2.3.1单跨静定梁的内力分析

合集下载

梁的内力分析

梁的内力分析

FQ 3 为负剪力, M 3 为正弯矩。
在计算梁的剪力和弯矩时,可以通过下面的结论直接计算: (1)某截面上的剪力等于该截面左侧(或右侧)梁段上所 有横向外力的代数和。(左上右下剪力为正;反之则为负) 以该截面左侧杆段上的外力进行计算时,则向上的外力产生 正剪力,反之为负。以该截面右侧杆段的外力计算时,则 向下的外力产生正剪力,反之为负。 (2)某截面上的弯矩等于该截面左侧(或右侧)所有外力对该 截面之矩的代数和。(左顺右逆弯矩为正;反之则为负) 以左侧的外力进行计算时,则绕截面顺转的外力产生正弯矩, 反之为负。以右侧的外力计算时,绕截面逆转的外力产生 正弯矩,反之为负。
F
Q1
、 M 1 为正值,表示该截面上剪力和弯矩与所设方向一致,故为正剪力,正弯矩。
例 7- 1
(3)求 2-2 截面的内力。用截面法把梁从 2-2 截面处切成两段,取左段为研究对象,受 力如图 7-6c。图中剪力和弯矩都假设为正。由平衡方程得 ∑Fy=0,
FA - F Q 2 =0, F Q 2 = FA =2 kN
FQ1 FA 2kN M1 FA 2 2 2 4kN m

FQ2=FA-F=2-3=-1kN
M 2 FA 2 2 2 4kN m
(3)求3-3和4-4截面的剪力和弯矩,取右侧计算。
FQ 3 FB 1kN
M3 FB 4 m 1 4 2 2kN m
MA 0
MB ql ql 2 l 0 2 2 ql l q l ql 2 M C ( )2 2 2 2 2 8
当x =l 时
当x=l/2时,
时将三点用一光滑曲线连成一抛物线即得梁的弯矩图,见图7-9c。

单跨静定梁的内力计算

单跨静定梁的内力计算

单跨静定梁的内力计算单跨静定梁的内力计算是结构力学中的一个基本问题,通过计算可以得到梁在不同位置处的剪力、弯矩和轴力等内力参数。

这些内力参数是设计和分析梁的性能和安全性的重要依据。

梁的内力计算可以通过多种方法进行,常见的有静力方法、能量方法和受力平衡方法等。

下面将介绍静力方法和能量方法这两种常用的计算方法,并简要说明计算步骤和注意事项。

1. 静力方法:静力方法是一种基于受力平衡的计算方法,通过平衡受力来计算内力。

具体步骤如下:1.1 绘制受力图:根据梁的受力情况,画出受力图,标注各个受力的方向和大小,包括支持力、荷载力、剪力和弯矩等。

1.2 利用受力平衡条件分析:根据受力平衡条件,设置适当的方程组,解方程组得到未知力的大小。

1.3 计算内力:根据受力图和已知力的大小,应用受力平衡和几何关系,计算梁的不同位置处的剪力、弯矩和轴力等内力。

2. 能量方法:能量方法是通过能量原理来计算内力的一种方法,包括弹性势能原理和最小势能原理。

具体步骤如下:2.1 建立适当的变形假设和应变位移关系:对梁的受力状态进行分析,建立适当的变形假设,如小位移假设,然后利用应变位移关系得到各部位的应变和位移。

2.2 建立应变能和位移能的表达式:利用应变能和位移能的定义,建立它们的表达式,一般包括弯曲应变能、剪切应变能和轴向应变能等。

2.3 建立总能量和平衡方程:将总能量表示为应变能和位移能的和,再应用极值原理,建立平衡方程,对系统总能量求导,使其达到极值。

2.4 计算内力:通过求解平衡方程,得到梁在不同位置处的内力。

在进行单跨静定梁的内力计算时,需要注意以下几点:- 细化受力图的绘制,要准确标注各个受力的方向和大小。

- 对于复杂的受力情况,可采用多段剖分的方法,将梁分割为多个小段进行分析,再将结果整合得到整体的内力。

- 静力和能量方法是两种常用的计算方法,其结果应尽可能一致,以确保计算结果的准确性。

- 在应用能量方法计算内力时,应根据实际情况选择适当的应变能和位移能表达式。

本章主要介绍了单跨静定梁和多跨静定梁的内力分析计算1

本章主要介绍了单跨静定梁和多跨静定梁的内力分析计算1

图.4
(2) 当荷载种类不同或荷载数量不止一个时,常常采
用叠加法绘制结构的内力图。
叠加法的基本原理是:结构上全部荷载产生的内 力与每一荷载单独作用所产生的内力的代数和相等。
例3 叠加法作图示简支梁弯 矩图。

4kN·m 3m
4kN 3m
(1)集中荷载作用下 (2)集中力偶作用下
4kN·m
6kN·m
(其中:下拉为正,反之为负。)
根据上述结论,可以不画隔离体受力图,不列平衡 方程而直接计算截面内力,亦称“直接外力法”
3.1.3 内力图的绘制 (1)根据微分关系作图 荷载集度q(x)、剪力Q和弯矩M之间的微分关系:
例2 绘制例1简支梁的内力图。 解: 在例.1中已求出该简支梁的支座反力,下面确定控
例1 如图3.2a所示简支梁,试计算距A支座距离为1m处C 截面上的内力。
解:(1 先假设反力方向如图所示,以
∑X=0: XA-P=0 XA=P=4kN
∑MB=0: YA*l-q*l*0.5*l=0 YA=0.5ql
=0.5×3×4kN=6kN
∑Y=0: YA+YB=ql
YB=ql-VA
=(3×4-6) kN=6kN
4kN·m
(3)叠加得弯矩图
4kN·m
例4 叠加法作图示外伸梁弯 矩图。
(1)悬臂段分布荷载作用下
(2)跨中集中力偶作用下
(3)叠加得弯矩图
8kN·m
2kN/m
3m
3m
2m
2kN·m
4kN·m
4kN·m 4kN·m
6kN·m 4kN·m 2kN·m
例5 图示外伸梁,承受集中荷载P=4kN,均布荷载q=3kN/m, 叠加法绘制其内力图。

结构力学 第3章静 定梁、平面刚架受力分析

结构力学 第3章静 定梁、平面刚架受力分析
工程中,斜梁和 斜杆是常遇到的,如楼梯梁、刚架中的斜梁等。斜梁 受均布荷载时有两种表示方法: (1)按水平方向分布的形式给出(人群、雪荷载等),用 q 表示。 (2)按沿轴线方向分布方式给出(自重、恒载),用 q’ 表示。
q 与 q’间的转换关系:
qdx qds q q
cos
第3章
[例题] 试绘制图示斜梁内力图。
q
B
C
A
α
D VB
HA
l/3 l/3
l/3
VA
(1)求支座反力:
解:
X 0 MB 0 MA 0
HA 0
VA
ql 6
()
VB
ql 6
()
校核:
Y
qj 6
qj 6
ql 3
0
第3章
(2)AC段受力图:
(3)AD段受力图:
HAcosα HAsinα
HA VAsinα
VA VAcosα
MC
C
NC
α QC
HAcosα
dx
d2M dx2
q(x)
(1)在无荷区段q(x)=0,剪力图为水平直线,弯矩图为斜直线。
(2)在q(x)=常量段,剪力图为斜直线,弯矩图为二次抛物线。其凹下去的曲 线象锅底一样兜住q(x)的箭头。
(3)集中力作用点两侧,剪力值有突变、弯矩图形成尖点;集中力偶作用点两 侧,弯矩值突变、剪力值无变化。
解:
10KN/m A HA=0
4m VA=26.25kN
30KN.m
20KN
C
D
B
E
2m
2m
32.5 2.5
3m VB=33.75KN 60
(1)计算支座反力

简捷法绘制单跨静定梁的内力图分析(1).

简捷法绘制单跨静定梁的内力图分析(1).

简捷法绘制单跨静定梁的内力图分析(1)摘要:正确计算截面内力,快速绘制静定梁内力图十分重要,阐述了用简捷法作单跨静定梁的内力图的基本条件,并举例说明了内力图在集中力、集中力偶处的特点和规律,还强调了弯矩图中抛物线的开口方向以及控制截面的选择方法。

?关键词:简捷法;剪力;剪力图;弯矩;弯矩图?梁的内力图绘制的目的是用图示方法形象地表示出剪力Q、弯矩M沿梁长变化的情况,绘制梁的内力图是材料力学教材中的一个重点和难点内容,熟练、正确地绘制内力图是材料力学的一项基本功,也是后续课程结构力学的基础。

绘制梁内力图的方法有静力法、简捷法和叠加法,其中简捷法是利用剪力、弯矩和荷载集度之间的微分关系作图的一种简便方法,通常是用来确定梁的危险截面作为强度计算的依据,因此熟练掌握简捷法作梁的内力图是十分必要的。

?1 简捷法绘制单跨静定梁的内力图的基本要求?(1)能快速准确地计算单跨梁的支座反力(悬臂梁除外)?支座反力的正确与否直接影响内力的计算,因此在静力学的学习过程中要打好基础。

?(2)能用简便方法求解指定截面的内力?1.1 求剪力的简便方法?某截面的剪力等于该截面一侧所有外力在截面上投影的代数和,即Q=?Y??左侧外力?(或)?Y??右侧外力?代数和中的符号为截面左侧向上的外力(或右侧向下的外力)使截面产生正的剪力,反之产生负剪力。

(即外力左上右下为正) ?1.2 求弯矩的简便方法?某截面的弯矩等于该截面一侧所有外力对截面形心力矩的代数和,即M=?M??c左侧外力?(或?M??c右侧外力?)?代数和中的符号为截面的左边绕截面顺时针转的力矩或力偶矩(或右边绕截面逆时针转的力矩或力偶矩)使截面产生正的弯矩,反之产生负弯矩。

(即外力矩或力偶矩左顺右逆为正)?1.3 举例说明:求图1中1-1截面的剪力和弯矩?解:取左侧为研究对象,根据简便方法有:?Q?1=25-5×4=5kN M?1=25×2-5×4×2=10kN•m?验证:取右侧为研究对象,根据简便方法有:?Q=15-10=5kN M?1=10×4-15×2=10kN•m?1.4 能将梁正确分段,根据各段梁上的荷载情况,判断剪力图和弯矩图的形状,寻找控制面,算出各控制面的Q和M弯矩、剪力与荷载集度之间的微分关系如下:?dM(x)dx=Q(x)?dQ(x)dx=q(x)?d?2M(x)dx?2=q(x)?利用弯矩、剪力与荷载集度之间的微分关系及其几何意义,可总结出下列一些规律,用来校核或绘制梁的剪力图和弯矩图,其规律如下表所示:?注意:根据函数图线的几何意义,当q>0(向上)时,弯矩图为开口向下的二次抛物线;反之q<0(向下)一时,弯矩图为开口向上的二次抛物线,即抛物线的凹性和凸性和均布荷载的方向保持一致。

结构力学-静定结构的内力分析

结构力学-静定结构的内力分析

计算多跨梁的原则:先附属,后基本。
多跨梁
单跨梁
单跨梁内力图
多跨梁内力28 图
[例1] 作多跨静定梁的弯矩图和剪力图
40KN/m
120KN
A
D
B
C
3m
8m
2m
6m
解: (1)作层次图
40KN/m
C
A B
120KN D
29
(2)求反力
40KN/m A
B 8m
C 2m
120KN D
3m 6m
C
120KN D
A
mC 0
FAH
FBH
FAV
l 2 FP1 f
l 2 a1
FA0V
a2
C
FP2
f
B FBH
FBV
l
FP2
C
B
FH
M
0 C
f
FB0V 55
三、 静定拱的内力计算:
1. 静定拱的内力有: M、 FQ 、FN 。
弯矩:使拱内侧受拉为正。
145KN 8m
60KN
60KN
B 235KN
3m
2m
6m
60KN
32
[例2] 作多跨静定梁的弯矩图和剪力图
q
A
B
C
qa
D
E
2qa2 F
a/2 a/2
a
a
a/2 a/2
q
AB
C 7qa/ 8
3qa/8 D
qa D
2qa2
E
F
3qa/8
6qa/8
11qa3/38
作弯矩图: 3qa2
qa2
8
8

《结构力学》第三章 单跨静定梁

《结构力学》第三章 单跨静定梁

l
l/2 l/2
MM
l
l
练习: 利用微分关系等作弯矩图
M
1 ql2 2
P 1 ql2
4
l
l/2 l/2
l
M
2M
MM
l
l
lM
M
l
练习: 利用微分关系等作弯矩图
1 ql2 2
P 1 ql2
4
q
1 ql2
l
l/2 l/2
2l
l
M
2M
M
MM
M
M
M
M MM
M
l
l
MM
练习: 利用微分关系,叠加法等作弯矩图
M图
Q图
例: 作内力图
铰支座有外 力偶,该截面弯矩 等于外力偶.
M图 Q图
无剪力杆的 弯矩为常数.
M图
自由端有外
力偶,弯矩等于外
Q图 力偶
练习: 利用上述关系作弯矩图,剪力图
练习: 利用上述关系作弯矩图,剪力图
5.叠加法作弯矩图
注意:
是竖标相加,不是 图形的简单拼合.
练习:
1 ql2 16
种结构型式?
简支梁(两个并列) 多跨静定梁
连续梁
例.对图示静定梁,欲使AB跨的最大正弯矩与支座B截
面的负弯矩的绝对值相等,确定铰D的位置.
q
A
D
B
C
x
l
l
RD
q
q(l x)2 / 8
RD
B
解: RD q(l x) / 2()
M B qx2 / 2 q(l x)x / 2 q(l x)2 / 8 qx2 / 2 q(l x)x / 2

弯曲内力—单跨静定梁的内力图(材料力学课件)

弯曲内力—单跨静定梁的内力图(材料力学课件)

FA
FB
ql 2
()
(2)列剪力方程和弯矩方程
FS (x)
FA
qx
1 2
ql
qx
(0< x l)
M (x)
FA x
1 2
qx 2
1 2
qlx
1 2
qx 2
(0 x l)
(3) 绘制剪力图和弯矩图
两端支座处: 梁跨中:
ql FSmax 2
M max
ql 2 8
q
A C
x
FA
l
1 ql
2
1 ql 2 8
剪力为常数,FS图为
平直线;弯矩为一次
FaFS图FS图(b) (b) 函数,M图为斜直线。
l
Fa
M图
l (c)
M图 (c)
集中力F处,剪力图 发生突变,弯矩图
有尖角。
单跨静定梁的内力图
2.单一荷载下静定梁的内力图
A
解:(1)求支座约束力
FA
由梁的整体平衡条件可求得:
M l
e
()
FA
(2)列剪力方程和弯矩方程
单跨静定梁的内力图
1. 剪力方程和弯矩方程 为了形象地表示剪力和弯矩沿梁轴线变化的规律,以沿梁轴线的横坐标x表示梁横
截面的位置,以纵坐标表示相应横截面上的剪力或弯矩,按剪力方程和弯矩方程绘出 图形,这种图形分别称为剪力图和弯矩图,即梁的内力图。
剪力方程
FS FS (x)
正剪力画在x轴上方负 剪力画在x轴下方,并在
图中标明“ ”、x轴下方负 剪力画在x轴上方,并在
图中标明“ ”、“ ”。
单跨静定梁的内力图
2.单一荷载下静定梁的内力图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、梁的形式
梁的类型:简支梁(一端固定铰支座一端可动铰支座)、 外伸梁(梁端有部分外伸的简支梁)、悬臂梁(一端固定 端支座一端为自由端)。 梁在两个支座之间的部分称为跨。每跨之间的距离为两 支座作用点之间的距离。
三、剪力和弯矩
如课本所给一简支梁,受到均布荷载q作用,当q足够 大时梁会发生破坏,由日常经验可得破坏位置一般在梁中 间,为什么呢? 外力:荷载和约束反力。内力:构件内部相连接两部 分之间的相互作用。 研究时采用截面法(截开、代替、平衡)。求在内力 的截面m-m处,用一假想的与梁轴线垂直的平面将梁截成 两部分,取左段为研究对象,由于梁处于平衡状态,因此 左段梁也是处于平衡的。 左段上作用反力根据平衡公式可求得截面上向下的剪 力,根据弯矩平衡可以求得弯矩M。Fs为剪力,M为弯矩
F1 m A
F2
B
m
a FAy a RBy
x
x
l
m Fs
F1
A FБайду номын сангаасy m
M
m M' m Fs'
F2 B FBy
左段:∑Fyi=0 FAy—Fs—F1=0 Fs=FAy+F1 ∑MO(F)=0 M—FAy*a+F1*(x-a)=0 M=FAy*a—F1*(x-a) m-m上的内力值也可以通过右段梁的平衡求得,结果是 一样的,但方向相反。 剪力的单位为N或KN,弯矩的单位为KN∙m或N∙m。 剪力的正负号:使所隔离物体有顺时针转动趋势为正;反 之为负。 弯矩的正负号:使所隔离物体产生下凸变形为正(下部受 拉上部受压),反之为负。 如课本所示。 做题步骤:(1)求支座反力(2)求截面内力(剪力和 弯矩)课本例题2-2、2-3
第二章
静定结构内力分析
第二节 单跨静定梁的内力分析 (弯曲变形、梁的形式、剪力和弯矩)
一、弯曲变形
弯曲变形是工程中最常见的基本变形,以弯曲变形为主要 变形的杆件称为梁。板也是受弯构件,梁板的区别在于梁的 截面高度一般大于截面的宽度,板的高度远小于截面的宽度。 弯曲变形:如过梁、阳台板下挑梁(课本)。弯曲变形的 特点是受到通过自身轴线平面内的力的作用产生了变形。 平面弯曲:工程中梁一般都是对称的,有对称轴,对称轴 与梁轴线所组成的平面称为纵向对称平面,如图所示(课本) 如果作用在梁上的所有外力都位于纵向对称平面内,梁变 形后,轴线将在纵向对称平面内弯曲,这种梁的弯曲平面与 外力作用面相重合的弯曲,称为平面弯曲。
相关文档
最新文档