单跨静定梁的内力图(1)

合集下载

结构力学课件-单跨静定梁的内力分析

结构力学课件-单跨静定梁的内力分析

FSK
ql 2
qx
cos
0
x
l
FNK
FAy sin
qx sin 0
FNK
ql 2
qx
sin
0
x
l
③作内力图
MK
ql 2
x
qx2 2
0
x
l
FSK
ql 2
qx
cos
0
x
l
ql sinFNKFra bibliotekql 2
qx
sin
0
x
l
2
ql 2 M图 8
ql cos 2
➢将斜梁与相应水平梁作比较:
q 'l
q 'l
2
2
q 'l tan 2
q 'l2
M图 8cos
FS图
q 'l tan
2
FN图
总结斜梁内力分析的特点:
➢截面内力的计算:截面法 ➢沿水平向布置的竖向荷载作用下,简支斜梁的支座反力和相应水平梁的
支座反力相同,弯矩图相同 ➢沿水平向布置的竖向荷载作用下,斜梁的剪力和轴力是相应水平梁剪力
13.805kN
M max 13.805kN.m
单选题 1分
静定结构在荷载作用下均会产生内力,而且内力大小与杆件截面尺 寸及截面材料均无关。
A 正确 B 错误
提交
四、 简支斜梁的计算 1、斜梁应用:楼梯、屋面斜梁、及具有斜杆的刚架结构中
简支斜梁
2、斜梁所受分布荷载
q q' A
沿水平方向均布荷 载q:活载(人群、 雪载)
Fy 0 FA 10 10 4 33.75 10 2 0 FA 36.25kN ()

梁的内力分析

梁的内力分析

FQ 3 为负剪力, M 3 为正弯矩。
在计算梁的剪力和弯矩时,可以通过下面的结论直接计算: (1)某截面上的剪力等于该截面左侧(或右侧)梁段上所 有横向外力的代数和。(左上右下剪力为正;反之则为负) 以该截面左侧杆段上的外力进行计算时,则向上的外力产生 正剪力,反之为负。以该截面右侧杆段的外力计算时,则 向下的外力产生正剪力,反之为负。 (2)某截面上的弯矩等于该截面左侧(或右侧)所有外力对该 截面之矩的代数和。(左顺右逆弯矩为正;反之则为负) 以左侧的外力进行计算时,则绕截面顺转的外力产生正弯矩, 反之为负。以右侧的外力计算时,绕截面逆转的外力产生 正弯矩,反之为负。
F
Q1
、 M 1 为正值,表示该截面上剪力和弯矩与所设方向一致,故为正剪力,正弯矩。
例 7- 1
(3)求 2-2 截面的内力。用截面法把梁从 2-2 截面处切成两段,取左段为研究对象,受 力如图 7-6c。图中剪力和弯矩都假设为正。由平衡方程得 ∑Fy=0,
FA - F Q 2 =0, F Q 2 = FA =2 kN
FQ1 FA 2kN M1 FA 2 2 2 4kN m

FQ2=FA-F=2-3=-1kN
M 2 FA 2 2 2 4kN m
(3)求3-3和4-4截面的剪力和弯矩,取右侧计算。
FQ 3 FB 1kN
M3 FB 4 m 1 4 2 2kN m
MA 0
MB ql ql 2 l 0 2 2 ql l q l ql 2 M C ( )2 2 2 2 2 8
当x =l 时
当x=l/2时,
时将三点用一光滑曲线连成一抛物线即得梁的弯矩图,见图7-9c。

本章主要介绍了单跨静定梁和多跨静定梁的内力分析计算1

本章主要介绍了单跨静定梁和多跨静定梁的内力分析计算1

图10
图11
图12
3.3.2
多跨静定梁的内力计算
由层次图可见,作用于基本部分上的荷载,并不 影响附属部分,而作用于附属部分上的荷载,会以支 座反力的形式影响基本部分,因此在多跨静定梁的内 力计算时,应先计算高层次的附属部分,后计算低层 次的附属部分,然后将附属部分的支座反力反向作用 于基本部分,计算其内力,最后将各单跨梁的内力图 联成一体,即为多跨静定梁的内力图。
例6 试作出如图13(a)所示的四跨静定梁的弯矩图和剪 力图。
解:(1) 绘制层次图,如图13(b)所示。
(2) 计算支座反力,先从高层次的附属部分开 始,逐层向下计算:
① EF段:由静力平衡条件得
∑ME=0: ∑Y=0: YF×4-10×2=0 YF=5kN YE=20+10-YF=25kN
解:(1)求支座反力 先假设反力方向如图所示,以 整梁为研究对象: ∑X=0: XA-P=0 XA=P=4kN ∑MB=0: YA*l-q*l*0.5*l=0 YA=0.5ql =0.5×3×4kN=6kN ∑Y=0: YA+YB=ql YB=ql-VA =(3×4-6) kN=6kN
即:
q′l′=ql q=q′l′/l=q′/cosα
下面以承受沿水平向分布的均布荷载的斜梁为例进 行内力分析,如图(b)所示。 根据平衡条件,可以求出支座反力为: XA=0, YA=YB=1/2ql
则距A支座距离为x的截面上的内力可由取隔离体求出。 如图(c)所示,荷载qx、YA,在梁轴方向(t方向)的分 力分别为qxsinα、YAsinα;在梁法线方向(n方向) 的分力分别为:qxcosα、YAcosα。则由平衡条件得: ∑T=0: YAsinα-qxsinα+NX=0 NX=(qx-1/2ql)sinα ∑N=0: YAcosα-qxcosα-QX=0 QX=(1/2ql-qx)cosα ∑MX=0: YAx-qx· x/2-MX=0 MX=1/2qx(1-x)

第三章 静定结构的内力计算

第三章 静定结构的内力计算

FAy
1 3a 4 FP a M q 3a 3a 2 5
第三章
静定结构的内力计算
M
B
0
3a 4 FAy 3a M q 3a FP a 0 2 5 1 3a 4 FAy FP a M q 3a 3a 2 5
第三章
无荷载 平行轴线
Q图
静定结构的内力计算
均布荷载
集中力 发生突变
P
集中力偶
无变化 发生突变
m
斜直线
M图
二次抛物线 凸向即q指向
出现尖点
两直线平行 备 注
Q=0区段M图 Q=0处,M 平行于轴线 达到极值
集中力作用截 集中力偶作用 面剪力无定义 面弯矩无定义
在自由端、铰支座、铰结点处,无集中力偶作用,截面弯矩 等于零,有集中力偶作用,截面弯矩等于集中力偶的值。
第三章 静定结构的内力计算
第三章
静定结构的内力计算
§3-1单跨静定梁
一、静定结构概述 1.概念:是没有多余约束的几何不变体系。 2.特点:在任意荷载作用下,所有约束反力和内力都 可由静力平衡方程唯一确定。 平衡方程数目 = 未知量数目 3.常见的静定结构 常见的静定结构有:单跨静定梁、多跨静定梁、静 定平面刚架、三铰拱、静定平面桁架、静定组合结构等 (如下图)。
0 FYA FYA 0 FYB FYB
A
x
C
L
斜梁的反力与相应简支 梁的反力相同。
第三章
(2)内力
静定结构的内力计算
求斜梁的任意截面C的内力,取隔离体AC: a FP1 A
FYA x Fp1 FYA
0
MC

结构力学二3-静定结构的内力计算

结构力学二3-静定结构的内力计算

以例说明如下
例 绘制刚架的弯矩图。 解:
E 5kN
由刚架整体平衡条件 ∑X=0 得 HB=5kN← 此时不需再求竖向反力便可 绘出弯矩图。 有:
30
20 20 75 45
40
0
MA=0 , MEC=0 MCE=20kN· m(外) MCD=20kN· m(外) MB=0 MDB=30kN· m(外) MDC=40kN· m(外)
有突变
铰或 作用处 自由端 (无m)
m
Q图
M图
水平线

⊖㊀
Q=0 处 突变值为P 如变号 无变化
有极值 尖角指向同P 有极值 有突变 M=0 有尖角
斜直线


利用上述关系可迅速正确地绘制梁的内力图(简易法)
简易法绘制内力图的一般步骤:
(1)求支反力。 (2)分段:凡外力不连续处均应作为分段点, 如集中力和集中力偶作用处,均布荷载两端点等。 (3)定点:据各梁段的内力图形状,选定控制 截面。如集中力和集中力偶作用点两侧的截面、均 布荷载起迄点等。用截面法求出这些截面的内力值, 按比例绘出相应的内力竖标,便定出了内力图的各 控制点。
说明:
(a)M图画在杆件受拉的一侧。 (b)Q、N的正负号规定同梁。Q、N图可画在杆的 任意一侧,但必须注明正负号。 (c)汇交于一点的各杆端截 面的内力用两个下标表示,例如: MAB表示AB杆A端的弯矩。 MAB
例 作图示刚架的内力图
RB↑
←HA
VA→
CB杆:
由∑ X=0 可得: M = CD RB=42kN↑ HA=48kN←, H (左) A=6×8=48kN← 由∑M144 VA=22kN↓ 48 A=0 可得: MEB=MEC=42×3 ↑ (2)逐杆绘M图 R=126kN = 126 · m (下) B 192 MDC=0 CD杆: M =42 × 6-20 × 3 由 ∑Y=0 可得: CB MCD=48kN·m(左) =192kN· m(下) VA=42-20=22kN↓

结构力学 第3章静 定梁、平面刚架受力分析

结构力学 第3章静 定梁、平面刚架受力分析
工程中,斜梁和 斜杆是常遇到的,如楼梯梁、刚架中的斜梁等。斜梁 受均布荷载时有两种表示方法: (1)按水平方向分布的形式给出(人群、雪荷载等),用 q 表示。 (2)按沿轴线方向分布方式给出(自重、恒载),用 q’ 表示。
q 与 q’间的转换关系:
qdx qds q q
cos
第3章
[例题] 试绘制图示斜梁内力图。
q
B
C
A
α
D VB
HA
l/3 l/3
l/3
VA
(1)求支座反力:
解:
X 0 MB 0 MA 0
HA 0
VA
ql 6
()
VB
ql 6
()
校核:
Y
qj 6
qj 6
ql 3
0
第3章
(2)AC段受力图:
(3)AD段受力图:
HAcosα HAsinα
HA VAsinα
VA VAcosα
MC
C
NC
α QC
HAcosα
dx
d2M dx2
q(x)
(1)在无荷区段q(x)=0,剪力图为水平直线,弯矩图为斜直线。
(2)在q(x)=常量段,剪力图为斜直线,弯矩图为二次抛物线。其凹下去的曲 线象锅底一样兜住q(x)的箭头。
(3)集中力作用点两侧,剪力值有突变、弯矩图形成尖点;集中力偶作用点两 侧,弯矩值突变、剪力值无变化。
解:
10KN/m A HA=0
4m VA=26.25kN
30KN.m
20KN
C
D
B
E
2m
2m
32.5 2.5
3m VB=33.75KN 60
(1)计算支座反力

【土木建筑】第16章:静定结构的内力计算

【土木建筑】第16章:静定结构的内力计算
= M0x
单跨静定梁小结
要求: 1)理解内力、内力图的概念; 2)了解梁的主要受力、变形特点; 3)理解并掌握截面法计算内力的方法; 4)熟练掌握用叠加法做直杆段的弯矩图。
本节难点及重点: 1)内力正、负号的判断; 2)叠加法做弯矩图。
§16-2 多跨静定梁
多跨静定梁由相互在端部铰接、水平放置的若干直 杆件与大地一起构成的结构。
绕曲线杆端切线
q
XA A
B XB
C
E
D B
A
• 一、静定刚架支座反力的计算:平衡方 程
二、绘制内力图:用截面法求解刚架任意 指定截面的内力,应用与梁相同的内力符 号正负规定原则即相同的绘制规律与绘图 方法作内力图(M图、Q图、N图)
40kN
(+) (-)
40kN
q=20kN/m
B
C
P=40kN D
例16-2-2 分析图示多跨静定梁可分解成单跨梁分 别计算的条件,并作梁的FQ、M图。
分析:(1)图示梁的荷载以及约束的方向,是竖 向平行力系。一个平面平行力系只能列两个独立的 平衡方程,解两个未知数。 (2)杆CE有两个与大地相连的竖向支座链杆, 当仅在竖向荷载作用下时,可维持这个平行力系的 平衡。所以,杆CE在仅有竖向荷载的作用下,可 视为与杆AB同等的基本部分。
2)求C截面的内力 切开过C点的横截面,将梁分成两部分。取左侧
部分考虑,其暴露的截面上按规定的内力的正方向 将内力示出,建立静力平衡方程。
说明:计算内力要点: 1)所取的隔离体(包括结构的整体、截面法截取 的局部),其隔离体周围的所有约束必须全部切断 并代以约束力、内力。 2)对未知外力(如支座反力),可先假定其方向, 由计算后所得结果的正负判断所求力的实际方向, 并要求在计算结果后的圆括号内用箭线表示实际方 向。 3)计算截面的内力时,截面两侧的隔离体可任取 其一,一般按其上外力最简原则选择。截面内力均 按规定的正方向画出。

《结构力学》第三章 单跨静定梁

《结构力学》第三章 单跨静定梁

l
l/2 l/2
MM
l
l
练习: 利用微分关系等作弯矩图
M
1 ql2 2
P 1 ql2
4
l
l/2 l/2
l
M
2M
MM
l
l
lM
M
l
练习: 利用微分关系等作弯矩图
1 ql2 2
P 1 ql2
4
q
1 ql2
l
l/2 l/2
2l
l
M
2M
M
MM
M
M
M
M MM
M
l
l
MM
练习: 利用微分关系,叠加法等作弯矩图
M图
Q图
例: 作内力图
铰支座有外 力偶,该截面弯矩 等于外力偶.
M图 Q图
无剪力杆的 弯矩为常数.
M图
自由端有外
力偶,弯矩等于外
Q图 力偶
练习: 利用上述关系作弯矩图,剪力图
练习: 利用上述关系作弯矩图,剪力图
5.叠加法作弯矩图
注意:
是竖标相加,不是 图形的简单拼合.
练习:
1 ql2 16
种结构型式?
简支梁(两个并列) 多跨静定梁
连续梁
例.对图示静定梁,欲使AB跨的最大正弯矩与支座B截
面的负弯矩的绝对值相等,确定铰D的位置.
q
A
D
B
C
x
l
l
RD
q
q(l x)2 / 8
RD
B
解: RD q(l x) / 2()
M B qx2 / 2 q(l x)x / 2 q(l x)2 / 8 qx2 / 2 q(l x)x / 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. x 解: 求支座反力 l =a/l =b/l FA=b/l FP FB=a/l FP 1 F 2 A B 2.用截面法计算x确定的截 x FA x FB 面的内力 M(X) M(X) b/l AC: FQ(x) = FA = FPb/l (0< (0< X < a) FQ(x) FA FQ(x) FB M(X) = FAX= FPb/l x l FQ bFq/l (0< (0< X < a) x CB: FQ(x) = FA -FP = -FPa/l a/l (剪力图) (a< (a< X < l ) aFq/l x M(X) = FAX- FP(x-a)= = FPbx/l - FP(x-a) l M(弯矩图) (a< abFq /l l 3.作内力图 (a< X < l)
例4.9 试作图示外伸梁在弯矩作用 A 下的剪力图和弯矩图。
xM BΒιβλιοθήκη C D l/2 l/4 M小结
比较剪力图和弯矩图可以看出,在集中力作用 处,其左、右两侧横截面上的弯矩相同,而剪力发 生突变,突变量等于该集中力的大小。发生这种情 况的原因是由于把实际上分布在一个微段上的分力 抽象成了作用于一点的集中力所造成的,因此无法 说集中力作用处截面上的剪力是多少,只能说该截 面左侧或右侧截面上的剪力是多少。另外,在集中 力偶作用处,其左右两侧横截面上的剪力相同,而 弯矩发生突变,突变量等于该力偶的力偶矩值。其 原因类似于集中力作用处剪力发生突变。
A 解: 求支座反力 1. B x =0.5ql FA=FB=0.5ql l 2.用截面法计算 用截面法计算x 2.用截面法计算x确定的 1 q 截面的内力 A B x 0.5ql FB ΣFy=0 FQ(x) = 0.5ql- qx FA M(X) ΣMC(F) =0 2 FA =0.5ql M(X) =0.5ql x- 0.5qx FQ FQ(x) (0< (0< X < l ) 0.5ql x 3.作内力图 (剪力图) 0.5ql 剪力图: 一条斜直线 x 弯矩图: 二次抛物线 M ql 2/8 (弯矩图)
四、单跨静定梁的内力图
列图示梁的内力方程,作内力图. A FP B 解:1.用截面法计算x确定的截 x l 面的内力 ΣFy=0 FQ = FP (剪力方程) FP M M=- ΣM =0 M=-(l - x) FP FQ (0< (0< X < l )(弯矩方程) FP FQ x 2.作内力图 2.作内力图 (剪力图) 剪力图: 剪力图: 常数的图线为平线 lFP 弯矩图: 的一次函数, 弯矩图:x的一次函数, x M 图线应为直线 (弯矩图) 纵标线、标值、正负号、图名和单位。 纵标线、标值、正负号、图名和单位。
例4.8 试作图示简支梁在均布荷载作用下的剪 1 q 力图和弯矩图。
写出梁的内力方程,作内力图。并指出最大内力值以及 q 它们所在的截面。 解 A x 1.用截面法计算 用截面法计算x B 1.用截面法计算x确定的截面 l 的内力 q ΣFy=0 FQ = q(l-x) MB (剪力方程) 剪力方程) B A x q ΣMC(F) =0 M=-0.5q(l - x)2 M=- FAy M (0< X < l ) (弯矩方程) (0< 弯矩方程) 2.作内力图 2.作内力图 FQ ql FQ x X的一次函数的 剪力图: 剪力图: 2 (剪力图) 0.5ql 图线为斜直线。 图线为斜直线。 x 弯矩图: x的二次函数,图 弯矩图: 的二次函数, M (弯矩图) 线应为抛物线。 线应为抛物线。
题4.17 对列平衡方程与用方程来画图难以理解。
单跨静定梁的内力图
2.剪力图和弯矩图 2.剪力图和弯矩图 为了能直观地观察出梁各截面上的剪力 和弯矩随截面位置变化的规律, 和弯矩随截面位置变化的规律,可仿照轴力 图的作法绘出剪力图和弯矩图。 图的作法绘出剪力图和弯矩图。绘图时以平 行梁轴线的x为横坐标,表示各横截面的位置, 行梁轴线的x为横坐标,表示各横截面的位置, 为纵坐标, 以FQ或M为纵坐标,表示相应横截面上的剪 力和弯矩,规定F 轴向上为正, 力和弯矩,规定FQ轴向上为正,M轴向下为 正。
单跨静定梁的内力图
第15讲 讲
授课日期 班 级
章节及 课 题 复习旧课 要 点 本讲教学 目的与要求
单跨静定梁的内力图
截面弯矩和剪力的求解
对单跨静定梁能用方程法画出弯矩 图和剪力图。
运用多媒体讲授。 教学设计 (方法、 教具、 手段、 内容) 教学重点 和 难 点 课外作业 课后记录 控制截面的选取,列方程与利用方程做图。
例4.8 试作图示简支梁在集中荷载 作用下的剪力图和弯矩图。 A
a1
Fb 2 C B
x 1. 解: 求支座反力 l =M/l =M/l FA=M/l FB=M/l x A B 2.用截面法计算x确定的截 x C FB FA 面的内力 M(X) M M(X) =M/l AB: FQ(x) =-FA = -M/l FQ(x) FA (0< (0< X < L) FQ(x) Mx/l M(X) = -FAX= -Mx l FQ x (0< (0< X < l) (剪力图) BC: FQ(x) =-FA+FB=0 =M/l (L< (L< X <3/2 l ) M M(X) = -FAX-FB(x-L)=-M = x (L< (L< X <3/2 l) M (弯矩图) CD: FQ(x) =0 M(X) = 0
相关文档
最新文档