)小明家距离学校8千米.一天早晨,小明骑车上学途中自行车出现故障,他于原地修车,车修好后,立即在确保安全的前提下以更快的速度匀速骑行到达学校.如图反映的是小明上学过程中骑行的路程(千米)与他所用的时间(分钟)之间的关系,请根据图象,解答下列问题:(1)小明骑行了3千米时,自行车出现故障;修车用了5分钟;(2)自行车出现故障前小明骑行的平均速度为0.3千米/分,修好车后骑行的平均速度为千米/分;(3)若自行车不发生故障,小明一直按故障前的速度匀速骑行,与他实际所用时间相比,将早到或晚到学校多少分钟?【分析】(1)根据自行车出现故障后路程s不变解答,修车的时间等于路程不变的时间;(2)利用速度=路程÷时间分别列式计算即可得解;(3)求出未出故障需用的时间,然后用实际情况的时间减正常行驶的时间即可进行判断.【解答】解:(1)由图可知,小明行了3千米时,自行车出现故障,修车用了15﹣10=5(分钟);故答案为:3;5;(2)修车前速度:3÷10=0.3(千米/分),修车后速度:5÷15=(千米/分);故答案为:0.3;;(3)8÷(分种),30﹣=(分钟),故他比实际情况早到分钟.六、(本题8分)23.(8分)劳动是财富的源泉,也是幸福的源泉.沈河区某中学对劳动教育进行积极探索和实践,创建学生劳动教育基地,让学生参与农耕劳作.如图,现计划利用校园围墙的一段MN(MN最长可用25m),用40m长的篱笆,围成一个长方形菜园ABCD.设AB 的长为xm(7.2≤x>20).(1)BC的长度为(40﹣2x)m(用含x的代数式表示),长方形菜园的面积S(m2)与AB的长x(m)的关系式为S=﹣2x2+40x;(2)根据(1)中的关系式完成如表:AB的长x(m)89101112131415……菜园的面积S(m2)192198200198192182168150……(3)请根据表中数据分析,S如何随x的变化而变化?(写出一个结论即可)【分析】(1)由矩形的面积=长×宽求解.(2)分别代入x求解.(3)观察表格,找到S取最大值时x所对应的值,当x小于这个值时,S随x增大而增大.【解答】解:(1)BC=40﹣AB﹣CD=(40﹣2x)m,S=AB•BC=x(40﹣2x)=﹣2x2+40x,故答案为:(40﹣2x),﹣2x2+40x.(2)将x=9,10,12分别代入解析式可得S=198,200,192.故答案为:198,200,192.(3)当x<10时,S随x增大而增大.七、(本题10分)24.(10分)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图所示)就是一例.这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方(左右)两数之和.事实上,这个三角形给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1、2、1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1、3、3、1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数等等.(1)根据上面的规律,(a+b)4展开式的各项系数中最大的数为6;(2)求出25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5的值;(3)若(x﹣1)2020=a1x2020+a2x2019+a3x2018+……+a2019x2+a2020x+a2021,求出a1+a2+a3+……+a2019+a2020的值.【分析】(1)按规律写出系数即可;(2)根据系数关系写出完全平方式即可;(3)根据已知用特值法即可求出.【解答】解:(1)第五行即为1 4 6 4 1对应(a+b)4的系数,故答案为6;(2)∵(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,......∴25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5=[2+(﹣3)]5=(2﹣3)5=﹣1;(3)当x=1时,(x﹣1)2020=a1x2020+a2x2019+a3x2018+……+a2019x2+a2020x+a2021,即a1+a2+a3+……+a2019+a2020+a2021=0,当x=0时,(x﹣1)2020=a1x2020+a2x2019+a3x2018+……+a2019x2+a2020x+a2021,即a2021=1,∴a1+a2+a3+……+a2019+a2020=0﹣1=﹣1.八、(本题12分)25.(12分)已知直线MN∥PQ,点A在直线MN上,点B、C为平面内两点,AC⊥BC于点C.(1)如图1,当点B在直线MN上,点C在直线MN上方时,延长CB交直线PQ于点D,则∠CAB和∠CDP之间的数量关系是∠CAB+∠PDC=180°.(2)如图2,当点C在直线MN上且在点A左侧,点B在直线MN与PQ之间时,过点B作BD⊥AB交直线PQ于点D.为探究∠ABC与∠BDP之间的数量关系,小明过点B 作BF∥MN.请根据他的思路,写出∠ABC与∠BDP的关系,并说明理由;(3)如图3,在(2)的条件下,作∠ABD的平分线交直线MN于点E,当∠AEB=2∠ABC时,直接写出∠ABC的度数.(4)如图4,当点C在直线MN上且在点A左侧,点B在直线PQ下方时,过点B作BD⊥AB交直线PQ于点D.作∠ABD的平分线交直线MN于点E,当∠BDP=2∠BEN 时,请补充图形并直接写出∠ABC的度数.【分析】(1)利用平行线的性质条件三角形的内角和定理求解即可.(2)结论:∠ABC=∠PDB.构造平行线,利用平行线的性质求解即可.(3)设∠ABC=x,则∠AEB=2x,根据∠CBE+∠AEB=90°,构建方程求解即可.(4)设BE交PQ于J.设∠BEN=x,则∠BDP=2x,利用三角形内角和定理,构建方程求解即可.【解答】解:(1)如图1中,∵AC⊥CD,∴∠C=90°,∴∠CAB+∠ABC=90°,∵MN∥PQ,∴∠PDB=∠ABC,∴∠CAB+∠PDC=180°.故答案为:∠CAB+∠PDC=180°.(2)结论:∠ABC=∠PDB.理由:如图2中,∵MN∥PQ,BF∥MN,∴BF∥PQ,∴∠PDB=∠DBF,∵AC⊥BC,AB⊥BD,∴∠ACB=∠ABD=90°,∵∠CBF+∠ACB=180°,∴∠CBF=∠ABD=90°,∴∠ABC=∠DBF,∴∠ABC=∠PDB.(3)如图3中,∵∠AEB=2∠ABC,∴可以假设∠ABC=x,则∠AEB=2x,∵∠ABD=90°,BE平分∠ABD,∴∠ABE=∠EBD=45°,∵∠BCE=90°,∴∠CBE+∠AEB=90°,∴x+45°+2x=90°,∴x=15°,∴∠ABC=15°.(4)如图4中,图形如图所示,设BE交PQ于J.∵∠BDP=2∠BEN,∴可以假设∠BEN=x,则∠BDP=2x,∵MN∥PQ,∴∠BEN=∠PJE=x,∵∠ABD=90°,BE平分∠ABD,∴∠ABE=∠EBD=45°,∵∠BDJ+∠BJD+∠DBJ=180°,∴180°﹣2x+180°﹣x+45°=180°,∴x=75°,∵∠BCE=90°,∴∠EBC=90°﹣75°=15°,∴∠ABC=∠ABE﹣∠EBC=45°﹣15°=30°.。

2020-2021学年陕西省西市七年级(下)期中数学试卷

2020-2021学年陕西省西市七年级(下)期中数学试卷

2020-2021学年陕西省西安市七年级(下)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列运算正确的是()A.a2•a4=a8B.(﹣2a)3=﹣6a3C.m3÷(﹣m)2=m D.a4+a4=a82.(3分)截至4月2日,全球累计确诊新冠肺炎病例约1.3亿例.我们切不可掉以轻心,要做好日常防护.科学研究表明,导致新冠肺炎的新冠病毒比细菌小很多,平均直径仅为0.000000098m.这个数用科学记数法表示为()A.0.98×10﹣7B.9.8×10﹣8C.98×10﹣8D.9.8×10﹣9 3.(3分)如图所示,下列推理不正确的是()A.若∠1=∠B,则BC∥DEB.若∠2=∠ADE,则AD∥CEC.若∠A+∠ADC=180°,则AB∥CDD.若∠B+∠BCD=180°,则BC∥DE4.(3分)下列各式能用平方差公式计算的是()A.(2a+b)(a﹣2b)B.(a﹣2b)(2b﹣a)C.(2a﹣b)(﹣2a+b)D.(b﹣2a)(﹣2a﹣b)5.(3分)下面说法:①三角形的三条高交于同一点;②面积相等的两个正方形全等;③两条射线不相交就平行;④同位角相等.其中正确的有()A.1个B.2个C.3个D.4个6.(3分)如图,下列推理不能求证△ABD≌△CAD的是()A.DB=DC,AB=AC B.∠ADC=∠ADB,DB=DCC.∠C=∠B,∠ADC=∠ADB D.∠C=∠B,DB=DC7.(3分)如图,AD,AE为△ABC的高线,角平分线,DF⊥AE于点F.当∠DAC=21°,∠B=25°时,∠DAF的度数为()A.21°B.22°C.25°D.30°8.(3分)乐乐观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE=94°,∠DCE=115°,则∠E的度数是()A.30°B.25°C.23°D.21°9.(3分)如图,△ABF的面积是2,D是AB边上任意一点,E是CD中点,F是BE中点,△ABC的面积是()A.4B.6C.8D.1610.(3分)如图,长方形ABCD的两边之差为4,以长方形的四条边分别为边向外作四个正方形,且这四个正方形的面积和为80,则长方形ABCD的面积是()A.12B.21C.24D.32二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)若一个角的补角是43°,则这个角的度数为.12.(3分)已知三角形的两边长分别为2和7,第三边为奇数,则它第三边的长是.13.(3分)如果2021a=5,2021b=3.那么20212a﹣3b=.14.(3分)如图,△ABC中,∠ACB=90°,AC=5,BC=12,AB=13,P为直线AB上一动点,连接PC,则线段PC的最小值是.15.(3分)当x=﹣1时,ax2+bx+1的值为﹣3,则(a﹣b+2)(3﹣2a+2b)的值为.16.(3分)已知:如图,在四边形ABCD中,AB∥CD,∠B=90°,AB=6厘米,BC=8厘米,CD=10厘米,点P从点B出发,以2厘米/秒的速度沿BC向点C运动,同时点Q从点D出发,沿DC向点C运动,连接AP,PQ.则点Q的运动速度为厘米/秒时,△ABP与△CPQ全等.三、解答题(本大题共6小题,共52分)17.(12分)计算:(1)(﹣1)2021﹣(﹣2)﹣2+(3﹣π)0;(2)a3a4a+(a2)4﹣(﹣2a4)2;(3)[(a﹣b)(2a﹣b)﹣(a+b)2]÷(﹣a).18.(6分)在△ABC中,∠C>∠B、请用尺规作图法,在AB上找一点P,使∠PCB=∠B.(保留作图痕迹,不写作法.)19.(6分)已知:如图,AD∥BC,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E,那么∠B与∠DCE相等吗?试说明理由.请将下面的推理过程补充完整.解:∠B=∠DCE,理由如下:∵AE平分∠BAD(已知),∴∠1=∠2(角平分线定义),∵AD∥BC(已知),∴∠2=∠E(),∴∠1=∠E(),又∵∠CFE=∠E(已知),∴∠CFE=∠(等量代换),∴∥(),∴∠B=∠DCE.20.(8分)如图,在四边形ABCD中,AB∥CD,∠1=∠2,AD=EC.(1)求证:△ABD≌△EDC;(2)若AB=2,BE=3,求CD的长.21.(8分)为迎接十四运,某小区修建一个长为(3a﹣b)米,宽为(a+2b)米的长方形休闲场所ABCD.长方形内筑一个正方形活动区EFGH和连接活动区到矩形四边的四条笔直小路(如图),正方形活动区的边长为(a﹣b)米,小路的宽均为2米.活动区与小路铺设鹅卵石,其它地方铺设草坪.(1)求铺设草坪的面积是多少平方米;(2)当a=10,b=4时,需要铺设草坪的面积是多少?22.(12分)问题背景:课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=4,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,则得到△ADC≌△EDB,小明证明△BED≌△CAD用到的判定定理是:(用字母表示);问题解决:小明发现:解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.请写出小明解决问题的完整过程;拓展应用:以△ABC的边AB,AC为边向外作△ABE和△ACD,AB=AE,AC=AD,∠BAE=∠CAD=90°,M是BC中点,连接AM,DE.当AM=3时,求DE的长.2020-2021学年陕西省西安市七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列运算正确的是()A.a2•a4=a8B.(﹣2a)3=﹣6a3C.m3÷(﹣m)2=m D.a4+a4=a8【分析】分别根据同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则、幂的乘方运算法则以及合并同类项法则逐一判断即可.【解答】解:A、a2•a4=a6,故本选项不合题意;B、(﹣2a)3=﹣8a3,故本选项不合题意;C、m3÷(﹣m)2=m,故本选项符合题意;D、a4+a4=2a4,故本选项不合题意;故选:C.2.(3分)截至4月2日,全球累计确诊新冠肺炎病例约1.3亿例.我们切不可掉以轻心,要做好日常防护.科学研究表明,导致新冠肺炎的新冠病毒比细菌小很多,平均直径仅为0.000000098m.这个数用科学记数法表示为()A.0.98×10﹣7B.9.8×10﹣8C.98×10﹣8D.9.8×10﹣9【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000098m=9.8×10﹣8m.故选:B.3.(3分)如图所示,下列推理不正确的是()A.若∠1=∠B,则BC∥DEB.若∠2=∠ADE,则AD∥CEC.若∠A+∠ADC=180°,则AB∥CDD.若∠B+∠BCD=180°,则BC∥DE【分析】根据平行线的判定定理即可判断.【解答】解:A、若∠1=∠B,则BC∥DE,不符合题意;B、若∠2=∠ADE,则AD∥CE,不符合题意;C、若∠A+∠ADC=180°,则AB∥CD,不符合题意;D、若∠B+∠BCD=180°,则AB∥CD,符合题意.故选:D.4.(3分)下列各式能用平方差公式计算的是()A.(2a+b)(a﹣2b)B.(a﹣2b)(2b﹣a)C.(2a﹣b)(﹣2a+b)D.(b﹣2a)(﹣2a﹣b)【分析】根据平方差公式逐个判断即可.【解答】解:A.不符合平方差公式,不能用平方差公式进行计算,故本选项不符合题意;B.不符合平方差公式,故本选项不符合题意;C.不符合平方差公式,故本选项不符合题意;D.(b﹣2a)(﹣2a﹣b)=(﹣2a)2﹣b2=4a2﹣b2,符合平方差公式,故本选项符合题意;故选:D.5.(3分)下面说法:①三角形的三条高交于同一点;②面积相等的两个正方形全等;③两条射线不相交就平行;④同位角相等.其中正确的有()A.1个B.2个C.3个D.4个【分析】①三角形的三条高所在直线交于同一点,锐角三角形交在内部,钝角三角形交在外部,直角三角形交在直角顶点上;②根据正方形的面积得出结论;③异面的两直线有既不平行,也不相交的情况;④根据平行线的性质可得到出结论.【解答】解:①三角形的三条高所在直线交于一点,故①说法不符合题意;②因为正方形的面积是边长的平方,所以面积相等的两个正方形边长相等,且四个角又是直角,所以是全等图形,故②说法符合题意;③两条不在同一平面的直线不相交但不一定平行,故③说法不符合题意;④两直线平行,则同位角相等,故④说法不符合题意,所以正确的是①,1个,故选:A.6.(3分)如图,下列推理不能求证△ABD≌△CAD的是()A.DB=DC,AB=AC B.∠ADC=∠ADB,DB=DCC.∠C=∠B,∠ADC=∠ADB D.∠C=∠B,DB=DC【分析】依据全等三角形的判定定理解答即可.【解答】解:A、依据SSS可知△ABD≌△ACD,故A不符合要求;B、依据SAS可知△ABD≌△ACD,故B不符合要求;C、依据AAS可知△ABD≌△ACD,故C不符合要求;D、依据SSA可知△ABD≌△ACD,故D符合要求.故选:D.7.(3分)如图,AD,AE为△ABC的高线,角平分线,DF⊥AE于点F.当∠DAC=21°,∠B=25°时,∠DAF的度数为()A.21°B.22°C.25°D.30°【分析】依据AD,AE为△ABC的高线,角平分线,即可得到∠BAD和BAE的度数,再根据角的和差关系,即可得出∠DAF的度数.【解答】解:∵AD⊥BC,∴∠ADB=90°,又∵∠B=25°,∴∠BAD=90°﹣25°=65°,又∵∠CAD=21°,∴∠BAC=65°+21°=86°,又∵AE平分∠BAC,∴∠BAE=∠BAC=86°=43°,∴∠DAF=∠BAD﹣∠BAE=65°﹣43°=22°,故选:B.8.(3分)乐乐观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE=94°,∠DCE=115°,则∠E的度数是()A.30°B.25°C.23°D.21°【分析】延长DC交AE于F,依据AB∥CD,∠BAE=94°,可得∠CFE=94°,再根据三角形外角性质,即可得到∠E=∠DCE﹣∠CFE.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=94°,∴∠CFE=94°,又∵∠DCE=115°,∴∠E=∠DCE﹣∠CFE=115°﹣94°=21°.故选:D.9.(3分)如图,△ABF的面积是2,D是AB边上任意一点,E是CD中点,F是BE中点,△ABC的面积是()A.4B.6C.8D.16【分析】连接AE,由F为BE中点可得S△ABE=4,又由E为CD中点可得S△ADE=,S△BDE=,从而S△ABE=S△ADE+S△BDE=(S△ADC+S△BDC)=S△ABC=4,即可得到答案.【解答】解:连接AE,如图.∵F为BE中点,S△ABF=2,∴S△ABE=2S△ABF=2×2=4,又E为CD中点,∴S△ADE=,S△BDE=,∴S△ABE=S△ADE+S△BDE=+=(S△ADC+S△BDC)=S△ABC=4,故S△ABC=8.故选:C.10.(3分)如图,长方形ABCD的两边之差为4,以长方形的四条边分别为边向外作四个正方形,且这四个正方形的面积和为80,则长方形ABCD的面积是()A.12B.21C.24D.32【分析】设长方形ABCD的边长,表示出四个正方形的面积,根据四个正方形的面积和为80列方程求解即可.【解答】解:设AD=x,AB=y,∴y﹣x=4,∴2y2+2x2=80,即y2+x2=40,∴(y﹣x)2=16,∴y2+x2﹣2xy=16,∴40﹣2xy=16,∴xy=12,即长方形ABCD的面积为12,故选:A.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)若一个角的补角是43°,则这个角的度数为137°.【分析】根据补角的和等于180°计算即可.【解答】解:∵一个角的度数是43°,∴它的补角=180°﹣43°=137°,故答案为:137°.12.(3分)已知三角形的两边长分别为2和7,第三边为奇数,则它第三边的长是7.【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围;又知道第三边长为奇数,就可以得出第三边的长度.【解答】解:设第三边的长为x,根据三角形的三边关系,得7﹣2<x<7+2,即5<x<9,又∵第三边长是奇数,∴x=7.故答案为7.13.(3分)如果2021a=5,2021b=3.那么20212a﹣3b=.【分析】根据同底数幂的除法及幂的乘方的逆运算可计算求解.【解答】解:∵2021a=5,2021b=3,∴20212a﹣3b=20212a÷20213b=(2021a)2÷(2021b)3=52÷33=.故答案为.14.(3分)如图,△ABC中,∠ACB=90°,AC=5,BC=12,AB=13,P为直线AB上一动点,连接PC,则线段PC的最小值是.【分析】当PC⊥AB时,PC的值最小,利用面积法求解即可.【解答】解:在Rt△ABC中,∠ACB=90°,AC=5,BC=12,AB=13,当PC⊥AB时,PC的值最小,此时:△ABC的面积=•AB•PC=•AC•BC,∴13PC=5×12,∴PC=,故答案为:.15.(3分)当x=﹣1时,ax2+bx+1的值为﹣3,则(a﹣b+2)(3﹣2a+2b)的值为﹣22.【分析】先根据已知等式,得到a﹣b的值,然后对所求式子进行因式分解,整体代入计算即可.【解答】解:∵当x=﹣1时,ax2+bx+1=﹣3,∴a﹣b+1=﹣3,即a﹣b=﹣4,∴(a﹣b+2)(3﹣2a+2b)=[(a﹣b)+2][3﹣2(a﹣b)],∴原式=(﹣4+2)[3﹣2×(﹣4)]=﹣2×11=﹣22.故答案为:﹣22.16.(3分)已知:如图,在四边形ABCD中,AB∥CD,∠B=90°,AB=6厘米,BC=8厘米,CD=10厘米,点P从点B出发,以2厘米/秒的速度沿BC向点C运动,同时点Q从点D出发,沿DC向点C运动,连接AP,PQ.则点Q的运动速度为2或8厘米/秒时,△ABP与△CPQ全等.【分析】设点C运动t秒时,△ABP与△CPQ全等,则BP=2t,CP=8﹣2t,分两种情况:①当AB=CQ,BP=CP,②当AB=CP,BP=CQ分别求出t和DQ,根据速度公式即可求出答案,【解答】解:设点C运动t秒时,△ABP与△CPQ全等,则BP=2t,∵BC=8,∴CP=8﹣2t,∵AB∥CD,∠B=90°,∴∠B+∠C=180°,∴∠C=180°﹣∠B=90°.①当AB=CQ=6,BP=CP时,△ABP≌△PCQ,∴DQ=10﹣6=4,2t=8﹣2t,∴t=2,∴点Q的运动速度为4÷2=2(厘米/秒);②当AB=CP,BP=CQ时,△ABP≌△QCP,∴8﹣2t=6,CQ=2t,∴t=1,∴CQ=2,∴DQ=10﹣2=8,∴点Q的运动速度为8÷1=8(厘米/秒);综上所述:点Q的运动速度为2或8厘米/秒时,△ABP与△CPQ全等.故答案为:2或8.三、解答题(本大题共6小题,共52分)17.(12分)计算:(1)(﹣1)2021﹣(﹣2)﹣2+(3﹣π)0;(2)a3a4a+(a2)4﹣(﹣2a4)2;(3)[(a﹣b)(2a﹣b)﹣(a+b)2]÷(﹣a).【分析】(1)根据有理数的乘方、负整数指数幂和零指数幂可以解答本题;(2)根据同底数幂的乘法、积的乘方可以解答本题;(3)根据多项式乘多项式、完全平方公式、多项式除以单项式可以解答本题.【解答】解:(1)(﹣1)2021﹣(﹣2)﹣2+(3﹣π)0=(﹣1)﹣+1=﹣;(2)a3•a4•a+(a2)4﹣(﹣2a4)2=a8+a8﹣4a8=﹣2a8;(3)[(a﹣b)(2a﹣b)﹣(a+b)2]÷(﹣a)=(2a2﹣3ab+b2﹣a2﹣2ab﹣b2)×(﹣)=(a2﹣5ab)×(﹣)=﹣2a+10b.18.(6分)在△ABC中,∠C>∠B、请用尺规作图法,在AB上找一点P,使∠PCB=∠B.(保留作图痕迹,不写作法.)【分析】作线段BC的垂直平分线交AB于点P,点P即为所求作.【解答】解:如图,点P即为所求作.19.(6分)已知:如图,AD∥BC,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E,那么∠B与∠DCE相等吗?试说明理由.请将下面的推理过程补充完整.解:∠B=∠DCE,理由如下:∵AE平分∠BAD(已知),∴∠1=∠2(角平分线定义),∵AD∥BC(已知),∴∠2=∠E(两直线平行,内错角相等),∴∠1=∠E(等量代换),又∵∠CFE=∠E(已知),∴∠CFE=∠1(等量代换),∴AB∥CD(同位角相等,两直线平行),∴∠B=∠DCE.【分析】根据平行线的性质与判定逐项进行判定即可得出答案.【解答】解:∠B=∠DCE,理由如下:∵AE平分∠BAD(已知),∴∠1=∠2(角平分线定义),∵AD∥BC(已知),∴∠2=∠E(两直线平行,内错角相等),∴∠1=∠E(等量代换),又∵∠CFE=∠E(已知),∴∠CFE=∠1(等量代换),∴AB∥CD(同位角相等,两直线平行),∴∠B=∠DCE.故答案为:两直线平行,内错角相等;等量代换;1;AB;CD;同位角相等,两直线平行.20.(8分)如图,在四边形ABCD中,AB∥CD,∠1=∠2,AD=EC.(1)求证:△ABD≌△EDC;(2)若AB=2,BE=3,求CD的长.【分析】(1)由“AAS”即可证△ABD≌△EDC;(2)结合(1)可得AB=DE,BD=CD,可得结论.【解答】(1)证明:∵AB∥CD,∴∠ABD=∠EDC.在△ABD和△EDC中,,∴△ABD≌△EDC(AAS),(2)∵△ABD≌△EDC,∴AB=DE=2,BD=CD,∴CD=BD=DE+BE=2+3=5.21.(8分)为迎接十四运,某小区修建一个长为(3a﹣b)米,宽为(a+2b)米的长方形休闲场所ABCD.长方形内筑一个正方形活动区EFGH和连接活动区到矩形四边的四条笔直小路(如图),正方形活动区的边长为(a﹣b)米,小路的宽均为2米.活动区与小路铺设鹅卵石,其它地方铺设草坪.(1)求铺设草坪的面积是多少平方米;(2)当a=10,b=4时,需要铺设草坪的面积是多少?【分析】(1)用大长方形的面积减去小正方形的面积和四个长方形的面积即可;(2)将a=10,b=4代入(1)中结果计算可得答案.【解答】解:(1)草坪的面积为:(3a﹣b)(a+2b)﹣(a﹣b)2﹣[3a﹣b﹣(a﹣b)]×2=3a2+5ab﹣2b2﹣a2﹣b2+2ab﹣2(2a)﹣2×3b=2a2+7ab﹣3b2﹣4a﹣6b(平方米);(2)当a=10,b=4时,草坪的面积为:2×102+7×10×4﹣3×42﹣4×10﹣6×4=368(平方米),22.(12分)问题背景:课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=4,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,则得到△ADC≌△EDB,小明证明△BED≌△CAD用到的判定定理是:SAS(用字母表示);问题解决:小明发现:解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.请写出小明解决问题的完整过程;拓展应用:以△ABC的边AB,AC为边向外作△ABE和△ACD,AB=AE,AC=AD,∠BAE=∠CAD=90°,M是BC中点,连接AM,DE.当AM=3时,求DE的长.【分析】问题背景:先判断出BD=CD,由对顶角相等∠BDE=∠CDA,进而得出△ADC ≌△EDB(SAS);问题解决:先证明△ADC≌△EDB(SAS),得出BE=AC=3,最后用三角形三边关系即可得出结论;拓展应用:如图2,延长AM到N,使得MN=AM,连接BN,同(1)的方法得出△BMN ≌△CMA(SAS),则BN=AC,进而判断出∠ABN=∠EAD,进而判断出△ABN≌△EAD,得出AN=ED,即可求解.【解答】解:问题背景:如图1,延长AD到点E,使DE=AD,连接BE,∵AD是△ABC的中线,∴BD=CD,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),故答案为:SAS;问题解决:如图1,延长AD到点E,使DE=AD,连接BE,∵AD是△ABC的中线,∴BD=CD,在△ADC≌△EDB中,,∴△ADC≌△EDB(SAS),∴BE=AC,在△ABE中,AB﹣BE<AE<AB+BE,∵AB=4,AC=3,∴4﹣3<AE<4+3,即1<AE<7,∵DE=AD,∴AD=AE,∴<AD<;拓展应用:如图2,延长AM到N,使得MN=AM,连接BN,由问题背景知,△BMN≌△CMA(SAS),∴BN=AC,∠CAM=∠BNM,∵AC=AD,AC∥BN,∴BN=AD,∵AC∥BN,∴∠BAC+∠ABN=180°,∵∠BAE=∠CAD=90°,∴∠BAC+∠EAD=180°,∴∠ABN=∠EAD,在△ABN和△EAD中,,∴△ABN≌△EAD(SAS),∴AN=DE,∵MN=AM,∴DE=AN=2AM,∵AM=3,∴DE=6.。

人教版数学七年级上学期《期中考试试卷》(含答案解析)

人教版数学七年级上学期《期中考试试卷》(含答案解析)
答案与解析
一、选择题(本大题共10个小题,每小题3分,共30分)
1.在 中,表示正分数的有()
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
根据正分数的定义即可求解.
【详解】在 中, 整数, 是负分数,
只有: 是正分数,共2个,
故选:B.
【点睛】本题考查了有理数的分类,熟练掌握有理数的分类方法是解本题的关键.
23.近期电影《少年 你》受到广大青少年的喜爱,某校七年级1班2班的几名同学请他们的家长在网上买票,家长了解到某电影院的活动,设购买电影票的张数为
购买张数
每张票的价格



家长沟通后决定两个班的同学在期中考试结束后去观看。两个班共有 人,期中 班人数多于 不足 人。经过估算,如果两个班都以班为单位购买,则一共应付 元。
15.已知|a|=5,|b|=3,且|a-b|=b-a,那么a+b=________.
16.已知等式 ,无论 取何值等式都成立,则 __________.
三、解答题(共8题,共72分)
17.
18. 化简:
化简求值: ,其中
19.解方程:
20.在军运会期间,七年级1班志愿者小组准备利用午休时间把校门口的自行车摆放整齐,小组长进行分工时(小组长也参与摆放)发现:如果每人摆放 辆自行车,则还剩 辆自行车需要最后再摆;如果每人摆放 辆自行车,则有一名同学少摆放 辆自行车。请问:这个志愿者小组有几名同学,校门口有几辆自行车需要摆放?
2.下列式子是单项式的是()
A. B. C. D.
【答案】A
【解析】
【分析】
直接利用单项式的定义分析得出答案.
【详解】A、1是整式,此选项符合题意;

2020年七年级数学上期中试卷带答案

2020年七年级数学上期中试卷带答案
3.有理数a,b在数轴上的点的位置如图所示,则正确的结论是()
A.a<﹣4B.a+ b>0C.|a|>|b|D.ab>0
4.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是( )
A.|a|>|b|B.|ac|=acC.b<dD.c+d>0
5.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()
(1)计算: ;
(2)若请推算 □内的符号;
(3)在“ ”的□内填入符号后,使计算所得数最小,直接写出这个最小数.
25.有一种“24点”游戏,其游戏规则是这样的,将4个1~13之间的数进行加减乘除运算(每个数只能用一次),使其结果为24.例如,1,2,3,4可做如下运算:(1+2+3)×4=24,1×2×3×4=24,等等.
解析:3
【解析】
【分析】
不含有xy项,说明整理后其xy项的系数为0.
【详解】
解:整理只含xy的项得:(k-3)xy,
∴k-3=0,k=3.
故答案为3.
【点睛】
本题考查多项式的概念.不含某项,说明整理后的这项的系数之和为0.
14.【解析】【分析】直接根据已知数据变化规律进而将原式变形求出答案【详解】解:===故答案为:【点睛】此题主要考查了数字变化规律正确将原式变形是解题关键
B、∠DOC和∠AOE互余,说法正确;
C、∠AOD和∠DOC互补,说法正确;
D、∠AOE和∠BOC互补,说法错误;
故选D.
【点睛】
本题考查了余角和补角的知识,解答本题的关键是理解余角和补角的定义,掌握角平分线的性质.

2020人教版七年级下册数学《期中考试试题》附答案

2020人教版七年级下册数学《期中考试试题》附答案

人教版七年级下学期期中测试数 学 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1. -2的相反数是( )A. -2B. 2C. ±2D. 122.2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为( )A. 0.76×104B. 7.6×103C. 7.6×104D. 76×102 3.将如图所示直角梯形绕直线l 旋转一周,得到的立体图形是( )A.B. C.D.4.在227,π,这些实数中,无理数有( )个 A. 1 B. 2 C. 3 D. 4 5.已知关于x 的一元一次方程2(x ﹣1)+3a =3的解为4,则a 的值是( ) A. ﹣1 B. 1 C. ﹣2 D. ﹣36.如图所示,直线a∥b ,点B 在直线b 上,且AB∥BC ,∥1=55°,则∥2的度数为( )A. 55°B. 45°C. 35°D. 25° 7.半面直角坐标系中,点A (-2,1)到y 轴的距离为( )A. -2B. 1C. 2D. 8.下列计算正确的是( )A.B. C. ∥2 D. ∥±29.把不等式x+2>4的解集表示在数轴上,正确的是 ( )A. B. C. D.10.下列命题中是假命题的是( )A. 若a >b ,则a+3>b+3B. 若a >b ,则-a <-bC. 若a >b ,则a 2>b 2D. 若a >b ,则33a b > 11.《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x 两、y 两,则可列方程组为( )A. 5210258x y x y +=⎧⎨+=⎩B. 5210258x y x y -=⎧⎨-=⎩C. 5210258x y x y +=⎧⎨-=⎩D.5282510x y x y +=⎧⎨+=⎩ 12.已知方程ax+by=10的两个解是10x y =-⎧⎨=⎩,15x y =⎧⎨=⎩,求a+b 的值( ) A. 6 B. -6 C. 1 D. -1二、填空题13.比较实数的大小:3.14.在平面直角坐标系中,已知,点A(m-2,3+m)x轴上,则m=______.15.如图:已知:a∥b,∥1=80°,则∥2=______.16.如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,则线段AD的长为______cm.17.不等式8x2>1的解集是______.18.如图,把自然数按图的次序排在直角坐标系中,每个自然数都对应着一个坐标.如1的对应点是原点(0,0),3的对应点是(1,1),16的对应点是(-1,2),那么,2019的对应点的坐标是______.三、解答题19.求值:(-1)2018-|1|20.如图,在平面直角坐标系中,∥ABC的三个顶点的坐标分别为:A(-1,2),B(-2,-1),C(2,0).(1)作图:将∥ABC先向右平移4个单位,再向上平移3个单位,则得到∥A1B1C1,作出∥A1B1C1;(不要求写作法)(2)写出下列点的坐标:A1______;B1______;C1______.(3)求∥ABC面积.21.已知关于x,y方程组4x y53x y9-=⎧⎨+=⎩和13418ax byx by+=-⎧⎨+=⎩有相同的解.(1)求出它们相同的解;(2)求(2a+3b)2019的值.22.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?23.如图,在∥ABC中,CD∥AB,垂足为D,点E在BC上,EF∥AB,垂足为F.(1)CD 与EF 平行吗?为什么?(2)如果∥1=∥2,CD 平分∥ACB ,且∥3=120°,求∥ACB 与∥1的度数.24.阅读材料:我们把多元方程(组)的正整数解叫做这个方程(组)的“好解”例如:18x y =⎧⎨=⎩就是方程3x+y=11的一组“好解”;123x y z =⎧⎪=⎨⎪=⎩是方程组3206x y z x y z ++=⎧⎨++=⎩的一组“好解”. (1)请直接写出方程x+2y=7所有“好解”;(2)关于x ,y ,k 的方程组1551070x y k x y k ++=⎧⎨++=⎩有“好解“吗?若有,请求出对应的“好解”;若没有,请说明理由;(3)已知x ,y 为方程33x+23y=2019的“好解”,且x+y=m ,求所有m 的值.25.如图,以直角三角形AOC 的直角顶点O 为原点,以OC ∥OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ∥(),0C b 20b -=∥()1则C 点的坐标为______∥A 点的坐标为______∥()2已知坐标轴上有两动点P ∥Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是()1,2,设运动时间为(0)t t >秒.问:是否存在这样的t ,使ODP ODQ S S =V V ?若存在,请求出t 的值;若不存在,请说明理由. ()3点F 是线段AC 上一点,满足FOC FCO ∠=∠,点G 是第二象限中一点,连OG ,使得.AOG AOF ∠=∠点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACE OEC∠+∠∠的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.的26.已知a+1是4的算术平方根,b-1是27的立方根,化简求值:2(2a-b2)-(4a-a2).答案与解析一、选择题1. -2的相反数是()A. -2B. 2C. ±2D. 1 2【答案】B【解析】【分析】直接利用相反数的定义进而分析得出答案.【详解】解:-2的相反数是:2.故选:B.【点睛】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A. 0.76×104B. 7.6×103C. 7.6×104D. 76×102【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:7600=7.6×103,故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.将如图所示的直角梯形绕直线l旋转一周,得到的立体图形是()A. B. C. D.【答案】A【解析】【分析】根据直角梯形上下底不同得到旋转一周后上下底面圆的大小也不同,进而得到旋转一周后得到的几何体的形状.【详解】题中的图是一个直角梯形,上底短,下底长,绕对称轴旋转后上底形成的圆小于下底形成的圆,因此得到的立体图形应该是一个圆台.故选:A .【点睛】本题主要考查学生是否具有基本的识图能力,以及对点、线、面、体之间关系的理解.4.在227,π,这些实数中,无理数有( )个 A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】根据无限不循环小数是无理数的定义进行判断选择即可.2=-,所以在227,π,这些实数中,无理数有,π共两个,故答案选B.【点睛】本题考查的是无理数的概念,能够准确区别无限不循环小数是解题的关键. 5.已知关于x 一元一次方程2(x ﹣1)+3a =3的解为4,则a 的值是( )A. ﹣1B. 1C. ﹣2D. ﹣3【答案】A【解析】【分析】把x=1代入方程,即可得到一个关于a 的方程,即可求解.【详解】把x =4代入方程得()24133,a -+=解得: 1.a =-故选∥A.【点睛】考查方程解的概念,使方程左右两边相等的未知数的值就是方程的解. 6.如图所示,直线a∥b ,点B 在直线b 上,且AB∥BC ,∥1=55°,则∥2的度数为()A. 55°B. 45°C. 35°D. 25°【答案】C【解析】【分析】先根据余角的定义求出∠3的度数,再由平行线的性质即可得出结论.【详解】解:∵∥1=55°,∥ABC=90°,∴∥3=90°-55°=35°.∵a ∥b ,∴∥2=∥3=35°. 的故选:C.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.7.半面直角坐标系中,点A(-2,1)到y轴的距离为()A. -2B. 1C. 2【答案】C【解析】【分析】根据点到y轴的距离等于横坐标的绝对值解答.【详解】解:∵点A(-2,1),∴点A(-2,1)到y轴的距离=|-2|=2,故选:C.【点睛】本题考查了点的坐标,熟记点到y轴的距离等于横坐标的绝对值是解题的关键.8.下列计算正确的是()∥2∥±2【答案】A【解析】【分析】根据算数平方根的定义可判断:若一个正数的平方等于a,则这个正数就是a的算数平方根【详解】A=2故B是错误C=4故C、D都是错误所以本题答案应为:A【点睛】算术平方根的定义是本题的考点,注意区别算数平方根和平方根.9.把不等式x+2>4的解集表示在数轴上,正确的是( )A. B.C.D.【答案】B【解析】 试题分析:移项得,x >4-2,合并同类项得,x >2,把解集画在数轴上,故选B .考点: 在数轴上表示不等式的解集.10.下列命题中是假命题的是( )A. 若a >b ,则a+3>b+3B. 若a >b ,则-a <-bC. 若a >b ,则a 2>b 2D. 若a >b ,则33a b > 【答案】C【解析】【分析】利用不等式的性质分别判断后即可确定正确的选项.【详解】解:A.若a >b ,则a+3>b+3,正确,是真命题;B.若a >b ,则-a <-b ,正确,是真命题;C.若a >b ,则a 2>b 2不一定成立,错误,是假命题;D.若a >b ,则33a b >,正确,是真命题; 故选:C.【点睛】本题考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大. 11.《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x 两、y 两,则可列方程组为( )A. 5210258x y x y +=⎧⎨+=⎩B. 5210258x y x y -=⎧⎨-=⎩C. 5210258x y x y +=⎧⎨-=⎩D.5282510x y x y +=⎧⎨+=⎩ 【答案】A【解析】 【分析】每头牛、每只羊分别值金x 两、y 两,根据“5头牛,2只羊,值金10两;2头牛,5只羊,值金8两”列出方程组即可得答案.【详解】由题意可得,5210258x y x y +=⎧⎨+=⎩∥ 故选A∥【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,找准等量关系列出相应的方程组.12.已知方程ax+by=10的两个解是10x y =-⎧⎨=⎩,15x y =⎧⎨=⎩,求a+b 的值( ) A. 6B. -6C. 1D. -1【答案】B【解析】【分析】把方程的两个解代入,则可得到一个关于a 和b 的二元一次方程组,解答即可. 【详解】解:把两个解10x y =-⎧⎨=⎩,15x y =⎧⎨=⎩分别代入方程ax+by=10中, 得:10510a a b -=⎧⎨+=⎩, 解得:104a b =-⎧⎨=⎩, ∴a+b=-10+4=-6,故选:B.【点睛】本题考查了二元一次方程的解,解题关键把方程的两个解代入原方程,得到关于a和b的二元一次方程组,再求解.二、填空题13.比较实数的大小:.【答案】>【解析】【分析】此题涉及的知识点是二次根式的性质,根据二次根式的性质,将3化成根号的形式即可比较出两实数的大小.【详解】将39>5,所以3【点睛】此题重点考察学生对二次根式的理解,熟练掌握二次根式的性质是本题解题的关键.14.在平面直角坐标系中,已知,点A(m-2,3+m)x轴上,则m=______.【答案】-3【解析】【分析】根据x轴上点的纵坐标为0列式计算即可得解.【详解】解:∵点A(m-2,3+m)在x轴上,∴3+m=0,解得:m=-3.故答案为:-3.【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.15.如图:已知:a∥b,∥1=80°,则∥2=______.【答案】100°【解析】【分析】利用两直线平行,同位角相等和邻补角的定义求∠2的度数.【详解】解:∵a∥b,∴∥3=∥1=80°.∥∥2=180°-∥3=100°.故答案为:100°.【点睛】本题比较简单,考查的是平行线的性质和邻补角的定义.16.如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,则线段AD的长为______cm.【答案】7.5【解析】【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=10cm,继而即可求出答案.【详解】解:∵C点为线段AB的中点,D点为BC的中点,AB=10cm,∴AC=CB=12AB=5cm,CD=12BC=2.5cm,∴AD=AC+CD=5+2.5=7.5cm.故答案为:7.5.【点睛】本题考查了比较线段的长短的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.17.不等式8x2->1的解集是______.【答案】x<6【解析】【分析】先去分母,去括号,然后移项,合并同类项,系数化成1即可.【详解】解:8x1 2->,82x ->,28x->-,x->-,6x<,6x<.故答案为:6【点睛】本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.18.如图,把自然数按图的次序排在直角坐标系中,每个自然数都对应着一个坐标.如1的对应点是原点(0,0),3的对应点是(1,1),16的对应点是(-1,2),那么,2019的对应点的坐标是______.【答案】(16,-22)【解析】【分析】观察图的结构,发现所有奇数的平方数都在第四象限的角平分线上.依此先确定2025的坐标为(22,-22),再根据图的结构求得2019的坐标.【详解】解:观察图的结构,发现所有奇数的平方数都在第四象限的角平分线上.452=2025,由2n+1=45得n=22,∴2025的坐标为(22,-22),由9的对应点是(1,1),在同一直线上且在第四象限,9的前面有0个点,25的对应点是(2,2),在同一直线上且在第四象限,10的前面有1个点,∴2019在同一直线上且在第四象限,2019的前面有21个点,2019=2025-6,22-6=16,∴2019坐标是(16,-22).故答案为:(16,-22).【点睛】本题考查了点的坐标,找到所有奇数的平方数所在位置是解题的关键.三、解答题19.求值:(-1)2018-|1|【答案】2【解析】【分析】直接利用绝对值的性质以及二次根式的性质分别化简得出答案.【详解】解:原式=1--1)-2+2=1+1-2+2=2【点睛】此题主要考查了实数运算,正确化简各数是解题关键.20.如图,在平面直角坐标系中,∥ABC的三个顶点的坐标分别为:A(-1,2),B(-2,-1),C(2,0).(1)作图:将∥ABC先向右平移4个单位,再向上平移3个单位,则得到∥A1B1C1,作出∥A1B1C1;(不要求写作法)(2)写出下列点的坐标:A1______;B1______;C1______.(3)求∥ABC的面积.【答案】(1)详见解析;(2)(3,5),(2,2),(6,3);(3)5.5【解析】【分析】(1)、(2)利用点平移的坐标变换规律,然后写出A1、B1、C1的坐标,然后描点、连线即可;(3)用一个矩形的面积分别减去三个直角三角形的面积可计算出△ABC的面积.【详解】解:(1)如图,∥A1B1C1为所作.(2)写出下列点的坐标:A1坐标为(3,5);B1坐标为(2,2);C1坐标为(6,3).故答案为:(3,5),(2,2),(6,3);(3)∥ABC 的面积=4×3-12×1×3-12×4×1-12×3×2=5.5. 【点睛】本题考查了作图-平移变换:确定平移后图形基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.21.已知关于x ,y 的方程组4x y 53x y 9-=⎧⎨+=⎩和13418ax by x by +=-⎧⎨+=⎩有相同的解. (1)求出它们相同的解;(2)求(2a+3b )2019的值.【答案】(1)x 2y 3=⎧⎨=⎩;(2)-1 【解析】【分析】(1)求出第一个方程组的解即可;(2)求出a 、b 的值,再代入求出即可.【详解】解:(1)∵解方程组4x y 5{3x y 9-=+=得:x 2{y 3==, ∴它们的相同的解是x 2{y 3==; (2)把x 2{y 3==代入方程组ax by 1{3a 4by 18+=-+=, 得:2a 3b 1{612b 18+=-+=, 解得:a 2{b 1=-=, ∴(2a+3b )2019=[2×(-2)+3×1]2019=-1.【点睛】本题考查了二元一次方程组的解,解二元一次方程组和求代数式的值等知识点,能求出两方程组的相同的解是解此题的关键.22.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如的的(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?【答案】(1)商场购进甲种矿泉水300箱,购进乙种矿泉水200箱(2)该商场共获得利润6600元【解析】【详解】(1)设商场购进甲种矿泉水x箱,购进乙种矿泉水y箱,由题意得:500{243313800 x yx y+=+=,解得:300 {200 xy==,答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱;(2)300×(36−24)+200×(48−33)=3600+3000=6600(元),答:该商场共获得利润6600元.23.如图,在∥ABC中,CD∥AB,垂足为D,点E在BC上,EF∥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∥1=∥2,CD平分∥ACB,且∥3=120°,求∥ACB与∥1的度数.【答案】(1)详见解析;(2)∥ACB=120°,∥1=60°【解析】(1)根据垂直于同一直线的两直线平行判定;(2)根据平行线的性质和已知求出∠1=∠2=∠DCB,推出DG∥BC,根据平行线的性质得出∠ACB的度数即可;再由∠ACB的度数和已知得∠DCG的度数,利用三角形的外角的性质即可求出∠1的度数.【详解】解:(1)CD∥EF,理由是:∵CD⊥AB,EF⊥AB,∴CD∥EF;(2)∵CD∥EF,∴∥2=∥DCB,∵∥1=∥2,∴∥1=∥DCB,∴DG∥BC,∴∥ACB=∥3,∵∥3=120°,∴∥ACB=120°.∵CD平分∥ACB,∴∥DCG=12∥ACB=60°,∵∥3=∥1+∥DCG,∴∥1=120°-60°=60°.∴∥ACB=120°,∥1=60°.【点睛】本题考查了对平行线的性质和判定的应用,三角形的内角和定理以及三角形外角的性质,角平分线的定义.熟练掌握平行线的判定与性质是解决本题的关键.24.阅读材料:我们把多元方程(组)的正整数解叫做这个方程(组)的“好解”例如:18 xy=⎧⎨=⎩就是方程3x+y=11的一组“好解”;123xyz=⎧⎪=⎨⎪=⎩是方程组3206x y zx y z++=⎧⎨++=⎩的一组“好解”.(1)请直接写出方程x+2y=7的所有“好解”;(2)关于x,y,k的方程组1551070x y kx y k++=⎧⎨++=⎩有“好解“吗?若有,请求出对应的“好解”;若没有,请说明理由;(3)已知x,y为方程33x+23y=2019的“好解”,且x+y=m,求所有m的值.【答案】(1)x1y3=⎧⎨=⎩,x3y2=⎧⎨=⎩,x5y1=⎧⎨=⎩;(2)x3y7=⎧⎨=⎩;(3)63,73,83【解析】【分析】(1)根据“好解”的定义,求方程的正整数解,先把方程做适当的变形,再列举正整数代入求解;(2)解方程组求得554{5594kxky+=-=,,根据“好解”的定义得5519k-<<,在范围内列举正整数代入求解;(3)根据题意,联立方程组,求出方程组的解,根据“好解”的定义得到k的取值范围,在范围内列举正整数代入求解.【详解】解:(1)由x+2y=7,得y=7x2-(x.y为正整数).∵x0 {7x2->>,即0<x<7,∴当x=1时,y=3;当x=3时,y=2;当x=5时,y=1;∴方程x+2y=7的“好解”有x1{y3==,x3{y2==,x5{y1==;(2)由x y k15{x5y10k70++=++=,解得554{5594kxky+=-=,∵55k 04{559k 04+->>,即-1<k <559, ∴当k=3时,x=5,y=7,∴方程组x y k 15{x 5y 10k 70++=++=有“好解“, ∴“好解”为x 3{y 7==;(3)由33x 23y 2019{x y m +=+=,解得201923m x 10{33m 2019y 10-=-=, ∵201923m 010{33m 2019010-->>,即201933<m <201923, ∴当m=63时,x=57,y=6;m=73时,x=38,y=39;m=83时,x=11,y=72;∴所有m 的值为63,73,83.【点睛】本题考查了三元一次方程组的应用,解题关键是要理解方程(组)的“好解”条件,根据条件求解.25.如图,以直角三角形AOC 的直角顶点O 为原点,以OC ∥OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ∥(),0C b20b -=∥()1则C 点的坐标为______∥A 点的坐标为______∥()2已知坐标轴上有两动点P ∥Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是()1,2,设运动时间为(0)t t >秒.问:是否存在这样的t ,使ODP ODQ S S =V V ?若存在,请求出t 的值;若不存在,请说明理由.()3点F 是线段AC 上一点,满足FOC FCO ∠=∠,点G 是第二象限中一点,连OG ,使得.AOG AOF ∠=∠点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACE OEC∠+∠∠的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.【答案】(1)()2,0;()0,4 ;(2)1;(3)2.【解析】分析:(1)根据绝对值和算术平方根的非负性,求得a ,b 的值即可;(2)先得出CP =t ,OP =2﹣t ,OQ =2t ,AQ =4﹣2t ,再根据S △ODP =S △ODQ ,列出关于t 的方程,求得t 的值即可;(3)过H 点作AC 的平行线,交x 轴于P ,先判定OG ∥AC ,再根据角的和差关系以及平行线的性质,得出∠PHO =∠GOF =∠1+∠2,∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,最后代入OHC ACE OEC ∠∠∠+进行计算即可.详解:(1+|b ﹣2|=0,∴a ﹣2b =0,b ﹣2=0,解得:a =4,b =2,∴A (0,4),C (2,0);(2)由条件可知:P 点从C 点运动到O 点时间为2秒,Q 点从O 点运动到A 点时间为2秒,∴0<t ≤2时,点Q 在线段AO 上,即 CP =t ,OP =2﹣t ,OQ =2t ,AQ =4﹣2t ,∴1111222212222DOP D DOQ D S OP y t t S OQ x t t =⋅=-⨯=-=⋅=⨯⨯=V V (),. ∵S △ODP =S △ODQ ,∴2﹣t =t ,∴t =1;(3)OHC ACE OEC∠∠∠+的值不变,其值为2. ∵∠2+∠3=90°.又∵∠1=∠2,∠3=∠FCO ,∴∠GOC +∠ACO =180°,∴OG ∥AC ,∴∠1=∠CAO ,∴∠OEC =∠CAO +∠4=∠1+∠4,如图,过H 点作AC 的平行线,交x 轴于P ,则∠4=∠PHC ,PH ∥OG ,∴∠PHO =∠GOF =∠1+∠2,∴∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,∴124421421414OHC ACE OEC ∠∠∠∠∠∠∠∠∠∠∠∠∠+++++===++().点睛:本题主要考查了坐标与图形性质,解决问题的关键值作辅助线构造平行线.解题时注意:任意一个数的绝对值都是非负数,算术平方根具有非负性,非负数之和等于0时,各项都等于0.26.已知a+1是4的算术平方根,b -1是27的立方根,化简求值:2(2a -b 2)-(4a -a 2).【答案】-31【解析】【分析】先根据算术平方根和立方根的定义得出a 、b 的值,再去括号、合并同类项化简原式,继而代入计算可得.【详解】解:∵a+1是4的算术平方根,b -1是27的立方根,∴a+1=2,b -1=3,解得a=1,b=4,原式=4a -2b 2-4a+a 2=a 2-2b 2,当a=1,b=4时,原式=1-2×16=1-32=-31.【点睛】本题主要考查整式的化简求值,熟练掌握整式的混合运算顺序和法则是解题的关键.。

2020 - 2021学年度 湖北省武汉市汉阳区第一学期期中考试 七年级数学试卷

2020 - 2021学年度 湖北省武汉市汉阳区第一学期期中考试 七年级数学试卷

2020 - 2021学年度汉阳区第一学期期中考试七年级数学试卷一、选择题〔共10小题,每小题3分,共30分) 1. -7的相反数是( ) A .7 B .-7 C .71 D .71- 2. 质检员抽查4袋方便面,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从质量的角度看,最接近标准的产品是( )A . -3.5B . +0.7C . -2.5D . -0.63. 2020年6月23日,北斗三号最后一颗全球组网卫星从西昌发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道。

将36000用科学记数法表示应为( ) A .51036.0⨯ B .5106.3⨯ C .4106.3⨯ D .41036⨯ 4. 在下列给出的四个多项式中,为三次二项式的多项式是( )A .14-xB .322-+xy xC .y x -32D .132+-y x 6. 若单项式22+m y x 与y x n 3-的和仍然是一个单项式,则n m +的值( )A .B .C .D .7. 若“ω”是新规定的某种运算符号,设b a b a 23-=ω,则)()(y x y x -+ω的值为( ) A .y x + B .y x 2+ C .y x 22+ D .y x 5+8. 当x =1时,多项式135-++cx bx ax 的值是5,则当x =-1时,它的值为( ) A .-7 B .-3 C .-5 D .79. 找出以下图形变化的规律,则第101个图形中黑色正方形的数量是( )A .149B .150C .151D .15210. 在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图所示.:则第5个方框中最下面一行的数可能是( ) A .1296 B .2809 C .3136 D .4225 二、填空题(共6小题,每小题3分,共18分) 11. 若x 、y 互为倒数,则xy3=____________ 12. 用四舍五入法求5.4349精确到0.01的近似值是___________13. 若0)42(22=++-n m ,则=+n m ______________14. 若关于x 、y 的多项式y y x y y nx my +-++23232中不含三次项,则mn =___________15. 有四个完全相同的小长方形和两个完全相同的大长方形按如图位置摆放,按照图中所示尺寸,a =20,b =12,则小长方形的长与宽的差是____________第15题图 第16题图16. 同学们喜欢玩的换房游戏,老师创新改成了“幻圆”游戏,现在将-1,2,-3,4,-5,6,-7,8分别填入如图所示的圆圈内,使横、纵以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则b a +的值是______________ 三、解答题(共72分) 17. (本题共8分)计算:(1))5.1(2)51(6----+ (2)]2)53()4[()10(23⨯---+-18. (本题共8分)先化简,再求值:(1)x x x x x 6525345222+----+,其中3-=x (2))3123()31(22122y x y x x +-+--,其中32,2=-=y x19. (本题共8分)“十一”黄金周期间,某市外出旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)(1)请判断外出旅游人数最多的是10月_______日,最少是10月__________日.小长方形大长方形(2)若黄金周期间平均每人每天消费500元,且出游人数最多的一天有3万人,求城市10月6日这天外出旅游消费总额是多少万元?20. (本题共8分)如图1,将一个边长为a 的正方形纸片剪去两个一模一样的小长方形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

克七中2019-2020学年第一学期期中考试卷
初一数 学
一、填空题(2分×21=42分)
1、如果水位升高3m 时水位变化记作+3m ,则水位下降5米时水位变化记作:
2、大于–3且不大于2的所有整数写出来是
3、2-的相反数是 , 3的倒数是 ,
4、把数701000000000用科学记数法记作为
5、计算:_______)5()8(=++-;_______)5()15(=-÷-.
6、一车间有工人72人,一车间人数比二车间人数的2
3还少4人,那么二车间
有多少工人?若设二车间人数为x ,依题意可列方程 。

7、最大的负整数是___________。

8、如果|x|=2,那么x=__________;如果x= —x ,那么x=_________。

9、30435保留3个有效数字为____________;
10、在数轴上,点A 表示的数是 —1,点B 也是数轴上的点,且AB 的长是4
个单位长度,则B 点表示的数是___________。

11、比 —5大 —3的数是__________。

12、观察下列数据,按某种规律在横线上填上适当的数:
1,43-,95,167-,259,
,…13、如图是
2005年11一长方形在日历上任意框出4使得这4个数的和为88小的一个数为x ,那么列方程为、
___ ______________ __。

14、比较-3
2
1与-3的大小,即-321
-3;
15、写出一个解为-3的方程_______________________。

16、某中学年级之间组织足球循环赛:初三胜初一3:2,初二胜初三1:0,初
二平 初一1:1,则初一年级的净胜球为________个。

17、有理数-3 ,0 ,20 ,-1.25 ,14
3
, -12- ,-(-5) 中,正整数是 ,
负数是 。

二、选择题(2分×7=14分)
18、下列方程中,一元一次方程的有( )个。

① 2x-3y=6 ②x 2-5x+6=0 ③3(x-2)=1-2x ④013
=+x
⑤3x-2(6-x)=0
A 、1
B 、2
C 、3
D 、4 19、若a 3=a , 则a 这样的有理数有( )个。

A 、0个 B 、1个 C 、2个 D 、3个 20、下列运用等式的性质,变形正确的是( ) A 、若x= y , 则 x-5 = y+5 B 、若a= b, 则 ac= bc
C 、若c b c a =,则2a=3b
D 、若x= y , 则a y a x =
21、一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有( )
A .25.30千克
B .24.70千克
C .25.51千克
D .24.80千克 22、近似数1.250所表示的准确数a 的取值范围是( )
(A )1.24≤a <1.25 (B )1.2495≤a <1.2505 (C )1.2500≤a <1.2505 (D )1.2495<a <1.2505 23、如果方程2x + a = x -1的解是-4,那么a 的值为( )
A. 3
B. -5
C.-13
D.5
24、有下面的算式:①(-1)2003= -2003;②0-(-1)=1;③-2
1
+3
1=6
1;④)2
1(21
-÷= -1;
⑤2×(-3)2=36;⑥-3÷2
1
×2= -3,其中正确算式的个数是( ) (A )1个 (B )2个 (C )3个 (D )4个 三、计算(3分×5=15分)
1、21
2
4379.1221195321.87+-+- 2、-4÷3
2-(-3
2)×(-
30)
3、 |+8|–|–7|+ (–1)2004 –23
4、 -)12
79532(36+-⨯
(用简便方法)
5、 -12 -3 ×(-3
2
)2+(-2)3×81
四、解方程(3分×2=6分):1、7x + 6 = 16 – 3x 2、
4
3
x – 1 = 5
五、(4分×2=8分)
1、若a 、b 为有理数,那么我们定义新运算“⊕”使得a ⊕b =2a -b , 求(1⊕2)⊕3的值?
2、已知616x -+与718x -互为相反数,求2x + 的值
六、(5分)某自行车厂本周计划每日生产400辆自行车,由于人数和操作原因,
每天实际生产量分别为405辆,393辆,397辆,410辆,391辆,385辆,405辆。

(1)用正、负数表示每日实际生产量与计划量的增减情况; (2)该车厂本周实际比计划多生产了还是少生产了?差多少辆?
七、甲、乙两人从相距240千米的两地同时出发,相向而行,3小时相遇,已知甲每小时行 50千米,乙每小时行多少千米?(5分)
八、种一批树,如果每人种10棵,则剩6棵未种;如果每人种12棵,则缺6棵。

有多少人种树?有多少棵树?(5分)。

相关文档
最新文档