第五章 非线性滤波(含粒子滤波)
《非线性滤波》课件

VS
无迹卡尔曼滤波采用无迹变换来处理 非线性函数,从而能够更准确地描述 状态变量的概率分布。与扩展卡尔曼 滤波相比,无迹卡尔曼滤波具有更高 的计算效率和更好的估计性能,因此 在许多领域得到广泛应用。
容积卡尔曼滤波
容积卡尔曼滤波是一种结合了容积方法和卡尔曼滤波的算法。
容积卡尔曼滤波利用容积方法来计算状态变量的后验概率分布,并通过卡尔曼滤波来递归更新状态变量的估计。容积卡尔曼 滤波具有较高的计算效率和较好的估计性能,在许多实际应用中表现出色。
非线性滤波
目录
• 非线性滤波简介 • 非线性滤波算法 • 非线性滤波的应用 • 非线性滤波的优缺点 • 非线性滤波的未来发展
01
非线性滤波简介
定义与概念
非线性滤波是一种信号处理方法,通过非线性数学模型对信 号进行变换,以实现信号的提取、增强或抑制。非线性滤波 器能够处理那些线性滤波器无法处理的信号,如非线性的、 非平稳的、噪声干扰严重的信号。
03
非线性滤波的应用
导航定位
定位精度提高
非线性滤波算法能够处理多传感器融 合的数据,通过复杂的算法处理,提 高定位精度。
动态环境适应性
在动态环境中,非线性滤波能够实时 调整模型参数,以适应环境变化,保 证定位的准确性。
无人驾驶
传感器数据处理
无人驾驶车辆通过各种传感器获取数 据,非线性滤波能够对这些数据进行 有效处理,提取有用的信息。
3
可能产生失真
非线性滤波算法可能会对信号造成一定程度的失 真,因为它们会改变信号的原始特性。
05
非线性滤波的未来发展
算法改进
优化算法
随着计算能力的提升,非线性滤波算法将进一步 优化,提高计算效率和精度。
粒子滤波原理

粒子滤波原理粒子滤波是一种基于蒙特卡洛方法的非线性、非高斯状态估计算法,它在目标跟踪、传感器定位、机器人导航等领域得到了广泛的应用。
粒子滤波的原理是基于贝叶斯滤波理论,通过一组随机粒子来表示系统的状态空间,利用这些粒子对系统状态进行估计和预测。
本文将介绍粒子滤波的基本原理和算法流程。
粒子滤波的基本原理是通过一组随机粒子来逼近系统的后验概率分布,从而实现对系统状态的估计和预测。
在每个时间步,粒子滤波算法通过重采样、预测和更新三个步骤来实现对系统状态的推断。
首先,根据系统的运动模型对当前粒子进行预测,然后根据观测数据对预测结果进行更新,最后通过重采样来调整粒子的权重,以逼近真实的后验分布。
通过不断重复这个过程,粒子的分布将逼近真实的后验分布,从而实现对系统状态的准确估计。
粒子滤波算法的流程可以简单描述为,首先初始化一组随机粒子,根据系统的运动模型对粒子进行预测,然后根据观测数据对预测结果进行更新,最后通过重采样来调整粒子的权重。
重复这个过程直到达到收敛条件,得到系统状态的估计值。
在实际应用中,粒子滤波算法可以通过增加粒子数量来提高估计的准确性,同时也可以通过适当的重采样策略来提高算法的效率。
粒子滤波算法的优点是能够处理非线性和非高斯的系统模型,并且可以灵活地适应不同的观测数据。
同时,粒子滤波算法也具有较好的实时性和适用性,能够在复杂的环境中实现对系统状态的准确估计。
然而,粒子滤波算法也存在着粒子数目难以确定、计算复杂度较高等问题,需要在实际应用中进行合理的优化和改进。
总之,粒子滤波是一种基于蒙特卡洛方法的非线性、非高斯状态估计算法,它通过一组随机粒子来逼近系统的后验概率分布,实现对系统状态的估计和预测。
粒子滤波算法具有较好的适用性和实时性,在目标跟踪、传感器定位、机器人导航等领域得到了广泛的应用。
希望本文的介绍能够帮助读者更好地理解粒子滤波的原理和算法流程,为相关领域的研究和应用提供参考。
非线性滤波算法

SINS/CNS组合导航技术众所周知,SINS和CNS具有很强的互补性。
将CNS与SINS组合,构成SINS/CNS自主组合导航系统,既能有效弥补SINS误差随时间积累的缺陷,又能弥补CNS平台结构设计难度大、结构复杂、成本高的缺陷。
显然,SINS/CNS 自主组合系统兼备了SINS、CNS两者的优点,相互取长补短,不但抗干扰能力强、而且自主性能好,定位精度高,非常适合飞机对导航系统性能的要求。
SINS/CNS组合导航的技术难点1. 需要设计一套具有实时性和可行性的SINS/CNS自主组合导航系统方案,具体化各子传感器技术指标,使得各子传感器指标可考核;各传感器信息既互相兼容、互补和辅助,又能有效地进行信息交换。
2. 在某些特定情况下,系统的线性化数学模型的确能够反映出实际系统或过程的实际性能和特点。
但是,任何实际系统总是存在不同程度的非线性,其中有些系统可以近似看成线性系统,而大多系统则不能仅用线性数学模型来描述,存在于这些系统中的非线性因素不能忽略。
3.SINS/CNS组合导航系统利用CNS输出的位置信息对SINS进行修正,能够克服SINS导航误差随时间积累的缺点,提高导航系统的定位精度。
然而,由于CNS导航系统星图匹配及定位时需要耗用的不等的匹配计算时间,导航数据输出存在时延现象,导致其输出的位置及航向信息具有滞后效应,这将严重影响组合导航的解算精度。
本项目为了贴近实际工程系统,建立的自主组合导航系统模型为非线性数学模型。
显然,卡尔曼滤波不能满足项目需求,必须建立与之相适应的非线性滤波系统。
扩展卡尔曼滤波(Extended KalmanFilter,EKF)在组合导航系统非线性滤波中得到了广泛应用,但它仍然具有理论局限性,具体表现在:(1)当系统非线性度较严重时,忽略Taylor展开式的高阶项将引起线性化误差增大,导致EKF的滤波误差增大甚至发散;(2)雅可比矩阵的求取复杂、计算量大,在实际应用中很难实施,有时甚至很难得到非线性函数的雅可比矩阵;(3)EKF将状态方程中的模型误差作为过程噪声来处理,且假设为高斯白噪声,这与组合导航系统的实际噪声情况并不相符;同时,EKF是以KF为基础推导得到的,其对系统初始状态的统计特性要求严格。
第五章 非线性滤波

更新
• 状态预测(先验均值)和预测误差功 率(先验方差)
xˆ n|n1 Fn xˆ n1|n1
P XX n|n 1
Q Fn
P XX n 1|n 1
FkT
• 观察值预测和预测方差
yˆ n n-1 Hn xˆ n n-1
PYY n n1
R
H
n
P XX n| n 1
H
T n
• 先验预测互相关矩阵
P XY n n1
滤波方法
• 卡尔曼滤波
• 扩展卡尔曼滤波; 基于高斯积分, 无色 变换的卡尔曼滤波
• 粒子滤波器
非线性滤波
通用贝叶斯非线性滤波
• • •MC •
加性高斯噪声
非加性高斯噪声
扩
无高
展 卡 尔 曼 滤 波 器
卡 尔 曼 滤 波 器
色 卡 尔 曼 滤 波 器
斯 积 分 卡 尔 曼 滤
波
器
重采样粒子滤波器 无重采样粒子滤波器
设 n-1时刻后验概率为高斯分布:
p xn-1 y1:n1
N
xn-1;
xˆ n-1
n-1
,
PXX n-1 n-1
xˆn n-1
f (xn-1)N
xn-1;
xˆ n-1
n-1,
pXX n-1
n-1
dxn-1
PXX n n1
Q
f (xn-1) f T (xn-1)N
xn-1;
xˆ n-1
在两种情况下有可分解的计算方法: 1。离散状态空间 2。线性模型,高斯噪声。(Kalman filter)
p xn | y1:n1
p
xn1
xn | xn1, y1:n1
非线性滤波的研究

图像非线性滤波技术的研究在图像的生成、传输或变换过程中,由于受多种因素的影响,如光学系统失真、系统噪声、曝光不足或过量、相对运动等,发生降质或退化,导致输出图像的质量下降。
改善降质或退化图像可以采用简单实用的线性滤波方法来处理,在许多情况下是很有效的,但是多数线性滤波具有低通特性,在去除噪声的同时也使图像的细节和边缘变模糊。
而中值滤波是一种去除噪声的非线性处理方法,在某些条件下既可去除噪声又可保护图像细节和边缘,能获得较好的图像复原效果。
1数字图像的非线性滤波在图像处理中,最常用的非线性滤波技术是中值滤波、,这是由于中值滤波能有效排除图像的极值奇异点,同时又能保持图像的阶跃边缘。
因此,中值滤波大量应用于一维图像的去噪平滑处理中。
1.1中值滤波首先给出序列中值的定义。
设序列{f1,f2,f3,fn},按值的大小顺序排列如下:fi1≥fi2≥…≥fin,序列的中值为:中值滤波的基木原理是把数字图像中一点的值用该点的一个邻域中各点值的中值代替。
把一个点的特定形状的邻域称作窗口,中值滤波器是一个含有奇数个像素的二维滑动窗口,其形状可以取方形,也可以取近似圆形或十字形。
设滤波窗口用矩阵表示为,在W的中心(m,n)取(0,0)表示输入数字图像各点的灰度值,经过二维中值滤波输出图像为:1.2加权中值滤波上述中值滤波窗口内各点对输出的作用是相同的,如果希望强调中间点或距中间点较近的几个点的作用,可以采用改进的中值滤波-一加权中值滤波法。
加权中值滤波的基木原理是改变窗口中变量的个数,可以使一个以上的变量等于同一点的值,然后对扩张后的数值集求中值。
设权值矩阵W=(Wmn)(Wmn为非负整数且∑Wmn为奇数),输入数字图像,加权中值滤波的结果为(3)式中符号“▽”表示复制运算:P▽Q”表示将P复制Q次。
若W权值矩阵的元素Wmn=1或Q则(3)式定义的加权中值滤波与(2)式相同。
1.3算法分解与频域分析无论什么形状的滤波窗口和权值矩阵,都可视为一种模板运算,其中模板为权值知阵W=(Wmn),大小为(2N+1)*(2N+1)。
粒子滤波原理

粒子滤波原理粒子滤波是一种基于蒙特卡洛方法的非线性、非高斯状态估计算法,它通过在状态空间中随机抽取一组粒子来近似表示目标系统的状态分布,从而实现对系统状态的估计和预测。
粒子滤波在目标跟踪、机器人定位、信号处理等领域有着广泛的应用,本文将介绍粒子滤波的基本原理和算法流程。
粒子滤波的基本原理是基于贝叶斯滤波理论,它通过不断地对系统状态进行采样和更新,来逼近系统的真实状态分布。
在粒子滤波中,我们通过一组随机抽取的粒子来表示系统的状态空间,每个粒子都有一个权重来表示其对系统状态的估计贡献。
通过不断地对粒子进行采样和更新,可以逐步逼近系统的真实状态分布。
粒子滤波的算法流程大致可以分为预测和更新两个步骤。
在预测步骤中,我们根据系统的动力学模型对当前的粒子进行状态预测,得到下一个时刻的状态估计。
在更新步骤中,我们根据系统的观测模型,计算每个粒子的观测概率,并根据观测值对粒子的权重进行调整,从而得到更新后的粒子集合。
通过不断地重复预测和更新步骤,可以逐步逼近系统的真实状态分布。
粒子滤波的优势在于它能够处理非线性、非高斯的系统,并且可以适用于任意维度的状态空间。
同时,由于粒子滤波是一种基于蒙特卡洛方法的近似推断算法,因此它可以灵活地处理各种复杂的状态分布,包括多峰分布和非参数分布等。
然而,粒子滤波也面临着粒子数目的选择和计算复杂度的增加等问题。
由于粒子滤波是一种基于蒙特卡洛方法的近似推断算法,因此粒子的数目会直接影响到滤波的性能。
通常情况下,粒子数目越多,滤波的性能越好,但同时也会增加计算的复杂度。
因此在实际应用中,需要根据系统的复杂度和计算资源的限制来选择合适的粒子数目。
总的来说,粒子滤波是一种非常灵活和强大的状态估计算法,它能够有效地处理各种复杂的非线性、非高斯系统,并且在目标跟踪、机器人定位、信号处理等领域有着广泛的应用前景。
通过不断地改进和优化,相信粒子滤波在未来会有更加广泛的应用和发展。
粒子滤波原理及应用百度云

粒子滤波原理及应用百度云粒子滤波(Particle Filter)是一种基于贝叶斯滤波原理的非线性滤波方法,采用蒙特卡洛模拟技术,通过一些随机粒子来估计系统状态和状态分布概率密度函数。
粒子滤波在机器人定位、目标跟踪、图像匹配、参数估计等领域得到广泛应用。
一、粒子滤波的原理粒子滤波的核心思想是基于贝叶斯定理估计系统状态。
假设模型为:x_k=f_{k-1}(x_{k-1})+w_{k-1}z_k=h_k(x_k)+v_k其中,x_k是系统的状态,z_k是观测值,w_{k-1}是状态噪声,v_k是观测噪声,f_{k-1}和h_k是系统的状态转移函数和测量函数。
模型中的噪声可以是随机的,且满足高斯分布。
粒子滤波的大致流程如下:1. 初始化:在状态空间中随机产生一些粒子(进行随机采样),每个粒子都代表一个可能的状态。
2. 预测:利用系统的状态转移函数对粒子进行预测状态的更新(进行遍历)。
3. 权重计算:对每个粒子根据当前观测值计算其权重(按照条件方程,计算权值)。
4. 重采样:根据权重对粒子进行重新采样(按照贝叶斯定理选择得分高的粒子)。
5. 估计:利用重新采样的粒子对当前状态和状态分布进行估计(利用得分高的高权重粒子来标定状态)。
以上流程即为粒子滤波的基本原理。
二、粒子滤波的应用1. 机器人定位与导航机器人定位及导航是粒子滤波的主要应用之一,通过控制输入和传感器观测来更新机器人的状态,从而实现定位和导航。
2. 目标跟踪粒子滤波可以在视频图像中跟踪目标。
对于目标的各种运动状态,可以通过利用更多的状态量来描述,从而获得更加准确的跟踪方法。
(例如对目标发射不同的激光来标定位置)3. 图像匹配对于图像匹配问题,利用粒子滤波算法可以在大量的匹配行为中找到最好的匹配。
通过跟踪每个目标的位置和状态变化,对目标的运动轨迹进行估计,从而实现图像匹配。
4. 参数估计粒子滤波还可以用于参数估计问题。
对于一个系统的未知参数,可以利用观测值对其进行估计,通过采样技术可以得到最优的参数估计值。
粒子滤波算法原理讲解

粒子滤波算法原理讲解
1 粒子滤波算法
粒子滤波(Particle Filtering)是一类基于概率的滤波算法,又被称为粒子贝叶斯滤波(ParticleBayes),它是随机滤波方法 [1] 的一种。
粒子滤波是一种不确定性估计,它是在最优估计问题的分析中所通常使用的一种策略性的估计技术。
它是开发出来对非线性-非确定系统及系统限制状况(非正则采样率,有着观测值断影问题),试图利用测量值估计参数,得到长期最优估计。
粒子滤波是一种根据先验概率(prior probability),利用状态空间模型,结合实际的观测值,迭代估计最有可能出现的状态和参数的算法。
它使用若干个样本进行代表性抽样,随著时间的推移来模拟系统的隐藏状态变化,以及持续地重新估计系统参数。
粒子滤波算法以一组离散、有限的粒子来模拟状态空间中隐藏状态的概率分布,然后根据随机观测序列来衰减和重新分布各粒子,来调整状态空间中隐藏状态的估计概率分布。
粒子滤波算法是基于 Sampling Importance Resampling (SIR) 的,其基本步骤包括:
(1)采样:首先根据状态模型生成新的粒子,并使用先验概率概率密度函数采样,建立一个粒子集合。
(2)更新:根据观测器的观测值,对粒子的权重进行更新,使其形成新的粒子序列。
(3)重采样:采用频率较高的粒子多次进行采样,成功地模拟可能出现的状态。
(4)计算:最终计算这个粒子集合的状态均值,以得到系统状态的最优估计值。
粒子滤波算法作为适应性滤波算法,非常适用于机器人导航、自动裁判系统、自动会议系统等应用场景,其较传统的Kalman滤波算法具有更高的精度和鲁棒性,并且可以用来估计强噪声环境中的非线性过程,具有很高的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 计算卡尔曼增益
Kn P
XY n n 1 YY Pn n 1 1
• 先验预测互相关矩阵
XX ˆ ˆ ˆn PnYY 1 R h(x n )hT (x n ) N x n ; x n n-1 , p n n-1 dx n y n|n 1y T|n 1 n
n 1:n
遗憾的是,上式在很多场合下(非线性非高斯)没有可分解的计算方法。 因此常常采用一些近似的方法求解上面的积分。
两种可分解情况
在两种情况下有可分解的计算方法: 1。离散状态空间 2。线性模型,高斯噪声。(Kalman filter)
p xn | y1:n 1 x p xn | xn 1 , y1:n 1 p xn 1 | y1:n 1
使用观察值更新预测(后验 均值)和估计误差功率(后 验方差)
ˆ ˆ ˆ xn n xn n-1 K n y n y n|n1
YY PnXX PnXX1 K n Pn n 1K T n n n
ˆ ˆ ˆn PnXY1 xn hT (xn ) N xn ; xn n-1 , p nXX dx n x n|n 1yT|n 1 n n-1
dx
n
求解:
g ( x)
ˆ N ( x; x , Σ )
ˆ g (x) N (x; x, Σ)d x
(三)高斯积分的数值近似求解-----高斯-尔米特(Gauss-Hermite)积分
I g ( x) g ( x)
ΣS S
T
ˆ N ( x;x , Σ )
ˆ g ( x) N ( x; x, Σ) d x
• 卡尔曼滤波
• 扩展卡尔曼滤波;基于 高斯积分,无色变换的 卡尔曼滤波
• 非线性,非高斯非加性 噪声
• 粒子滤波器
非线性滤波
通用贝叶斯非线性滤波 加性高斯噪声 • 扩 展 卡 尔 曼 滤 波 器 •MC 卡 尔 曼 滤 波 器 • 无 色 卡 尔 曼 滤 波 器
非加性高斯噪声
重采样粒子滤波器
Sequential Importance Sampling Particle Filter
预测
• 状态预测(先验均值)和预测误差功 率(先验方差)
更新
ˆ ˆ xn|n 1 Fn xn 1|n 1
F
T k
• 计算卡尔曼增益
Kn P
XY n n 1 n| n 1
Q Fn P
XX n 1| n 1
• 观察值预测和预测方差 ˆ ˆ y n n-1 H n xn n-1
XX ˆ 初始估计:x0|0 P0|0
卡尔曼滤波(线性模型)
xn Fn xn1 wn1
y n Hn xn v n
如果信号模型为线性,噪声为加性高斯噪声,则前面几个 假设真实成立。并且如果已知n-1时刻的后验均值和方差, 则先验和n时刻的后验均值和方差可以轻松算出。
线性卡尔曼滤波过程
XX ˆ p x n-1 y1:n 1 N x n-1 ; x n-1 n-1 , Pn-1 n-1 设 n-1时刻后验概率为高斯分布:
f (x n-1 ) p x n-1 y1:n 1 dx n-1
XX ˆ ˆ x n n-1 f (x n-1 ) N x n-1 ; x n-1 n-1 , p n-1 n-1 dx n-1
通用卡尔曼滤波过程
预测
• 状态预测(先验均值)和预测误差功 率(先验方差)
XX ˆ ˆ xn n-1 f (x n-1 ) N x n-1 ; x n-1 n-1 , p n-1 n-1 dx n-1
更新
XX ˆ ˆ ˆn PnXX1 Q f (x n-1 ) f T (x n-1 ) N x n-1 ; x n-1 n-1 , p n-1 n-1 dx n-1 x n|n 1xT|n 1 n • • 观察值预测和预测方差 ˆ ˆ y n n-1 y n N xn ; xn n-1PnXX dx n n-1
YY T Pn n 1 R H n PnXX1 H n |n
• 使用观察值更新预测(后验 均值)和估计误差功率(后 验方差)
ˆ ˆ ˆ xn n xn n-1 K n y n y n|n1
YY PnXX PnXX1 K n Pn n 1K T n n n
ˆ p x n y1:n 1 N x n ; x n n-1 , PnXX 设 n时刻先验概率为高斯分布: n-1
XX ˆ ˆ ˆn PnXX1 Q f (x n-1 ) f T (x n-1 ) N x n-1 ; x n-1 n-1 , p n-1 n-1 dx n-1 x n|n 1xT|n 1 n
1/ 2 T 1 ˆ ˆ exp x x Σ 1 x x d x 2
x n y1:n 1 x n p x n y1:n 1 dx n x n N x n ; f (x n-1 ), Q p x n-1 y1:n 1 dx n-1 dx n x n N x n ; f (x n-1 ), Q dx n p x n-1 y1:n 1 dx n-1
现代数字信号处理
非线性信号滤波
滤波的信号模型
• 统计状态转换方程
– 联系当前状态与以前 状态
x n f (x n 1 , w n 1 )
噪声
• 统计观察/测量方程
– 联系观察数据与当前 状态
yn h(x n , vn )
滤波方法
信号模型 滤波方法
• 线性,加性高斯噪声 • 非线性,加性高斯噪声
一个非线性随机系统可以由一个统计的状态转换方程 (1) xn fn xn 1 , wn 1 和一个统计的观察/测量方程 y n h n xn , v n (2)
共同定义。
贝叶斯框架下, 公式(1)确定了预测当前状态的条件转换概率(给定前一 时刻的状态和所有的观测值): (*1) p x n x n-1 , y1:n 1 公式(2)确定了预测当前观测值的似然概率(给定当前状 态): (*2) p y n xn
ˆ ˆ y n n-1 y n N x n ; x n n-1PnXX n-1
XX ˆ ˆ ˆn PnYY 1 h(x n )hT (x n ) N x n ; x n n-1 , p n n-1 dx n y n|n 1y T|n 1 R n XX ˆ ˆ ˆn PnXY1 x n hT (x n ) N x n ; x n n-1 , p n n-1 dx n x n|n 1y T|n 1 n
p xn xn-1 , y1:n 1 N (xn ; f (xn-1 ), Q)
xn f (xn-1 )
先验概率: p xn | y1:n 1 N xn ; f (xn 1 ), Q p x n 1 | y1:n 1 dx n 1 当前状态的先验估计: xn y1:n 1 xn p xn y1:n 1 dxn
n1
p x n | y1:n
p y n | x n p x n | y1:n 1
xn
p y n | x n p x n | y1:n 1
g (x n )
p ( xn | y1:n )
x g (xn ) p(xn | y1:n )
n
(二)卡尔曼滤波器
ˆ ˆ y n n-1 y n y1:n 1 , y n p x n y1:n 1 dx n y n N x n ; x n n-1PnXX dx n n-1
XX ˆ ˆ ˆn PnYY 1 R h(x n )hT (x n ) N x n ; x n n-1 , p n n-1 dx n y n|n 1y T|n 1 n XX ˆ ˆ ˆn PnXY1 x n hT (x n ) N x n ; x n n-1 , p n n-1 dx n x n|n 1y T|n 1 n
状态转换方程
观察/测量方程
xn fn xn 1 w n 1
y n hn xn v n
W,V为 互不相关的均值为0,方差为Q,R的高斯加性噪声; f(),h(), Q,R 已知且不随时间改变, 。
贝叶斯框架下, 状态方程确定了预测当前状态的条件转换概率为高斯分布:
• 先验预测互相关矩阵
XX T PnXY1 p n n-1 H n n
XX ˆ 初始估计:x0|0 P0|0
非线性卡尔曼滤波
XX ˆ ˆ x n n-1 f (x n-1 ) N x n-1 ; x n-1 n-1 , p n-1 n-1 dx n-1
XX ˆ ˆ ˆn PnXX1 f (x n-1 ) f T (x n-1 ) N x n-1 ; x n-1 n-1 , p n-1 n-1 dx n-1 x n|n 1xT|n 1 Q n
p x n | y1:n
n
p y n | y1:n 1
n
n
1:n 1
p yn | y1:n 1 p yn | yn p xn | y1:n 1 dxn
迭代滤波问题,通常就是在给定观测值 y1:n情况下计算当前 状态的某个函数的期望(如前两阶矩)。即: g (xn ) p ( x |y ) g (xn ) p(xn | y1:n )d x n
-SISPF
粒子退化问题;Rao-Blackwellasation PF; 粒子滤波器应用